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Formulas describing two- and three-pulse echo signal decay in doped systems are derived. For 
delays T <1 ps, this decay is nonexponential. This reflects the nonexponential nature of 
the ultrafast phase relaxation of electron dipoles due to the processes of phonon creation and 
annihilation. A quantitative relation is established between the echo decay law and the 
shape of the phonon limb of the homogeneous optical band of an impurity center. Femtosecond 
photon echoes are shown to provide data on the phonon spectrum of the system and 
electron-phonon interactions even in cases when zero-phonon lines are absent and other methods 
of selective spectroscopy are inapplicable. 

1. INTRODUCTION 

The photon echo is the optical analog of the spin echo.' 
It was therefore described using the Bloch equations in the 
first  treatment^^'^ and in subsequent ones.435 It follows from 
these equations that the pulse train shown in Fig. 1 generates 
a two-pulse (2PE) or three-pulse (3PE) photon echo signal. 
The echo amplitude depends exponentially on the delay r5 

Both relaxation constants TI and T2 appearing in the 
Bloch equations enter into Eqs. (1). They describe relaxation 
of the spin or atomic population (TI)  and phase relaxation 
(T2). Experiments show that Eqs. (1) describe the situation 
adequately over a wide range of delays 7: from microsec- 
onds in microwave echo6 to picoseconds in organic doped 
systems.7 

The exponential formulas (1) are used even when In E 
depends nonlinearly on T . ~  This nonlinearity arises because 
T2 depends on T and is attributed to the spectral diffusion 
e f f e ~ t . ~  Spectral diffusion has been observed in both spin 
systems8 and optical transitions of impurity centers of 
polymers.lO~l' It is usually explained by random variation of 
the spin or molecular resonant frequency in the process of 
the experiment. 

The simple formulas (1) become inapplicable if the de- 
lay T is shorter than several picoseconds. Experiments show 
that the echo signal decay on femto~econd'~. '~ and even 
s ~ b ~ i c o s e c o n d ' ~  time scales of T becomes nonexponential 
and even can exhibit oscillations. This means that electron 
dipole phase relaxation is not purely exponential on the fem- 
tosecond time scale. 

This behavior of ultrafast phase relaxation of impurity 
centers can be understood qualitatively if we turn not to pho- 
ton echo but to a simpler coherent effect, polarization decay 
induced by a single optical pulse. It is known9 that the func- 
tion I ( t )  describing the decay of this polarization is related to 
the optical band form function I(w) through a Fourier trans- 
formation: 

The optical band I(w) of an impurity center has a compli- 
cated shape. It consists of a narrow zero-phonon line of 
Lorentzian shape and a broad phonon limb corresponding to 
electron-phonon phototransitions.15 Using a well-known 
property of Fourier transformation, we can conclude that the 
band shape in the region of small frequencies, i.e., in the 
zero-phonon line region, determines the behavior of the 
function I ( t )  at large t, and the band shape in the high- 
frequency region i.e., in the phonon limb region, determines 
I ( t )  at small t. Indeed, the exponential decay time T2 of a 
polarization-induced signal is related to the half-width y of 
the Lorentzian zero-phonon line through the simple formula 

following from (2). But the intensity distribution in the pho- 
non limb has a complicated character, since it reflects the 
phonon state density of the solid and the model of the inter- 
action of an impurity center with phonons.15 Therefore, the 
shape of the phonon limb cannot be Lorentzian, and the 
function I ( t )  cannot be exponential at small t. 

The phonon echo is a more complicated phenomenon 
than the phenomenon of polarization decay considered 
above, so the relation between the function E(T) describing 
echo decay and the optical band form function I(w) is more 
complicated. However, it exhibits the same behavior: 
electron-phonon transitions forming the phonon limb make 
the decay of the echo signal nonexponential at short times. 
At 4.2 K the homogeneous half-width y of the zero-phonon 
line is no more than several gigahertz, which corresponds to 
T2 of tens of picoseconds and more. The phonon wing half- 
width is no less than ten inverse centimeters corresponding 
to relaxation time a few hundreds of femtoseconds or less. 
Since the Bloch optical equations ignore the existence of the 
phonon limb, they cannot serve as a basis for treating fem- 
tosecond echoes. 

