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Asymptotically exact results for the average Green's function and the average density of states of 
a disordered system, described by the Anderson model with a Gaussian site energy 
distribution in four-dimensional space, are derived in the limit of weak disorder. The approximation 
employed consists of taking into account (a) the parquet terms containing the maximum 
power of the large logarithm and (b) the most rapidly growing (in the limit N m ,  where N is 
the order of the perturbation theory) terms with low powers of the logarithms. The latter 
terms are calculated by the Lipatov method and lead to a nonperturbative contribution to the 
imaginary part of the Green's function, which accounts for the "spurious" pole. 

1. INTRODUCTION n ~ 0 :  This can be shown by comparing the diagrammatic 
expansions (Ref. 2, p. 225) or by switching to a functional 

with the modern theory of integral by means of the replica method.15 Then the coeffi- 
phenomena'-3 it is natural to expect that an upper critical cients in the Ginzburg-Landau Hamiltonian 
space dimension dc2 near which an &-expansion can be con- 
structed exists for the Anderson t ran~i t ion .~-~  Until recently 
the question of the value of dc2 remained controversial: Al- 
though many pointed to dimension dc2=4, they also 
admitted a different interpretation,'' which led lo the are related to the parameters of the disordered system by the 
native hypotheses dc2=6 (Ref. l l ) ,  dc2=8  (Refs. 12 and 13), relations 
and others. A constructive solution to the problem of the 
upper critical dimension was proposed recently in Ref. 14: It 

c= 1/2m, K:= -E, g=  -a;w2/2. 
was asserted that d,,=4, it was shown how the condition (5) 

d > 4  simplifies the problem, and the density of states of the 
disordered system was calculated for d > 4  in the entire en- 
ergy range, including near the Anderson transition. In the 
present paper the next step in the construction of the 
&-expansion is made and the case d =4  is examined. 

In what follows we shall have in mind the Anderson 
model on a d-dimensional cubic lattice described by the dis- 
crete Schrodinger equation 

with a Gaussian distribution of the site energy V, 

The disorder amplitude W and the energies E considered are 
assumed to be small compared to the width J of the band; the 
energy origin and the overlap integrals J x - , !  are chosen so 
that the spectrum of the ideal lattice 

has the form k2/2m for small k. In the continuous limit, 
when the lattice constant satisfies ao+O with 2 m  =const and 
a;w2=const, the problem of calculating the average Green's 
function of Eq. (1) is mathematically equivalent to the prob- 
lem of a second-order phase transition in a system with an 
n-component order parameter q=(pl,cp2, ...,cp,) in the limit 

As usual, the coefficient of IvcpI2 is positive and the coeffi- 
cient of (cpI2 changes sign near a phase transition (in the case 
of weak disorder the Anderson transition lies at low values of 
E), but the coefficient of IcpI4 has the "wrong" sign. Conse- 
quently, the results of the theory of phase transitions cannot 
be transferred directly to the physics of disordered systems. 
In quantum field theory the model corresponding to (4) is the 
well-known o4 model which describes a relativistic Bose gas - 
with a point intera~tion; '~"~ here negative values of the in- 
teraction constant g (attraction) correspond to an unstable 
field theory.') 

The spatial dimension d = 4  is distinguished for the 
Hamiltonian (4): For d = 4  there exists a dominant sequence 
of diagrams which contain the maximum power of a large 
logarithm-the so-called Summation of the par- 
quet terms leads to the following relation between the renor- 
malized constant g , ,  describing the interaction at large dis- 
tances, and the seed value g (Refs. 3, 19, 21): 

where K4=(8d)- '  is the area of the four-dimensional unit 
sphere divided by ( 2 ~ ) ~ ;  A is the large-momentum cutoff 
parameter; and K is the renormalized value of KO, which 
vanishes at the transition point. For g>O the expression (6) 
describes the typical "zero-charge" ~ i t u a t i o n : ' ~ , ~ ~ , ~ ~  AS K+O, 
i.e., as the phase transition is approached, the effective inter- 
action approaches zero. In the transition from d = 4  to 
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d=4-E the constant gR acquires in the limit K-+O a finite 
but small value, and this is actually why Wilson's 
&-expansion is successful."' 

The use of the parquet approximation in the theory of 
disordered systems leads to an expression of the form (6) 
with g<0;24225 for small K (i.e., small values of the renormal- 
ized energy E )  the expression (6) has a "spurious" pole that 
cannot be removed within the parquet approximation. The 
formal application of parquet results of the type (6) leads to 
divergences in physical quantities. Thus a paradoxical situa- 
tion arises: The use of the same approximation in two math- 
ematically equivalent problems leads in one case (theory of 
phase transitions) to essentially a complete solution of the 
problem, and in the other case (theory of disordered systems) 
to manifestly unphysical results. ~adovsk i i '~~ '~  believes that 
the spurious pole problem is the main obstacle in the con- 
struction of a systematic theory of the Anderson transition. In 
the present paper a solution of this problem is given for a 
definite class of lattice models. 

The source of the difficulties is actually not so much the 
incorrect sign of the interaction constant g as the irremovable 
complexity of the effective Hamiltonian (4). An infinitesimal 
imaginary part + i  6 or -i 6 must be added to the energy E 
even to specify the choice of the Green's function (retarded 
or advanced), and the choice of sign of the imaginary part 
must be taken into consideration in the analytic continuation 
in the coupling constant or other method for removing the 
divergence of the functional integrals (see footnote 1). The 
instability of the field theory for g<O results in the fact that 
the infinitesimal "seed" +id leads to the appearance of a ,  
generally speaking, finite imaginary part in all calculated 
quantities. The problem of calculating the imaginary part did 
not arise in the theory of phase transitions, but it is here that 
the parquet approximation becomes completely unsatisfac- 
tory. The main effect is that the transition "temperature" 
acquires an imaginary part: When this circumstance is taken 
into account the mathematical equivalence of the two prob- 
lems is restored-the physical quantities of the disordered 
system which are determined by the average Green's func- 
tion are described by the formulas of the theory of phase 
transitions with complex T,; this latter circumstance ac- 
counts for the spurious pole. 

