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The optical Faraday effect (induced rotation of the polarization plane of probe light induced by 
circularly polarized pump radiation) is studied theoretically and experimentally. The effect 
is described using the third-order susceptibility, which is calculated by means of the Hamiltonian 
for the effective interaction between the electron system of the semiconductor and the light, 
including virtual interband transitions with spin flip. The equations of motion for the Green's 
function are solved in the random phase approximation. It is shown that in n-type A3B5 
materials in the infrared region of the spectrum far from one- or two-photon interband resonances, 
the main contribution to induced rotation of the polarization comes from a mechanism 
associated with fluctuations of the electron spin density in the conduction band. Measurements 
have been made in n-InAs and n-InSb samples with different amounts of doping. The 
magnitude of the effect and its density dependence vary, depending on whether the probe radiation 
and the pump propagate in the same or opposite directions. A resonant increase in the 
rotation angle of the polarization is observed as the spin splitting of the conduction band at the 
Fermi level approaches the frequency difference of the two light waves. All the observed 
properties of the effect agree qualitatively with the results of theory. 

1. INTRODUCTION g ~ i ( F , x  F:). 

When linearly polarized probe radiation with frequency 
R propagates in a medium in the presence of intense circu- 
larly polarized pump radiation with frequency W ,  the plane of 
polarization of the probe radiation is rotated by an angle 8 
proportional to the intensity of the This phenom- 
enon, which is due to the cubic susceptibility of the medium, 
is usually called the optical Faraday effect (OFE). In the 
presence of isotropic linear absorption (absorption coeffi- 
cient a )  for right-polarized pump radiation propagating in 
the z direction, the rotation angle 8 is given by the following 
expression in terms of the Cartesian components of the third- 
order susceptibility k3):  

where i+b is the angle between the directions of propagation of 
the pump and probe, which we assume to be close to either 0 
or T; K ~ ( R )  is the index of refraction; I, is the intensity of 
the pump in the medium at its leading edge; and d is the 
distance over which the pump and probe radiation propagate 
through the medium. For purely monochromatic pump and 
probe radiation the magnitude of the OFE does not depend 
on the phase relations between the fields, since the intensity 
F, of the field of a wave w enters into all expressions in the 
form of a combination which is bilinear in F: and F,, so 
that the phase factors drop out. Thus, the gyration 
pseudovector4 satisfies 

If, on the other hand, the pump and probe signals in an 
experiment consist of superpositions of several radiation 
lines, then the situation becomes more complicated. We re- 
turn to this point below. 

The OFE was studied theoretically by perlin5 in intrinsic 
crystals with a Kane square-root dispersion law for the 
bands. There it was shown that the magnitude of the induced 
rotation of the polarization satisfies ~ K E ; " ~  (here E, is the 
width of the bandgap in the crystal). At the same time the 
expression for 8 includes terms proportional to 
( E ,  - hQ - no) -3'2, SO that the polarization rotation angles 
are largest near the threshold for two-photon absorption of 
the fundamental. In the list of materials suitable for observa- 
tion of the OFE it is natural to include A3B5 materials with 
small values of E , ,  which are well described by the Kane 
band-structure model. Indeed, the first observations of the 
OFE in semiconductors were made in InAs crystals,6 where 
the measurements were carried out using C 0 2  laser radiation 
and its second harmonic. It became apparent that the magni- 
tude of the OFE increases as hw+hR approached E ,  rather 
more slowly than the theory of Ref. 5 predicts. Moreover, it 
was shown in Ref. 6 that the rotation angle 8 increases as the 
probe radiation frequency approaches that of the pump. This 
implies that a nonlinear mechanism is involved, associated 
with the free carriers present in the material: in all samples 
investigated the density no of the free electrons was greater 
than 1016 cmP3. 