Existing theoretical approaches to the problem of femto- 
second echo calculation can be divided into two groups. The 
approaches belonging to the first group make use of the four- 
wave mixing method developed to treat various nonlinear 
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FIG. 1. Optical pulse train resulting in the appearance of two- (a) and three- 
(b) pulse echo. 

spectroscopic phenomena.16 This method employs a classical 
electromagnetic field. Echoes in electron-hole transitions in 
semiconductors,17 in transitions between a discrete level and 
a band,18 in electron-magnon systems,'9 and in electron- 
phonon systems20-22 were analyzed by this method. 

The approaches of the second group make use of quan- 
tum treatment of electromagnetic field. They attempt to go 
from four Bloch equations to an infinite-dimensional set of 
equations for a complete vibronic system. It was in precisely 
this way that a set of equations allowing for spontaneous 
processes determining the time TI (TI-processes) and the 
fact that an optical band consists of a zero-phonon line and a 
phonon limb was recently derived.23 Using this set of equa- 
tions, we were able to treat photon echo signal decay.24,25 

Each of these methods has its own advantages and dis- 
advantages. The four-wave mixing method uses a classical 
electromagnetic field, so it does not take TI-processes into 
account. Thus, this method gives an inaccurate expression 
for the amplitude E,,,. By contrast, the method developed in 
Refs. 23-25 includes TI-processes but neglects a number of 
off-diagonal elements of the density matrix of a vibronic 
system. Such neglect is admissible in considering E3PE but is 
invalid in considering E2PE. 

The theory presented in this paper combines the advan- 
tages of both the methods mentioned. On the one hand, it 
allows for TI-processes; on the other, the excitation field is 
treated classically, which greatly simplifies the theory and 
makes it possible to allow for nonmonochromatic exciting 
light. The latter is of extreme importance, since ultrashort 
laser pulses cannot be monochromatic by virtue of the un- 
certainty relation A w A t 2  1 .  

2. EQUATION FOR THE DENSITY MATRIX OF A VlBRONlC 
SYSTEM 

If short laser pulses with an optical frequency falling 
within the absorption domain of an impurity center pass 
through a sample containing such centers, the centers are 
polarized following pulse transmission: 

p,,(t) = SP[P, ,~(~)I ,  (4) 

where P,, is the dipole moment operator of the nth center and 
g t )  is the density operator of the system. The operator g t )  
satisfies the equation 

where 

is the Hamiltonian of the system. It includes the Hamiltonian 
H, of the impurity center interacting with phonons and the 
interaction 

between the impurity center and the classical electromag- 
netic field. 

We take the Hamiltonian of the electron-phonon system 
in the following form: 

Here, B' and B are the creation and annihilation operators of 
an electron excitation with energy hwo in the nth impurity 
center, and Ag and l?=Hg+? are adiabatic Hamiltonians 
obtained by averaging the total Hamiltonian over the elec- 
tron states g and e describing unexcited and excited impurity 
centers. 

The eigenfunctions of the individual terms in (8) are 
determined from the following equations: 

Here ca and EP are the energies of low-frequency excitations 
of a medium for unexcited (6,) and excited ( E ~ )  impurity 
centers. In a crystal such excitations are phonons. Then (alp) 
is the Franck-Condon overlap integral of the oscillatory 
functions. In polymers and glasses, additional excitations ex- 
ist along with phonons which correspond to tunnel transi- 
tions in so called two-level In this case, (alp) 
can also represent the overlap integral of the wave functions 
of such two-level systems. The effect of the two-level sys- 
tems on the optical band shape has been considered recently 
in Refs. 28 and 29. 

Evidently the eigenfunctions of the Hamiltonian H ,  will 
be of two types 

In the basis consisting of these functions, Eq. (5 )  for the 
density operator i, becomes the following set of equations: 

where 
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If we neglect the elements pppt and pa, with p#pl and 
a#ar, the set of equations (11) is transformed into the set (5) 
of Ref. 23, where the exciting electromagnetic field was 
treated quantum mechanically. There are only two differ- 
ences: in Eqs. (11) the frequencies wPa and map do not con- 
tain the phonon frequency, and the matrix elements APa are 
time-dependent. These distinctions are not fundamental, as 
the system (11) simplified in the manner described above can 
be rearranged into the system (5) of Ref. 23 when the exter- 
nal excitation is monochromatic. 