Analysis of the case d > 4  showed14 that to resolve the 
difficulties described above the factorial divergence of the 
perturbation-theory series must be taken into account 
correctly;26 it is this divergence that determines, in particular, 
the appearance of the fluctuation-induced tail of the density 
of The following scheme was employed in the 
preceding work14 to investigate the higher orders of pertur- 
bation theory: a) the functional form of the coefficients in the 
expansion of the self-energy C, containing a small number of 
phenomenological parameters, was established by statistical 
analysis proceeding from the diagram technique; b) the non- 
perturbative contribution to the damping r was calculated, 
which made it possible to calculate the density of states <E) 
at all energies; and c) the phenomenological parameters in- 
troduced above were determined by comparing the asymp- 
totic behavior of <E) in the limit E+-03 to the results 
obtained by the instanton m e t h ~ d . ~ ~ , ~ ~ , ' ~ , ' ~  

In the present paper the same idea is implemented by a 
more direct method: a) The asymptotic behavior of the coef- 
ficients in the expansion of the Green's function is calculated 
by the Lipatov instanton method;26 b) the asymptotic behav- 
ior of the coefficients of the self-energy are found from it; c) 
the form of the self-energy C(p,E) for arbitrary p and E is 
determined by comparing the instanton results, which are 
valid for E<O, to the structure of the perturbation-theory 
series following from the diagrammatic technique; and d) 
4 E )  is calculated. In this approach a statistical analysis, 
some aspects of which are conditional, of the diagrams is no 
longer required;I4 however, substantial use is made of the 
fact that, as demonstrated in Ref. 14, the instanton results can 
in principle be obtained by the diagrammatic technique. 

In the discussion below units with a o =  1 and 2m = 1 are 
employed; the standard units are used only for estimates. 

2. STRUCTURE OF THE PERTURBATION SERIES FOR d=4 

For convenience in applying the published results the 
exposition will be given in terms of the theory of phase 
transitions, and the transition to disordered systems will be 
made at a later stage. 

We define the M-point Green's function as 

G ~ ( a l  9x1 ,...,a, , X M ) = Z ; ' Z M ( ~ ~ , X ~  , . . . ,~M,xM), 
(7) 

where Z, is given by the functional integral 

and the Hamiltonian H{cp) in the continuous approximation 
is determined by the expression (4). The standard diagram 
technique2 is obtained by expanding the Green's function (7) 
in powers of g .  The calculation of the two-point Green's 
function G(a1xI  , a2x2) = ,2G(xl - x2) reduces, in the 
standard fashion, to calculating the self-energy 2 :  

where G(k) is the Fourier transform of G(xI -x2), and the 
quantity 2 is 

K'= K:-$(o,K;)= K;--c(o,K'). (10) 

The transition point is determined by the condition 
G-'(o)=o or KO= K, , where 

K:=C(O,O). (11) 

Counting the powers of the momentum in the Nth order dia- 
gram for C gives r = 2 + ( d  - 4)N, and for d =4  all diagrams 
diverge at the upper limit as A'. Subtracting from each dia- 
gram its value at k=O, K=O decreases the exponent r by 2 
and makes the divergence logarithmic. The quadratic diver- 
gences are removed from the inner blocks by switching from 
the bare Green's functions GB(k) = ( ~ ( k )  + K;)- ' to the 
modified functions 

~ , ( k )  = (&(k) + K')-' (12) 
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(when the expansion is made in terms of the functions GO(k) 
the diagrams have the same form as in the case of the ex- 
pansion in terms of G,(k) but from each irreducible self- 
energy part its value at zero momentum is subtracted). As a 
result, all quadratic divergences are incorporated into the 
term 2(0,0), and the difference Z(k,2)-2(0,0) contains 
only logarithmic divergences; classifying the contributions of 
the diagrams according to powers of the logarithms we ob- 
tain for k = 0 

The maximum power of the logarithm is determined by the 
parquet diagrams and equals the order of the diagram. In Eq. 
(13) terms of the type K ~ / A ~ ,  K ~ / A ~ ,  and so on, which vanish 
in the limit A+m, are dropped. 

The parquet approximation corresponds to retaining in 
Eq. (13) only the coefficients A;. The corresponding result 
can be easily derived from the work of ~ i n z b u r ~ . ~ '  From the 
Ward identity we have 

(see Eqs. (32), (30), and (17) of Ref. 21 in the limit ~ 4 0 ) .  
Integrating Eq. (15) in the leading logarithmic approximation 
and using Eq. (10) we obtain 

Expanding in a series in powers of g and comparing to Eq. 
(13) we have 

where P=(n + 2)l(n + 8) and T(x) is the gamma function. 
The analysis of the case d>4 performed in Ref. 14 

showed the qualitative importance of taking into account the 
factorial divergence of the perturbation series. This diver- 
gence is directly related to the existence of a fluctuation- 
induced tail of the density of states. Indeed, for a Gaussian 
site-energy distribution (2) arbitrarily deep fluctuations of the 
potential and therefore arbitrarily deep energy levels with 
arbitrarily small w2 occur with finite probability, i.e., the 
density of states 4 E )  is different from zero for all E and w2. 
Hence 

for all E ,  g<O, (18) 

i.e., the exact Green's function G(E) has a cut for negative 
values of E that the unperturbed Green's function G,(E) did 
not have. According to a well-known theorem from analysis 
the sum of a series consisting of continuous functions is 
continuous if the series converges uniformly; uniform con- 
vergence obtains if the functional series is majorized by a 
converging numerical series3' If the coefficients in the ex- 
pansion of G(E) in powers of g grow more slowly than aN 
for some finite a ,  then for small I g l  the series is majorized by 
a converging geometric progression and converges uni- 
formly. Then the impossibility of Eq. (18) follows from the 
continuity, following from the continuity of G,(E), of the 
terms of the series. For this reason, the expansion coeffi- 
cients grow more rapidly than aN with arbitrarily large a: 
The factorial function is one of the simplest functions with 
this property. 

It is clear from Eq. (17) that the coefficients of the par- 
quet expansion do not exhibit factorial growth. This reveals 
the reason that the parquet expansion is unsatisfactory. Terms 
with low powers of the logarithms grow more rapidly and 
dominate for large values of N. 

