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The scaling properties of a growing phase boundary with a nonlinear diffusion coefficient are 
considered. Scaling exponents are derived by the field renormalization-group method 
(dimensional regularization combined with minimal subtractions). An exact relation among these 
exponents is obtained, modified by the introduction of anomalous dimensionality. 

The main problem in studying the dynamics of growing 
surfaces, either the surface of a substance precipitating on a 
plane or a moving phase boundary, is to find the scaling laws 
for the microprofile h(x,t) of the surface. For instance, in 
interpreting the results of numerical simulation of the pre- 
cipitation of a substance on a flat surface with a characteristic 
size L ,  Family and ~ i c s e k '  suggested the following expres- 
sion: 

where ,y and z are the scaling exponents, and the function 
f(x) is determined by the following asymptotic expressions: 
f(x)+const as x+m, and f(x-+0)-xB, with P=,yIz. 
Later it was found (see the review article in Ref. 2) that 
many simulations behave according to Eq. (I), that the scal- 
ing relation ,y+z=2  holds true, and that in the one- 
dimensional case the exponents X =  and z =  + are of a uni- 
versal nature and depend only slightly on the method of 
calculation. Summing up, it can be said that precipitation 
results in a rough surface characterized by an algebraic in- 
crease in the intensity of profile fluctuations with the size of 
the system. 

A number of analytical models based on stochastic dif- 
ferential equations have been suggested for justifying scal- 
ing, starting with the ordinary diffusion equation with a ran- 
dom source, for which z = 2 and X =  i(2- d) ,  where d is the 
dimensionality of the ~ u r f a c e . ~  Some agreement with the ex- 
perimental data was noted for the one-dimensional case. Not 
surprisingly, the simplest nonlinearity introduced by the ki- 
nematic features of growth ensured a more exact result: z= 
+(2+ d) and X =  i(2-d) (see Ref. 4). The scaling relation 
x + z = 2 follows from translation invariance. Note that these 
expressions become invalid for d 6 2 ;  more suitable, prob- 
ably, are exponents obtained by heuristic means, 
,y = 2/(d + 3) and z = 2(d + 2)l(d + 3) (see Ref. 5). A gener- 
alization to the case of nonlinear diffusion was done by Na- 
gatani,6 who numerically solved the equation of nonlinear 
diffusion with a random source. Linear diffusion was ignored 
completely, which led to the rather paradoxical result P= a 
(k- I) ,  where k is defined as the exponent in the expression 
for the diffusion coefficient: D - hk. 

This paper studies the effect of nonlinear diffusion on 
the fluctuation dynamics of a growing phase boundary. The 
method employed is that of the field renormalization group, 
that is, dimensional regularization combined with minimal 

subtractions (see, e.g., Ref. 7). To this end let us start with 
the equation 

where h(x,t) is the surface profile (the precipitation "thick- 
ness"), and v is the diffusion coefficient or the surface ten- 
sion. 

It can easily be verified that Eq. (2) incorporates the 
nonlinearity caused by the kinematic growth of the surface. 
Indeed, 

4 ~ h ~ = ( ~ h ) ~ + h  Ah, 

so that the first term on the right-hand side of Eq. (2) repre- 
sents the nonlinearity used by Kardar, Parisi, and  hang? the 
second the nonlinear contribution to surface tension, and the 
last term the random function describing local variations in 
the growth rate, with the correlation function 

Let us now examine the scaling properties of Eq. (2). We 
start by performing the transformations x+sx, t-+szt, and 
h+sxh. Substituting into Eq. (2) yields 

For the linear modification of (4), scaling invariance yields 
the scaling exponents zo= 2 and ,yo= $2- d). If these values 
are substituted into the scale factor of the nonlinearity, we 
get ,yo+zo- 2= i(2- d) .  Thus, d = 2 is the critical dimen- 
sionality; for d > 2  the nonlinearity is not essential, and the 
scaling behavior is determined by the exponents zo and xo .  
But nontrivial scaling should be expected for d<2,  when 
nonlinearity increases owing to the scaling transformation. 
Obviously, in view of continuity, corrections to ideal scaling 
tend to zero as E = 2- d~ 0. 

The form of Eq. (4) makes it easy to introduce a scaling 
parameter p. To this end we replace 

Accordingly, the new parameters v, a, and D are dimen- 
sionless in the sense that all scaling transformations are re- 
lated to p. As a result the solution to Eq. (2) has the follow- 
ing homogeneity property: 
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The easiest way to verify this is to substitute (5) into (4). 
As usual, when the dimensionality is critical, only loga- 

rithmic divergences can occur (if we use perturbation- 
theoretic methods). In a space whose dimensionality is 
higher than the critical value, the main contribution to the 
obsewables is provided by microscopic scales, while for a 
dimensionality lower than the critical value it is provided by 
the macroscopic scales or large-scale perturbations. Thus, 
logarithmic divergences indicate scale-invariant behavior at 
critical dimensionality, with wavenumber space having no 
preferred region. Such behavior can be explained by the fact 
that the theory is renormalizable, that is, all divergences are 
removed by introduction into (3) of renormalization con- 
stants defined by the essential counterterms: 

Clearly, p parametrizes the renormalization scheme. There- 
fore, it is natural to expect that the initial, or "bare," quan- 
tities must not depend on p .  Taking into account that for 
"bare" quantities Eq. (6) must coincide in form with (2), we 
define these quantities as 

The roughness function1 satisfies 

Taking the derivative of Eq. (8) with respect to p ,  we arrive 
at the main renormalization-group equation: 

where, as will shortly be seen, y=  ,u(dlnZ/dp) determines 
the anomalous dimensionality. Recall that the derivatives in 
(9) are taken at fixed initial parameters. The solution to Eq. 
(9) has the form 

From Eqs. (7) and (9) we can easily see that (10) depends on 
the dimensionless coupling constant 

where the numerical factor is introduced for convenience. 
Next, combining the "na'ive" scaling property (5) with the 
solution (lo), we write the latter as 

If for the effective coupling constant there exists an infrared 
fixed point, then for sufficiently small values of s the follow- 
ing scaling expression holds true: 

We see that the divergences manifest themselves in the 
anomalous dimensionality. 