The set of equations (11) does not include spontaneous 
light emission processes. To include them we should extend 
the basis (10) by taking the following set of functions: 

where (vk) is the harmonic oscillator function describing v 
photons in the mode k. Instead of the set of equations ( l l ) ,  a 
more complicated set of equations for density matrix ele- 
ments depending on the indices a and /? as well as on the 
indices k of spontaneously emitted photons appears in this 
basis. Reference 23 shows how to pass from the set of equa- 
tions for the complete density matrix containing the indices k 
of the emitted phonons to the set of equations for the reduced 
matrix whose elements are traces over all possible quantum 
states of the emitted photons. Matrix elements reduced in 
this way no longer depend on the indices k, and the set of 
equations for the reduced elements will appear as follows: 

The elimination of spontaneously emitted photons using the 
,eduction operation results in the appearance of the relax- 
ation constant T I .  In the derivation of the set of equations 
(13), we also took into account the fact that a photochemical 
reaction with a rate Q occurs in the excited electron state of 

an impurity center. Therefore, the constant T = l / T l  + Q ap- 
pears. The set of equations (13) is valid also for arbitrary 
nonmonochromatic classical electromagnetic field, i.e., for 
arbitrary dependence of Aoa on t, because the spectral com- 
position of the exciting light has no effect on spontaneous 
transitions described by the time T I .  

3. FORMAL SOLUTION OF SYSTEM (13) 

The set of equations (13) may be rewritten in the follow- 
ing form 

where p is the infinite-dimensional Bloch vector, which may 
be written symbolically in the form 

The matrix i is obtained from Eqs. (13) if all AaP and APa 
are set equal to zero in the latter. The matrix A( t )  describes 
pumping. 

Integrating Eq. (14), we arrive at the following integral 
equation 

p ( t ) = p ( t )  - i t  dt' e~~[-il.(t-t')]~(t')~(t'), 
- m 

(16) 

where 

It can be seen that at t =  - a ,  we have 

In the absence of pumping the population pa,(-m) has its 
equilibrium value and cannot evolve with time, i.e., 
po(t)  = p( - m). Solving Eq. (16) by iteration, we find 

where 
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The vector p l ( t )  allows us to find the behavior of the 
sample polarization induced by light to first order in A: 

The vector p2( t )  allows the evolution of the molecular level 
populations to be found to lowest order in A: 

Finally, the vector p3( t )  makes it possible to find both the 
third-order correction in to the induced polarization signal 
and the photon echo signal amplitude: 

This is the starting formula for the following calculations. 

4. TRANSFORMATION OF THE FORMULA FOR P,(t) 

Substituting the expression for p3( t )  in Eq. (23), we find 

Let the electric field in the operator A ( t )  depend on time 
in the manner shown in Fig. lb.  We assume that all three 
pulses propagate in the same direction. Then the electric field 
of each pulse is described by 

Here n  is the impurity center coordinate in the direction of 
ray propagation. The simplest expression for P 3  is obtained 
for A t e  r ,  where At is the pulse length. In this case we may 
assume that the pulse is a Sfunction: 

In this case the operator A ( t )  takes the form 

where An = P ~ E  is a time-independent operator. Taking into 
account the inequatities t3< t2< t  < t ,  we may substitute the 
following expressions in formula (24):  

Noting that f ( x )  6 (x  - x O )  = f  ( x O )  S(X - x O ) ,  we find the fol- 
lowing expression after substitution of (28)  in (24):  

Evaluating the integral, we get the Heaviside step function 
O(t- T - t w - n l c ) ,  i.e., P 3  is nonzero only if t>  r + t w + n l c .  
Introducing r' = t  - r- t w -  n l c ,  we can represent (29) in the 
following form: 

The farther the molecule n  is located down the ray path, the 
later polarization develops in it. 

5. FORMULAS FOR THE ECHO SIGNAL AMPLITUDE 

The matrices in Eq. (30)  are determined by means of 
Eqs. (13).  Using Eqs. (13) and the initial condition (18),  we 
readily find 

Here A p a = ( p l a ) A n ,  where A , = ( o ~ P ~ E ~ I )  is the electron 
matrix element, and Rpa= o p a - i / 2 T 1 .  When the second 
pulse is transmitted, the vector p(r) takes the form 

After a delay tw the vector A n p ( r )  assumes the form 
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Here RBBt = 0 ~ ~ 1 -  i r ,  and the expression for the matrix M,,r/3/3'(tw) can readily be found using the Eqs. (13). Setting all 
Amp and Apa in ~t equal to zero, and solving the resulting set of equations, we find 

1 
M,atss~(tw)= (alP)( /3r l  ar)(fwdx exp [ iwaa r (x  t,) - iflpprx]. 

0 
(34) 

Finally, after the transmission of the third laser pulse and free relaxation for a time rl, the Bloch vector p takes the form 