In principle a second, third, and so on logarithmic ap- 
proximation can be made by retaining in Eq. (13) the coef- 
ficients A:-', and so on. These coefficients are deter- 
mined implicitly when the higher order terms of the 
&-expansion are calculated by Wilson's method, which is 
based on the existence of an exact renormalization group for 
d=4-E, g>O (Ref. 2, chapter 9). For finite K  and N - t m  

We can see that factorial growth does not arise in any 
finite logarithmic approximation; it can be seen for K - N ,  
when Eq. (19) is no longer applicable. 

Information about the most rapidly growing coefficients 
can be obtained by the Lipatov method (Sec. 4). These coef- 
ficients correspond to the terms with low powers of the loga- 
rithms and depend on the character of the cutoff at large 
momenta (for example, changing A by a factor of 2 changes 
all A; with K f  N), and therefore on the choice of model. As 
a guide, we shall make some simple estimates. 

3. ESTIMATES BY THE OPTIMAL-FLUCTUATION METHOD 
AND CLASSIFICATION OF MODELS 

It is clear from Sec. 2 and Ref. 14 that the situation in 
the higher orders of the perturbation theory is associated with 
the appearance of a fluctuation-induced tail, which in the 
field-theoretic formulation is determined by the classical so- 
lutions (instantons) in the density of states.24,25,28,29 The 
properties of instantons can be understood qualitatively by 
the optimal-fluctuation method of ~ i f s h i t z . ~ ' , ~ ~  

On account of Eq. (2) the probability of the appearance 
of a fluctuation-induced potential well with depth V and ra- 
dius R is of order2) 
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FIG. 1. S(E,R) as a function of R with 
E=const: (a) d f  4 and (b) d=4.  

When a level E = - IEl is present in the well the parameters The sharp difference between the attractive and repulsive 
V and R are related by cores disappears for small values of E ,  where Anderson's 

E =  - ~ + ( l l m ~ ~ ) =  - v+J(u, IR)~,  transition lies. The point is that for P<O the contribution of 
(21) the instanton minimum with S=Sl competes with that of the 

which makes it possible to eliminate V from Eq. (20): higher-lying plateau with S = So,  whose width increases 

[ R Id[  I E I  + J ( a o / ~ ) ~ ) ~ ]  
without bound as E+O. Integrating P(E,R)  over R, taking 

P(E,R)mexp - - 
W 

into account both contributions, gives a result of the form 
a0 

The level-formation probability P(E) ,  which determines the 
density of states <E),  is obtained by integrating Eq. (22) 
over R. In the saddle-point approximation the contribution to 
the integral is determined by the point R = R, , where the 
quantity S(E,R) is minimum. The quantity R ,  corresponds 
to the instanton radius in the field-theoretic formulation: It is 
clear from Fig. l a  that for d < 4  the instanton radius 
R,E I E  1 -IJ2 and diverges as I E ~  +0, while for d > 4  it corre- 
sponds to the minimum possible R ,  i.e., R,-a,. 

For d = 4  (Fig. lb) we have S(E,R) =const=So for E =0, 
and the situation is close to degeneracy. For large R the 
degeneracy is removed due to the finiteness of E ,  
S ( E , R ) K E ~ R ~ ;  for small R the behavior of the spectrum 
~ ( k )  for large k becomes important: If in the expansion of 
~ ( k )  in powers of k terms -k4 are included together with 
terms -k2, then instead of Eq. (21) we obtain 

For P>O (repulsive "core") the quantity S(E,R) is larger 
than So,  giving rise to a minimum at R - ~ ~ ( J / / E  while 
for p<O (attractive "core") S(E,R) is less than So and a 
minimum obtains at R-ao, where higher order terms in the 
expansion of ~ ( k )  in powers of k become important (Fig. 
lb). Thus the transition from the highest dimensions of the 
space to the lowest dimensions is "continued" at d = 4  in the 
parameters of the model: For P<O the instanton is localized 
on an atomic scale, similarly to the case d>4, and for P>O 
the instanton radius diverges as E +0, which is characteristic 
for the lowest dimensions. Correspondingly, the asymptotic 
behavior of the density of states for large negative E is found 
to be different: 

and as S1 and So approach one another the second term (the 
plateau contribution) inevitably dominates, so that the tran- 
sition to the case P>O, accompanied by vanishing of the first 
term in Eq. (25), has no consequences of importance. 

Since the energy E always appears in the combination3) 
E + iT with the damping T, near the Anderson transition we 
must set E-T in Eq. (25). Then two limiting cases can be 
distinguished. 

1) Strongly attractive core. If S ,  is sufficiently smaller 
than So,  the first term dominates in Eq. (25). In this case r is 
determined by the corresponding exponential exp{-S1}, 
which ensures that the second term is small. The contribution 
to u(E) is determined by instantons localized on an atomic 
scale and the discreteness of the lattice is of fundamental 
importance. 

2) Weakly attractive (S1 close to So), repulsive, or neu- 
tral (P=O) core. The density of states is determined by the 
second term in Eq. (25)-by the contribution of the plateau. 
Since large-radius instantons are important, the atomic struc- 
ture of the lattice is of no importance and the continuous 
model (ao+O) can be used for the analysis. 

In the present paper we confine our attention to the first 
case, in which, since the model is discrete, ultraviolet diver- 
gences do not arise. The second case is more complicated: 
Here, just as in quantum electrodynamics, three quantities 
must be renormalized in passing to the continuous limit- 
"charge," "mass," and the Green's function. This renormal- 
ization must be performed consistently in higher orders of 
perturbation theory. 

To prove the existence of models with small S1 we shall 
estimate the instanton minimum by a variational method for 
a nonoptimal fluctuation localized at a single site. Setting in 
Eq. (2) Vx= VSxo and eliminating V by means of the equa- 
tion 
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determining the level in this potential31 (GXx~(E)  is the 
Green's function of an ideal lattice), we obtain in the limit 
E-0 

if the spectrum ~ ( k )  lies in the interval from 0 to J. The 
value of SO for the plateau is determined by the effective 
mass rn for small k. This effective mass is not explicitly 
related to the width J of the band. The ratio Sl/SO can be 
made arbitrarily small by decreasing J with rn =const. 