Following standard procedure, after performing the nec- 
essary calculations we arrive at the following set of renor- 
malization constants (see Appendix A): 

where E = 2- d.  As usual, in the method of minimal subtrac- 
tions all counterterms are proportional to the poles in E .  Note 
that Z=Z,  follows from the invariance of Eq. (2) under the 
transformations x-+x + 2a taV as h-+ h + a. The equality 
Z=Z; is most likely a coincidence. It is exact for unbroken 
s ~ ~ e r s ~ m m e t r ~ , ~  which exists if the right-hand side of (2) 
can be represented as a functional derivative of a positive- 
definite functional. 

Let us substitute (13) into (7) and find the derivative 
with respect to p .  The result is the following system of 
renormalization-group equations: 

dlnv d lna  
P- =2-z- 12g, p - =2-z-x-8g, 

d~ d~ 
(14) 

dlnD d lng 
P- = d - z + 2 ~ + 8 g ,  p - = - ~ + 2 8 g .  

d~ d~ 

The last equation in (14) yields the value of the effective 
coupling constant in the infrared fixed point, g *  = ~ 1 2 8 .  As- 
suming that the rate of variation of parameters at the fixed 
point is zero, we arrive at the following set of scaling param- 
eters: 

Clearly, the relation Z = Z, yields the exact scaling relation 
z + x - y* = 2. Apparently, this relation specifies a class of 
models that do describe growing surfaces. In our case this is 
even more remarkable since it required introducing anoma- 
lous dimensionality, which represents singularities related to 
long-range correlations. Thus, in the one-dimensional case, 
Eq. (1) modified by the contribution of anomalous dimen- 
sionality has the following form: 

Accordingly, we have P= & which clearly contradicts the 
conclusions reached by ~ a ~ a t a n i , ~  who, however, studied 
Eq. (2) numerically without a diffusion term. No numerical 
results exist for the equation studied in the present paper, 
although the fact that the simplest nonlinearity in the surface 
tension leads only to a small increase in the roughness expo- 
nent (from ; to $) suggests the possibility of verifying Eq. 
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(15) experimentally. Yet the conclusion about the algebraic 
increase in the roughness in the initial stage of evolution is 
far from obvious. The problem of obtaining a scaling func- 
tion by analytical means 

has yet to be solved. Quite possibly, the solution lies in 
the techniques of modern turbulence theory (see, e.g., Ref. 
9), especially since the ideas of cascade transport over the 
spectrum, used in finding the Kolmogorov spectrum, enabled 
Hentschel and ~ a m i l ~ "  to derive qualitatively all the expo- 
nents obtained earlier. However, when this method is applied 
to Eq. (2), the results are erroneous: the exponents corre- 
spond to the problem with linear surface tension. As for ideal 
scaling in the event of critical dimensionality, we believe that 
conformal invariance of two-dimensional surfaces," for 
which there are no acceptable analytical results, has yet to be 
used. It is clear, however, that two-dimensional growing sur- 
faces become rough in the process of evolution; hence, ideal 
scaling is out of the question. On the other hand, for surfaces 
whose dimensionality is below critical the renormalization- 
group approach yields good results, and the minimal subtrac- 
tion scheme makes it possible to obtain them with little dif- 
ficulty. 

APPENDIX A: RENORMALIZATION OF THE GREEN'S 
FUNCTION 

We use Eq. (6) to determine the renormalized Green's 
function: 

where 

and G,'(q) = - iR + vq2; note that g is a dimensionless 
quantity (we do not write the dimensional factor explicitly 
for the other parameters). Integration over frequencies yields 

Equation (A3) implies that there are problems with infrared 
divergences. The advantage of the minimal subtraction 
method, however, is that there is no difference between in- 
frared and ultraviolet divergences in the sense that all are 
represented in the form of poles in E .  Next, for the divergent 
part of (A3) we have 

It can easily be shown that, in accordance with (Al), 

APPENDIX B: AN EFFECTIVE NOISE CORRELATION 
FUNCTION 

In the lowest order of perturbation theory we have 

x ( k - ~ ) 1 2 1 ~ , ( q ) 1 2  

This follows from the definition 

(h(k,w)h(kf ,wf  1) 
=I~~(k)1~2~(k,o)(2?r)~+'Sd(k+ k f ) 8 ( w +  w'). 

(B2) 
After integration with respect to frequency, we get (in the 
limit of w+O) 

D(km+O) 

Passing to integration with respect to the parameters, we can 
easily integrate with respect to q :  

Clearly, the pole singularities arise only when we integrate 
with respect to the parameters. Let us introduce one more 
parametric integration via the relation 

1 T ( a + p )  d z  za-l(l-z)fl- '  

ya ( l -y )P  = r ( a ) r ( p )  [ z y + ( i - ~ ) ( i - y ) l a + P .  

After this the integral in (B4) can easily be calculated: 

The integral on the right-hand side is finite for EAO.  Fi- 
nally, the pole part in (B3) is equal to D ( l - 8 g / ~ ) ,  which 
leads to z:= 1 + 8 g / ~ .  

APPENDIX C: VERTEX RENORMALIZATION 

The contribution to the vertex consists of three triangular 
diagrams with different positions of the noise correlation 
functions, As usual, we do the calculations in the limit of 
w+O. As a result we have the following expression for the 
divergent part: 
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