Substituting (35) in expression (30) for P3 ,  we find If we substitute (37) in (38) and integrate over frequency, we 
find 

+pf"pap(7'+ tw+ 7)1, (36) The coefficients b,, vanish, since they are multiplied by the 

where P,"~= (a1 P)P, and P, = i ( 0 lPn ( l )  is the electron 
matrix element. The final expression for P3 is obtained if we 
substitute (31) in (32), then (32) and (34) in (33), then (33) in 
(35), and finally (35) in (36). The resulting expression for P3 
will be rather cumbersome. There is no point in writing it out 
in full because by no means all the items constituting the - 
expression for P3 contribute to the photon echo. Thus, each 
item will contain a factor of either exp [+ i~ , ( r ' -  r)] or 
exp[ + iwo(rr + r)], where w0 is the electron dipole resonant 
frequency. The coefficients multiplying the complex conju- 
gate exponentials will be complex conjugate as well. Equa- 
tion (36) may therefore be written in the form 

+ bn( r r  , tw ,r)exp[-ioo(rr + r)]). (37) 

Evidently, the amplitude E3,, of the three-pulse echo signal 
is proportional to the total induced dipole moment of the 
sample: 

function @rr  + r) which is zero since- r' and r>b. 
The expression for an ( r , tw ,  r) contains exp( ? is,t/h) 

and exp(?icptlh). According to Eqs. (9), the energies s, 
and EP may be replaced by Hg and He, respectively. Using 
the property of completeness of the bases la) and IP), we 
arrive at the following expression for the function a, : 

a n = ~ , ~ ; f ~ ( 7 , t w  ,719 

where 

X exp[iHg(x- tw)]exp( - iHex)i  

X exp( - iHg7)exp[iHe(x + r)]  
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Since the function R(r,t, , r )  does not depend on the index n 
characterizing the position of a molecule, it is appropriate to 
represent Eq. (39) for E3PE in the form 

It is seen from Fig. 1 that by setting t,=O, we arrive at the 
excitation mode typical of the two-pulse echo. Consequently, 

E ~ ~ ~ ~ R ( T , O , T ) ~  P,,A;s(T' - 7). (43) 
n 

Summation over n in Eqs. (42) and (43) determines the echo 
signal shape, and the functions R(  7, t, , r )  and R( r ,0 ,  r )  de- 
termine the amplitudes of three- and two-pulse echoes. 

6. CALCULATION OF THE AMPLITUDE R ( T , ~ ,  ,r) 

Equation (41) enables one to consider the effect of both 
phonons and tunnel excitations of two-level systems present 
in polymers and glasses on the photon echo signal. In this 
paper, we restrict ourselves to allowing for electron-phonon 
interaction only. This interaction contains parts linear and 
quadratic in the phonon coordinates R. According to the 
theory of Refs. 15 and 30, the quadratic interaction deter- 
mines thermal broadening of a zero-phonon line and only 
weakly affects the shape and intensity of the phonon limb, 
which is determined predominantly by the linear Franck- 
Condon intera~tion.~' Since it is the phonon limb that deter- 
mines phase relaxation on femtosecond time scales, we ne- 
glect the quadratic Franck-Condon interaction and set 

where H(R) is the Hamiltonian of the harmonic oscillator. 
Equations (44) include only linear interaction appearing due 
to the shifts of oscillator equilibrium positions. In this case, 
using the translation operator exp(aV), we find 

The transformation (45) allows us to rearrange all the opera- 
tors H e  into the operators H g = H  in formula (41). The pro- 
cedure for calculating expressions similar to those appearing 
in (41) is described in Ref. 30. The result of evaluating (41) 
is the following: 

where 

The essential feature of formula (46) is that the echo signal 
amplitude is expressed in terms of a single function 

which contains all information on phonons and the electron- 
phonon interaction. Here vg is the phonon frequency, a t  is 
the shift of the @h normal coordinate, and 
n5=[exp(?ivtlk~)- I]-'. 

7. ANALYSIS OF THE FUNCTION g ( t )  

From the formula (48) an obvious property of the func- 
tion g follows: g( - t )  = * (t) .  It is appropriate to write (48) 
in the following form: 

where 

X exp[- ~ v T ] =  dvf(v,T)exp[- ivr],  (50) 

Here n(v)  =[exp(fi vlkT) -I]-'. The function f (v )  deter- 
mines the density of phonon states weighted with the cou- 
pling function ( ~ ~ / 2 ) ~ .  The vanishing of this function at a 
frequency vo means that either phonons with a frequency vo 
are absent in the solid or such phonons do not interact with 
electrons. 