4. ASYMPTOTIC FORM OF THE EXPANSION COEFFICIENTS 
FOR LARGE N 

4.1. Application of the Lipatov method 

The Lipatov method26 is based on the fact that the ex- 
pansion coefficients of the function F(g)  

m 

F ( g ) =  C FNgN (27) 
N=O 

can be determined from the formula 

where the contour C encircles the point g=O in the complex 
plane, and for large N the integral in Eq. (28) can be calcu- 
lated by the saddle-point method. Substituting for F(g)  the 
quantity Z M  from Eq. (8) gives 

where H{cp) is the lattice-model Hamiltonian 

The action of the operator ~ ( f i ) ,  where ;= -iV, is deter- 
mined by using the Fourier expansion (3) and taking into 
consideration the fact that the operator exp(ipa) describes a 
displacement by the vector a. The idea of the Lipatov 
method is to use in Eq. (29) the method of steepest descent in 
g and cp simultaneously. The conditions for the applicability 
of the method of steepest descent are satisfied for large N 
and ~ 5 0 ,  irrespective of whether or not this method is ap- 
plicable to the initial integral (8). The saddle point is deter- 
mined by the conditions 

If the classical solution (instanton) is sought in the form 

where ua are the components of the unit vector u, then Eq. 
(31) gives 

&(B)(P,(x) + K2cpc(x) + g , c p , ( ~ ) ~  =0 ,  (34) 

whence it is clear that g,<O, and to guarantee that the sum in 
Eq. (3) converges the function cp,(x) is sought in a class of 
functions that decay at infinity. Since a strongly attractive 
core is assumed, we assume that the instanton is localized on 
an atomic scale. Considering small deviations from the 
saddle point 

g = g c +  Sg, cpa(x)= cp,(x)u,+ Sp,(x) (35) 

and separating 6pa(x) into longitudinal and transverse parts 

SP,(X) = SPL(X)U,+ ~ p I ; ( x ) ,  S p T 1  u (36) 

we obtain for the argument of the exponential in Eq. (29) 

where 

Introducing the eigenvalues and the normalized eigenfunc- 
tions 

e x  = e x ) ,  M~~:(x)  = ~ $ e $ ( x )  (39) 

and expanding S e  and in terms of these eigenfunctions 
as 

we obtain Eq. (37) in the form 
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where 

The integration over cp(x) can be replaced by integration 
over C: and c:", the determinant of the transformation be- 
ing equal to 1 since e t  and e: are orthonormal: 

4.2. Identification of the zeroth modes 

In the continuous model the operator M. has zero modes 
associated with the possibility of continuous translations of 
the instanton solution.25 In the discrete model these become 
gap modes and they need not be specially distinguished, to 
obtain a translationally invariant result; however, it is conve- 
nient to carry out a procedure similar to the one employed in 
making such a distinction. We introduce in the integrand of 
Eq. (29) the partition of unity ~ y G y - y o ,  identifying yo  with 
the site near which the instanton is localized, and we perform 
the transformation 

which displaces the instanton to the site y (after which 
Gy-yo = 1). Since D cp and H{cp} are invariant under the trans- 
formation (44), the integral in Eq. (29) assumes the form 

X(x,-y)exp(-H{cpI-N In g ) .  (45) 

To separate the zeroth mode of the operator M, (Ref. 25) 

associated with the possibility of rotating the vector u in Eq. 
(32), we introduce in the integrand in Eq. (47) the partition 
of unity 

where the unit vector v is chosen so that 

To obtain the second relation in Eq. (47) we must identify the 
vector u' with the vector u in Eq. (32) (which is possible 
because of the arbitrariness of the latter), express v in terms 
of cpc(x) and Gdx), and use Eq. (40) and the fact that eT(x) 
with s # O  is orthogonal to ei(x).  Substituting Eq. (47) into 
the integrand in Eq. (49 ,  using the zeroth-order approxima- 
tion (32) of rp,(x) in the pre-exponential factor, using Eqs. 
(41) and (43), and removing the Sfunction in Eq. (47) by 
integrating over c ? ~ ,  we obtain 

where we have made the substitution Gg= iJg,Jt ,  since the 
contour C passes through the point g, in the vertical direc- 
tion; the prime indicates that the contribution of the zeroth 
mode (46) is excluded from the sums and products. 

4.3. Calculation of the functional integral 

The quadratic form in the exponential (49) is nonhermi- 
tian and the law of inertia does not hold for it.33 TO reduce it 
to a diagonal form with positive coefficients, which guaran- 
tees that the integral (49) converges, a special transformation 
of variables must be used. Since the lowest eigenvalue ~6 of 
the operator ML is negative,25 this transformation can be 
taken in the form4) 

To calculate the determinant it is necessary to know the value 
of the sum 

calculated using the completeness of the basis et(x) and the 
relation 
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which is obtained by multiplying Eq. (34) by e:(x) and the 
first equation in Eq. (39) by cpc(x), and summing over x the 
equations obtained and taking the difference. Using Eqs. (50) 
and (51) the result of integration on t ,  cL, and cT in Eq. 
(49) is equal to: 

To separate the N-dependence we make the substitution 

q,(x) = ( -gc)-"2*c(x), (54) 

which eliminates g, from Eqs. (34) and (38), and we intro- 
duce the notation 

Then 

and Eq. (49) assumes the form 

4.4. Swltching to the expansion for the Green's function 

It is obvious from Eq. (57) that the expansion coeffi- 
cients of Z M  increase as N 4 m  according to a factorial law. 
For factorial series there exists a simple algebra (see Appen- 
dix) that makes it possible to multiply one series by another, 
construct integer and fractional powers of a series, and so on. 
Proceeding from the definition (7) and using the fact that, 
according to Eq. (57), the sequence [ Z , ] ,  with M>O in- 
creases more rapidly than [Z , ] ,  we find that the coefficients 
in the expansion of the Green's function are the same as the 
coefficients of the quantity 

where A: are the eigenvalues of the operator Mo= E G )  + K ~ .  

Expressing the determinants as 

we obtain the following expressions for the coefficients in 
the expansion of the Green's function: 

4.5. Brezin-Parisi transformation of the determinants 

The spectrum of the operators ML and M ,  contains a 
continuous component, and to calculate the determinants DL 
and DT it is necessary to perform quantization in a large but 
finite volume and then to pass to the thermodynamic limit. 
As a rule, however, A: and AT cannot be calculated analyti- 
cally, and in this situation numerical methods are ineffective. 
Brezin and Parisi proposed a method for overcoming these 
difficulties2' This method also reveals divergences in the 
determinants, and the elimination of these divergences re- 
veals a connection to the general problems of renormalizabil- 
ity. Introducing the notation 

and employing the fact that the determinant of a product 
equals the product of the determinants, we obtain for the 
combinations appearing in Eq. (60) 

The spectrum of the operator ~ ( z )  is purely discrete: Its 
lowest eigenvalues can be found numerically, and simple as- 
ymptotic expressions exist for the higher-order eigenvalues 
(see below). It is easily shown that 

where ps are the eigenvalues of the equation 

i.e., ,us is the value of p in the potential -3p1,h~(x)~ for 
Schrodinger's equation with the spectrum ~ ( p ) ,  in which the 
sth energy level equals -2; because of Eq. (63) DL and DT 
can be expressed in terms of a single sequence ,us. To elimi- 
nate the zeroth eigenvalue from DT it is necessary to deter- 
mine the manner in which the corresponding eigenvalue of 
~ ( z )  approaches zero as z-+1/3. This can be done by means 
of perturbation theory: 

D(z) 
- I 2  ( 1 3 )  6 ( 1 / 3 ) =  lim - 

Do I4 24113  ' 
(65) 
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When Eqs. (62) and (65) are substituted into the expression 
(60), the quantity 12, which diverges at d=4,  ?=o, cancels 
out (see below). 

4.6. Divergences of the determinants and elimination of 
these divergences 

Asymptotic representations of ,us for large s can be ob- 
tained by calculating the number of electrons with the spec- 
trum ~ ( p )  which have energy less than -? in a quasiclas- 
sical (for large p )  potential - 3 p $ c ( ~ ) 2 .  This can be done by 
the Thomas-Fermi rneth~d.'~ Since the spectrum is 
bounded, O s e ( p ) ~ J ,  for pSJ in the region 1x1 < r ,  , where 
r ,  is given by the equation 

states with all p are filled and the electron density is constant 
and equal to a,d for the model (1) with one level per site; for 
1x1 > r c  the electron density drops continuously to zero over a 
distance r ,  . For large 1x1 the instanton equation (34) can be 
linearized and expanded in the gradients:14 The function 
+bC(x) decays exponentially for ?>0 and algebraically for 
3 = 0 :  

The desired number of states is of the order of ( r , l ~ , ) ~ ,  and 
Eqs. (66) and (67) give 

For d>4 the sequence ps increases more rapidly than s'", 
and substituting Eq. (63) in the form 

we see that for d>4 all sums converge and there are no 
divergences in D ( z ) ;  for d =4 we have ,us-s and the first 
sum in Eq. (69) diverges. Its value is determined by the sum 
rulez7 

obtained by calculating In D ( z )  for small z by perturbation 
theory based on the definition (61). The integral over k con- 
verges due to the discreteness of the model, and the sum over 
x diverges logarithmically at d = 4 ,  ?+o in accordance with 
what we have said above; this is an infrared-type divergence, 
in contrast to the ultraviolet divergence in the continuous 
model with d<4.27 

Renormalization of the quantity K eliminates this diver- 
gence. Taking K,, as the seed value the initial Hamiltonian 
can be represented as a sum of the Hamiltonian (30) with the 
renormalized value of K and the counter term 

where the renormalization of K is sought in the form of the 
diagrammatic expansion 

Constructing the instanton according to the Hamiltonian (30) 
and estimating the quantities at the saddle point and the rms 
fluctuations near it as 

we prove that in calculations to zeroth order in N inclusively 
only the first term need be retained in the expansion (72), 
and the values of g and cpa(x) at the saddle point can be 
substituted in Eq. (71). Calculating 4-2 in the one-loop 
approximation [determining C1 in Eq. (72)],  we find that the 
counterterm (71) leads to the appearance of an additional 
factor on the right-hand side of Eq. (60) 

(74) 

which, on account of Eqs. (62), (65), (69), and (70), cancels 
the divergent part of the determinants. Defining the renor- 
malized determinants as 

we obtain Eq. (60) in the form 

where the instanton solution is determined with the renor- 
malized value of K .  

4.7. K dependence 

The expression (76) is finite at K=O for all d 3 4 .  To 
exhibit the K-dependence for K<A we add to ? in the in- 
stanton equation (34) the increment 82, expand the resulting 
correction to fic(x) in terms of e f ( x ) ,  and calculate the 
change in I4 using Eq. (52) and the completeness of the basis 
e $ ( x ) .  We obtain 

14(K2+ 8K2) - I ~ ( K ~ ) = ~ Z ~ ( K ' ) S K ' .  (77) 

For d>4 Eq. (77) can be integrated directly since I2 is finite 
at ?=o: 

I , ( K ' ) = I ~ ( o )  + ~ I ~ ( O ) K ' ,  d > 4 .  (78) 

For d = 4  the quantity ~'(2) diverges logarithmically as 
?--to. It is convenient to single out the diverging part by 
means of the relation, following from Eq. (34), between the 
Fourier components i,bc and & 
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Expressing I, in terms of ( @ c ) k  and using Eq. (79) we obtain 

A 
I ~ ( K ~ ) = I ~ ( o ) ~ K ~  In -, d = 4 ,  

K 
(80) 

which, after substitution into Eq. (77) and integration, gives 

A 
I ~ ( K ~ ) = I ~ ( o ) + ~ I ~ ( o ) ~ K ~ K ~ ~ ~  - + o ( K ~ ) ,  d = 4 .  

K 

(81) 

In the remaining quantities we can set K=O [their 
K-dependence corresponds to the energy dependence of the 
pre-exponential in Eq. (92)l. 

4.8. Green's function and the self-energy of a disordered 
system 

Setting in Eq. (76) M = 2  and a, =q,, Fourier transform- 
ing, and passing to the limit n-0 we obtain 

where we have made use of the fact that 

Inverting the series for G ( p )  (see Appendix) we obtain 

Setting p=O in Eq. (84) and using Eq. (9) we obtain the 
following relation between K and KO: 

Due to the factorial nature of the series (84) and (85), K can 
be replaced by KO in the high-order terms of the series (84). 
Because of Eq. (9) the series (84) gives an expansion for the 
self-energy. Using Eq. (79) we have 

In the limitp-+O we have (e)p-t~3 and the expression (86) 
remains finite as p-0, K-0. The p and K dependences are 
weak; significant changes occur over the distance A. 