The function f ( r ,T)  determines the shape of the phonon 
limb in the optical band, and the constant f(0, T) is called 
the Pekar-Huang factor. It is known3' that the functions 
Ig7'(w) of the homogeneous absorption (g)  and fluorescence 
( e )  band shapes are very easily expressed in terms of the 
function g ( t )  

d t  exp[i(o- w o ) t + g ( 2  t)]. (5 2) 

Substituting (48) here, expanding exp[f(t,T)] in a series in 
f(t ,T),  and integrating the terms of the series over time, we 
find 

m 

Ig3"(w)= exp[- f(0,T)l  S(w- w0) + 2 @ E ' e ( ~ -  wo) , 
n = l  I 

(53) 

where 
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FIG. 2. The function of weighted phonon state density whose integral value 
f ( 0 , O )  is 0.625. 

. . f (  v,,T)S(w-wo-v,- ...- v,), (54) 

and @E(w - wo) = @i(w,- w). Evidently the Sfunction in 
formula (53) describes a zero-phonon line, and the function 
exp[ - f(0, T)] a, determines the probability of phototransi- 
tions with creation and annihilation of n photons. Zero- 
phonon lines of absorption and fluorescence are resonant 
with one another, and the phonon limbs of both lines are 
mirror-symmetrical with respect to the zero-phonon line. 

As a simple example, we consider the case when an 
impurity center interacts with acoustic vibrations of a solid. 
We take the function f(v) in the quasi-Debye form 

where vD is the threshold frequency of acoustic phonons. The 
function (55) is depicted in Fig. 2. Using (49) and (50), we 
find 

where 

h v  
Re f(r ,T)  = j:dvf(v)coth - cos vr, 

2kT 

Im f ( r ) =  I:dvf(v)sin vr. 

The functions Ref and Im f calculated by means of func- 
tions (55) and (57) at T=O are presented in Fig. 3. These 
functions are nonmonotonic and decay over times of order 
10vil .  Since in organic solids we have v,-50-100 ~ m - ' , ' ~  
then 10v~~-1-0.5 ps. Consequently, electron dipole phase 
relaxation resulting from acoustic phonon creation proceeds 
in a time less than one picosecond. 

8. PHOTON ECHO SIGNALS 

The general formula (46) for the relaxation function 
R(r,t,,r) is substantially simplified if we set t,=O, i.e., 
turn to the consideration of two-pulse echo. In this case, the 
integral in formula (46) vanishes, and we find 

FIG. 3. Real and imaginary parts of the function f ( t , T )  at T = O  calculated 
from Eqs. (57) with the function f ( v )  shown in Fig. 2. 

This formula coincides with formula (19a) deduced ear- 
lier in Ref. 21. It is usual to set t,-Ti in studies of three- 
pulse echo decay laws. In this case the general formula (46) 
is also considerably simplified because all the functions g 
contained in the argument t, tend to zero for t,S v,' (see 
Fig. 3). Hence, g ,  =g,=O, and (46) takes the form 

Using the formulas (56), we can express the functions 
R(r,O,r) and R(r,t , ,r)  in terms of Ref(?) and Im f ( r ) ,  
shown in Fig. 3 

X exp( - rt,) exp - - + Re 2 f (r,T) 1 [ T :  

The expression (61) coincides with Eq. (63) of Ref. 25. Re- 
call that Eq. (63) of Ref. 25 was derived by means of a 
simplified set of equations which can be obtained from Eqs. 
(13) of this work if we discard paat and ppp1 with a Z a l  and 
PZP' in it. Hence it follows that three-pulse echoes may be 
treated by dropping the elements that are nondiagonal in a 
and p in the set of equations (13). 
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Long delays T 

It follows from Fig. 3 that Ref and Im f = O  if 7% >lo.  
If we take v,-50 cm-l, then T should exceed 1 ps. Neglect- 
ing photochemical transformations, i.e., assuming Q = 0,  we 
find using formulas (60) and (61) that 

The decrease in the echo signal is exponential, but the for- 
mulas (62) differ from (1) in that 1/2T1 appears in them 
instead of l/T,. This distinction is easily explainable. In- 
deed, it follows from the Bloch equations that if the interac- 
tion with phonons results in a Lorentzian line shape with a 
half width y, then5"' 

On the other hand, it is k n o ~ n ' ~ . ~ ~  that the linear Franck- 
Condon interaction does not result in zero-phonon line 
broadening. It is only due to the quadratic interaction, which 
is neglected here. Consequently, in our theory we have y=O, 
and so 1/T2= 1/2Tl .  As for the dependence on long delays 
t,, it is identical in (62) and (1). 