5. STRUCTURE OF THE LEADING APPROXIMATION WITH 
d=4 

We set p = O  in the expression (86) and expand in powers 
of K, using Eq. (81). Comparing to Eq. (13) we identify the 
coefficients as follows: 

It is clear from Eq. (87) that the terms with the zeroth and 
first powers of the logarithms grow most rapidly as N+m; 
the terms with higher powers of the logarithms grow more 
slowly and are not reproduced by the leading asymptotic 
relation (86). This identification means that the result (86), 
derived for 2 3 0 ,  can be extended to arbitrary complex val- 
ues of K for J K ~ ~ A .  

We can now formulate the approximation that in the 
limit of weak disorder gives an asymptotically exact descrip- 
tion of the entire energy range, including near Anderson's 
transition: We include in the expansion (13) (a) the parquet 
terms, as terms containing the maximum power of a large 
logarithm, and (b) at some large number No the most rapidly 
growing terms corresponding to the coefficients (87). The 
importance of the latter terms is connected with the diver- 
gence of the series. For this reason the choice of N o  is not 
unimportant. As a result Eq. (13) assumes the form 

The real part of the last sum can be taken at K=O, after which 
it is included in Re Z(0,O). The quantity 2, determined by 
Eq. (88), is found to be complex: 2= - E - ir, the damping 
r being exponentially small in the region where the second 
sum is important. Taking the limit g--+ - w2/2 we can set 

and the second sum in Eq. (88) can be calculated using the 
formula 
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which is obtained by representing the gamma function in the 
form of its defining integral and summing the resulting geo- 
metric progression: This corresponds to Bore1 summation in 
the theory of diverging series.34 Replacing the sum of par- 
quet terms by the result (16),  where we set n =0,  we obtain 

where we have introduced the following notation for the sec- 
ond sum in Eq. (88) with p f 0: FIG. 2. Plot of the function dx). 

4(0 )  14(E)  
~ O ( P , E ) =  ~ c ( p ) j ' ~ j  expj - . (92) 

The E dependence of To can be taken into account only in 
the exponential. This guarantees that To and < E )  decrease 
for negative energies over a scale w ~ / J ;  near the Anderson 
transition, the region of interest to us, E-T and we can set 
E = O  in Eq. (92),  after which Eq. (91) differs from the result 
of the parquette approximation (16) only by the appearance 
of an imaginary part in X(0,O): Because of Eq. (11) this 
substantiates the assertion made in Sec. 1 that the transition 
"temperature" is complex. Setting Ec= -ReS(O,O), denoting 
the seed energy -4 by E,  (in contrast to the renormalized 

Since roaexp( -S1 ) ,  where S 1  is assumed to be quite small, 
we have B*l .  For x.1 the right-hand side of Eq. (98) is 
large for all cp  in the interval ( 0 , ~ )  and solutions for cp  do not 
exist. Such solutions appear only for x 9 1 ,  when Eq. (98) 
assumes the form 

energy E ) ,  and using Eq. (10) we obtain the equation 
[ ~ o = ~ o ( O ~ ) I  and has the following solutions for cp: 

which determines E and r as functions of E,  . 
The function cp(x) is displayed in Fig. 2: For x<xc  there are 
no solutions for cp; for x>xc  there are two solutions, which 
for large x approach zero and T; the function x(cp) is single- 
valued for all cp  in the interval ( 0 , ~ ) .  The parameters xc and 
cp, are determined by the equations 

6. SOLUTION OF EQ. (93) 

We set 

A 
1 - 4 ~ ~ ~ 4  In - = R e p i * ,  

K 
(94) 

where cp  and $take on values from 0 to T .  Taking the imagi- 
nary part of Eq. (93) we obtain 

1 ~ 1 ~ ~ " ~  sin(cp+ $ / 4 ) = r o .  (95) 

Setting 

and in the leading approximation are equal to 

The equations 
1 rc=n2 exp ( -- 2 K 4 w 2 ) '  E = - T c e X  cos c p ,  T = T c e X  sin cp  (104) 

following from Eq. (94) determine, together with Eq. (101),  
the function T ( E )  in parametric form. For IEl*Tc the fol- 
lowing asymptotic relations are valid: 

we obtain a parametrization of the quantities in Eq. (95) in 
terms of x and cp  

X 
R = ~ K , w ~ ( x ~ +  cp2)' l2 ,  $= arcctg -, I ~ ) ~ = r , e ~ ,  

cP 
(97) 

which makes it possible to put Eq. (95) into the form 

The one-loop approximation, determining the inverse relax- 
ation time appearing in the kinetic equation, is obtained for 
large positive E and T ( E )  =To holds for large negative E ,  where 
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i.e., the contribution to the damping is purely nonperturba- 
tive. The quantities 1 ~ 1 '  and R reach their minimum values at 
the point determined by xc and cp, : 

To find r and E in terms of the bare energy EB we take 
the real part of Eq. (93), and substituting Eqs. (94) and (97) 
and taking into account the fact that x%cp we obtain 

which, together with Eqs. (104) and (101), determines the 
functions T(EB) and E(EB) in parametric form. For large 
IE 1 we have E =EB-E, . The quantity E c  is calculated in the 
standard manner by perturbation theory and in the one-loop 
approximation equals 

7. THE SELF-ENERGY P@,d) AT FINITE MOMENTA 

First we calculate C(p,k?) in the parquet approximation. 
This can be done by extending somewhat Ginzburg's work." 
From the Ward identities we obtain 

where Pappv(p, ,p2 ,p3 ,p4) is the total four-leg vertex 
( p 1 + p 2 + p 3 + p 4 = 0 ) .  For d = 4  the integral is logarithmic 
since ~ ( q )  - q-'. Following the usual procedure employed 
in parquet calculations20321 we transform at the vertex from 
the momentap,, p 2 ,  p 3 ,  andp4 to the momenta p' ,  p ,  and q ,  
where 

and the tips of the four legs are labelled so that 
p ' >p> q >  0. Introducing the logarithmic variables 

we rewrite Eq. (109) in the form 

where we have taken into account the fact that in parquet 
calculations it is assumed that ~ S K  and for this reason the 
limit q+O is interpreted as q + ~ .  Using the fact that P has 
the structurez1 

and substituting for T ,  and T2 the expressions (21) and (22) 
from Ref. 21 we obtain 

which agrees with Eq. (15) in the limit p+O (when y+z,). 
Dividing Eq. (114) by Eq. (15), we find d G - ' l d ~ ~ ;  integrat- 
ing over 2 in the leading logarithmic approximation, deter- 
mining the integration constant according to Eq. (9), and 
dropping the quantity Z(p,O)-C(O,O), a contribution to 
which arises only in the second logarithmic 
we obtain the desired parquet approximation for C(p,2): 

As in the case p=O, the contribution of the most rapidly 
growing terms in the perturbation series gives rise to an ad- 
ditional term ir ,(p,E) [see Eq. (92)] on the right-hand side 
of Eq. (115). Passing to the limit n -+O we obtain the final 
result 

8. CALCULATION OF THE DENSITY OF STATES 

The density of states v(E) is determined by the formula 

The region I p (  ZK,  where 

makes the main contribution to the integral. Substituting the 
expression (116) into Eq. (118) we can drop the difference of 
the nonperturbative contributions-no logarithmic occurs 
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here. This reduces the power of the logarithm by one. On the other hand, corrections to the parquet approxima- 
Switching in Eq. (118) to logarithmic variables and integrat- tion can be taken into account by including the coefficients 
ing we obtain A;-', A;-', and so on: They grow more rapidly than A;, 

and they can be significant. Because of Eq. (19) the summa- 
tion in Eq. (13) of terms with K =  N-rn gives a contribution 

K to x 

Using Eqs. (94) and (97) and x 9 cp gives (123) 

whose ratio to the parquet result has the upper limit 

-(g(ln Rmin)lRminIm (124) 

since the quantity R in Eq. (94) lies in the range from Rmin to 
- ( 2 ~ ~  w2x)'/' sin (120) 1. Since I, is small for a strongly attractive core, the expres- 

which together with Eqs. (101) and (104) determines v(E) sion (106) gives Rmin-1, which means that the expression 

parametrically. For IEl Br, we have the asymptotic relations (124) is small. As K414+1 we have Rmin+O from Eq. (106) 
and the corrections (124) become significant. On the other 

v(E) hand, for K414>1 Eq. (98) has no physically satisfactory 
solutions, since it does not determine a single-valued func- 
tion x(cp) for all cp. This indicates the existence of a critical 

E value of the instanton minimum S1 (equal to 314 of the value 
- - (121) of So for the plateau) up to which the theory expounded 

above is valid. The question of whether or not this critical 
\ - E 9 F , .  value is meaningful or is eliminated when the contribution of 

the instanton plateau is taken into account (Sec. 3) requires 
For large positive E v(E) becomes the density of states of an further investigation. 
ideal lattice, and for large negative E ,  using Eq. (92), we 
obtain the result 

10. REFINEMENT OF THE RESULTS FOR d>4 

(122) The results of Sec. 4 determine the coefficient c in the 

can be found by summing the higher-order terms of expression (92) for the nonperturbative contribution To and 

the series for G(p)  [see Eq. (82)l: it corresponds to the as- its momentum dependence. This makes it possible to refine 

ymptotic behavior obtained for the fluctuation-induced tail the the preceding (Ref. 14) for d'4. 

by the instanton method in the usual formulation~z~.z8,z9 The d > 4  the first term and the sum of the higher-order terms of 

density of states v ( ~ )  given by E ~ .  (120) has no singularities the series in Ref. 14 are included in the expansion of P @ , j )  
for any values of E .  in powers of g. this gives in terms of the bare energy E B  

9. ESTIMATE OF CORRECTIONS TO THE LEADING 
APPROXIMATION 

We now show that the corrections to the approximation 
employed are indeed small. These corrections can be divided 
into two groups. 

On the one hand, corrections -1/N, 1 / ~ ~ ,  and so on to 
the leading-order asymptotic expression of the expansion co- 
efficients in the Lipatov method, which arise when higher 
powers of Sg and Sp are included together with the higher- 
order terms in the expansion (72), can be taken into account. 
Then expressions of the type (86) contain the extra factor 
l/Nm, which is equivalent decreasing the argument of the 
gamma function by m, which on summing according to Eq. 
(90) gives the extra factor -gm<l.  Although higher powers 
of the logarithms then arise, these powers appear in the com- 
bination K%~(A/K) and in each order in 1/N they are small 
compared to the term -A2, containing the zeroth power of 
the logarithm. 

The real part of does not depend on p and it is possible to 
switch to the renormalized energy 

E=E,+Re C(EB)=EB-E,,  

Then 

and the following equation is obtained for the density of 
states 4 E ) :  
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(1 28) 

where TO(k,E) is determined by Eqs. (92) and (78) with 
F?=-E. 
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APPENDIX. OPERATIONS WITH FACTORIAL SERIES. 

Let 

be two factorial series, so that AN,BN-N! Multiplying the 
series we have 

In view of the factorial nature of the series BNpl-BnIN, 
B,-,-B,/N~, and so on, and similarly AN-,-ANIN, 
A,_,-A,/N~, and so on. For this reason only the first and 
last terms need be retained in the parentheses in Eq. (A2): 

if the coefficients AN and BN grow at the same rate. If the 
coefficients of one of the series, for example SA , grow more 
rapidly (due to the more slowly increasing corrections to the 
principal factorial function), then only the second term re- 
mains in the parentheses in Eq. (A3) and the product SAS, 
can be written as BoSA, if only the zeroth and higher order 
terms in the expansion are taken into account. 

Using Eq. (A3) to multiply the series SA n times by itself 
we obtain the following equation for the nth power of SA : 

To calculate a negative or fractional power of SA we employ 
in the expression 

An=An+l ~ A o  

the series expansion of (1 +x)" and we apply the result (A4) 
to the factorial series in parentheses: 

Retaining in parentheses only the first term we obtain the 
extension of Eq. (A4) to arbitrary real values of n. 