If we take into account the possibility of photochemical 
reaction in the excited state, then 

Here, Q/T is the photochemical reaction quantum yield. 

Short delays T 

If T%< 10, then Re f and Im f # 0.  This takes place for 
r<l ps. It is the functions Ref and Im f that determine the 
decrease in the echo signal at short times. Let us consider 
separately the cases of weak and strong electron-phonon in- 
teraction. 

Weak interaction with phonons 

The functions Ref and Im f decrease in absolute values 
as the interaction with the phonon becomes weaker. This 
follows from formulas (50) and (51). Consequently, the co- 
sine in (60) and (61) is close to unity, and the echo signal 
behavior is determined primarily by the exponentials. This is 
illustrated in Figs. 4 and 5. The solid lines here represent 
echo signals calculated from (60) and (61) at r/T1 = 0.  The 
values of the function shown in Figs. 4 and 5 at the point 
r=0 are equal to 3f(O,T) and 2f(O,T), respectively. The 
Pekar-Huang factor f(0,T) determines the strength of the 
linear electron-phonon interaction. It is related to the Debye- 
Waller factor a by the simple equation a=exp[ - f (0,  T)] . 
Consequently, the echo signal decay curve makes it possible 
to find the electron-phonon interaction strength. As the tem- 
perature increases the echo signal grows (see curves 2 in 
Figs. 4 and 5). 

FIG. 4. Two-pulse echo signal decay for weak coupling calculated from 
Eqs. (60) (solid curves) and (65) (dashed curves). Here kTlfi  v,=O (curve I )  
and 1 (curve 2); f(0,0)=0.625.  

The curves in Figs. 4 and 5 resemble the function Ref 
shown in Fig. 3. This suggests that the experimental curves 
for photon echo signal decay can be processed using the 
simpler formulas 

R ( ~ , o , ~ ) = e x p [ 3  Re f (~,T)-3f(O,T)l ,  

R( r , t , ,~ )=exp[2  Re f(r,T)-2f(O,T)]. (65) 

Results obtained from the simplified formulas (65) are 
shown by dashed curves in Figs. 4 and 5. They are very close 
to the solid lines. Consequently, in the case of weak electron- 

FIG. 5. Three-pulse echo signal decay for weak coupling calculated from 
Eqs. (61) (solid curves) and (65) (dashed curves); Q =  ?,IT, =O; kTlf i  v,=O 
(curve I )  and 1 (curve 2); f(0,0)=0.625.  
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Strong interaction with phonons 

In this case, the function Im f(7)  is large, and the pre- 
exponential factor in formulas (60) and (61) may therefore 
vanish several times. This is illustrated in Fig. 6. In this case 
the echo signal decreases rapidly down to a very small value 
and then exhibits very complicated behavior (see insert in 
Fig. 6). The region where the echo signal is particularly 
small contains zeros of the preexponential factor. We can see 
that in the case of strong coupling it becomes more difficult 
to extract information on the single-phonon function f (7, T), 
but it is still possible. In this case, one should make use of 
the fact that the preexponential factor does not depend on 
temperature and therefore plays no part in considering the 
ratio of the signals measured at two different temperatures. 

In conclusion, we should like to call attention to one 
important advantage of femtosecond echoes over other meth- 
ods of selective spectroscopy, such as fluorescent line 
narrowing,32 stable hole burning,32 ordinary exponential 
echoes,32 and spectroscopy of individual molecules.33 All 
these methods are based on exciting an impurity center 
through its zero-phonon line. However, for strong electron- 
phonon interaction or near room temperature the Debye- 
Waller factor a=exp[ - f(0, T)] is very small, and the zero- 
phonon line is virtually absent. In this case all methods of 
selective spectroscopy are inapplicable, except femtosecond 
echoes. The femtosecond echo signal exists even when the 
zero phonon line is absent, because it has its origin in impu- 
rity centers excited through their phonon limb. This advan- 
tage of femtosecond echoes over other methods of selective 
spectroscopy is especially important in investigations of 

0 , , , , , , , , , , , , , , , , , , , , , , , , ,, 1 , , , , , , , , complex biologically important molecules, which must be 

0 2 3 6 v r studied in some cases without recourse to low temperatures. 
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