If the function f(x) is given by the converging series 

f (x)=fo+ fix+ . . .+fN xN+ ... (A6) 

then substituting x = SA and using Eq. (A4), we obtain 

"1n the diagrammatic technique the fact that g is negative is not significant 
because the expansion is made in integer powers of g.  Functional integrals 
with g<O are understood in the sense of an analytic continuation from 
positive g .  Actually, as explained in Ref. 15, when using the replica 
method the appearance of diverging functional integrals can be avoided by 
exploiting the arbitrariness in the choice of the field cp (the coefficients in 
the Hamiltonian (4) then become complex). This procedure does not, how- 
ever, eliminate the difficulties associated with the appearance of a spurious 
pole, which are described below. 

''1n the estimates given below constants of order -1 are dropped. 
3 ) ~ n  what follows, whenever a choice is important, we have in mind the 

retarded Green's function. 
4 ) ~ h e  fact that if with s f 0  is positive is obvious from the following: In the 

continuous model, when the instanton radius is large, the zeroth modes of 
the operators M ,  and M, are associated with the fact that the potential 
- I g c [  cpc(x)' has a level -2 corresponding to the angular momentum 1 =0 
and the potential -31g,lcp,(x)2 contains a d-fold degenerate level corre- 
sponding to 1=1 (the deepening of the potential is compensated by the 
centrifugal energy).25 As the instanton radius decreases, states with 1=1 
strive to break through into the continuous spectrum, since the delta- 
function-like potential has only one level. 

'K. Wilson and J. Kogut, The Renormalization Group and the &-Expansion 
Phys. Repts. 12 C, 75 (1974). 
' Shang-Keng Ma, Modern Theory of Critical Phenomena, Addison Wesley, 
N.Y., 1976. 

'A. Z. Patashinskii and V. L. Pokhrovskii, Fluctuation Theory of Phase 
Transit~ons, Pergamon Press, N.Y., 1979. 

4 ~ .  W. Anderson, Phys. Rev. 109, 1492 (1958). 
5 ~ .  J. Thouless, Phys. Rept. 13, 92 (1974). 
6 ~ .  L. Efros, Usp. Fiz. Nauk 126, 41 (1978) [Sov. Phys. Usp. 21, 746 
(1978)l. 

7 ~ .  V. Sadovskii, Usp. Fiz. Nauk 133, 223 (1981) [Sov. Phys. Usp. 24, 96 
(1981)]. 

's. F. Edwars, M. B. Green, and G. Srinivassan, Phil. Mag. 35, 1421 
(1977). 

'H. Kunz and R. Souillard, J. de Phys. Lett. 44, W06 (1983). 
'OD. J. Thouless, J. Phys. C 9, L603 (1976). 
"J. P. Straley, Phys. Rev. B 28, 5393 (1983). 
"T. Lukes, J. Phys. C 12, L797 (1979). 
"A. B. Harris and T. C. Lubensky, Phys. Rev. B 23, 2640 (1981). 
141. M. Suslov, Zh. Eksp. Teor. Fiz. 102, 1951 (1992) [Sov. Phys. JETP 75, 

1049 (1992)l. 
1 5 ~ .  Nitzan, K. F. Freed, and M. N. Cohen, Phys. Ref. B 15, 4476 (1977). 
1 6 ~ .  N. Bogolyubov and C. V. Shirkov, Introduction to the Theory of Quan- 

tized Fields 3rd ed., Wiley, New York (1980). 
1 7 ~ .  B. Migdal, Qualitative Methods In Quantum Theory, Addison Wesley, 

N.Y., 1977. 
I". T. Dyatlov, V. V. Sudakov, and K. A. Ter-Martirosyan, Zh. Eksp. Teor. 

Fiz. 32, 767 (1957) [Sov. Phys. JETP 5, 631 (1957)l. 
1 9 ~ .  1. Larkin and D. E. Kmel'nitskii, Zh. Eksp. Teor. Fiz. 56, 2087 (1969) 

[Sov. Phys. JETP 29, 1123 (1969)l. 
"A. M. Polyakov, Zh. Eksp. Teor. Fiz. 57,271 (1969) [Sov. Phys. JETP 30, 

151 (1969)l. 
'IS. L. Ginzburg, Zh. Eksp. Teor. Fiz. 66, 647 (1974) [Sov. Phys. JETP 39, 

312 (1974)l. 
"L. D. Landau, A. A. Abrikosov, and I. M. Khalatnikov, Dokl. Akad. Nauk 

SSSR 95, 497, 773, 1177 (1954) [Collected Papers of L. D. Landau, 
Gordon and Breach, Science Publishers, N.Y., 1967, pp. 607-620.1 

'". B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electro- 
dynamics, Pergamon Press, N.Y., 1982. 

2 4 ~ .  V. Sadovskii, Fiz. Tverd. Tela 19, 2334 (1977); 21, 743 (1979) [Sov. 
Phys. Solid State 19, 1366 (1977); 21, 435 (1979)l. 

2 5 ~ .  V. Sadovskii, Sov. Sci. Rev. A Phys. 7, 1 (1986). 
'%. N. Lipatov, Zh. Eksp. Teor. Fiz. 72, 411 (1977) [Suv. Phys. JETP 45, 

216 (1977)l. 
2 7 ~ .  Brezin and G. Parisi, J. Stat. Phys. 19, 269 (1978). 
"E. Brezin and G. Parisi, J. Phys. C 13, L307 (1980). 
"J. L. Cardy, J. Phys. C 11, L321 (1978). 

31 9 JETP 79 (2), August 1994 I. M. Suslov 319 



3 0 ~ .  D. Kudryavtsev, Mathematical Analysis [in Russian], Vysshaya shkola, Theory of Disordered Systems, Wiley, New York (1988). 
33 

Moscow, 1973, Vol. 1, Sec. 36. D. V. Beklemishev, Course in Analytic Geometry and Linear Algebra [in 

3'I. M. Lifshitz, Usp. Fiz. Nauk 83, 617 (1964) [Sov. Phys. Usp. 7, 549 
Russian], Nauka, Moscow, 1974, Chap. 8. 

3 4 ~ .  Hardy, Divergent Series, Clarendon Press, Oxford, 1956. 
(1965)l. 

'*I. M. Lifshitz, S. A. Gredeskul, and L. A. Pastur, Introduction to the Translated by M. E. Alferieff 

320 JETP 79 (2), August 1994 I. M. Suslov 320 