There are various OFE mechanisms associated in one 
way or another with the presence of free electrons. One of 
these arises from the population of states with momentum p 
less than the Fermi momentum p~ that are located at the 
bottom of the conduction band. This can result in a consid- 
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erable change in the interband nonlinear susceptibility (in 
analogy with the Moss-Burstein effect in light absorption). 
What happens is that the main contribution to X(3) in this case 
comes from a narrow range of states with p+(2m,~,)1'2, 
and this contribution is suppressed as the bottom of the band 
fills up. The interband OFE mechanism dominates in two- 
photon interband resonance, which makes the dependence of 
the induced rotation angle of the polarization on the electron 
density no quite nontrivial (cf. Ref. 7). When the sum of the 
probe and pump frequencies is small in comparison with E ,  , 
there is a nonlinear mechanism associated with the nonpara- 
bolic shape of the electron band ~ ~ e c t r u m . ~ ' ~  This mecha- 
nism, however, does not contribute to the susceptibility com- 
bination (2), just like the nonlinear mechanisms associated 
with heating of the carriers by the pump radiation and their 
rela~ation.'~~" 

As early as 1963 Butcher and ~ c L e a n '  pointed out an- 
other type of optical nonlinearity in semiconductors, associ- 
ated with fluctuations in the electron gas density. Sections 2 
and 3 are devoted to the fluctuation mechanism of nonlinear- 
ity. We will show that the main contribution to X(a) comes 
from fluctuations in the electron spin density, which in con- 
trast to "ordinary" electron density fluctuations carry no 
charge and therefore are not suppressed by shielding at high 
densities no of the free electrons. The spin-density fluctua- 
tion mechanism differs qualitatively from the OFE mecha- 
nisms mentioned previously in the following ways: a) it has 
a very different dependence on the density; b) the magnitude 
of the effect associated with the spin-density fluctuation 
mechanism depends qualitatively on the probe and pump 
wave vectors, in particular in the appearance of differences 
in the respective magnitude and density dependence for 
propagation of the pump and probe in parallel and antiparal- 
lel directions; c) the polarization rotation angle depends 
strongly on the structure of the laser radiation spectrum; d) 
the magnitude of the OFE may be determined by the magni- 
tude of the spin splitting of the conduction band proportional 
to the cube of the momentum. 

We reported the first results on the OFE induced by spin- 
density fluctuations in Ref. 12. 

In the case of molecular systems or for the interband 
nonlinear mechanism in semiconductors, the OFE is close to 
its classical analog. The difference is that the constant mag- 
netic field H in the ordinary Faraday effect is replaced in the 
OFE by a quantity proportional to F, X F: . As in the ordi- 
nary Faraday effect, in the OFE when the probe radiation 
propagates forward and backward (with the direction of the 
pump remaining unchanged), the rotation angle of the plane 
of polarization of the probe radiation doubles. In the fluctua- 
tion nonlinear mechanism, however, the situation is more 
complicated because of the occurrence of spatial dispersion 
noted above. Nevertheless, in this case also the effect we are 
considering still resembles the Faraday effect more closely 
than the natural optical activity directly associated with the 
presence of spatial dispersion. 

Thus far we have discussed OFE mechanisms for which 
no actual change occurs in the occupation numbers in the 
electronic system of the semiconductor. However, the plane 
of polarization of the probe radiation can also undergo 

photoinduced rotation as a result of spin orientation of elec- 
trons or holes. This occurs for one- or two-photon interband 
transitions, indirect transitions involving phonons within the 
conduction band through virtual states in the valence band, 
or for transitions between subbands of a complex valence 
band due to the action of a circularly polarized pump. The 
latter mechanism was studied theoretically and experimen- 
tally by Danishevskii et aLt3 At very low temperatures, spin 
splitting of the conduction band can also occur through in- 
teraction with the pump [see the effective Hamiltonian (17) 
in Sec. 21. However, under the conditions of the experiments 
described in the present work the role of such mechanisms is 
minor (see Sec. 5). 

In principle, all OFE mechanisms can be encompassed 
by a unified approach. But in practice this treatment is found 
to be unacceptably involved, since in the above cases the 
method of calculation most suited to the physics underlying a 
particular mechanism is different in each instance. In the 
present work we therefore restrict ourselves mainly to treat- 
ing the situation where the spin-density fluctuation mecha- 
nism dominates. The effective Hamiltonian H ( ~ )  for the in- 
teraction of the crystal electron system with light will be 
used (see, e.g., Ref. 14, Ch. 5). This Hamiltonian permits the 
problem to be treated in a natural way in terms of the charge 
and spin-density fluctuations of the free electrons. It is not 
obvious a priori, however, that H ( ~ )  includes all processes 
which in principle might contribute significantly to the OFE. 
In the derivation of H ( ~ )  in Sec. 2 all possible fourth-order 
terms in the light fields are included in the expression for the 
internal energy of the electron system of the crystal, and it is 
shown that the terms not described by the effective Hamil- 
tonian are negligible for this nonlinear mechanism. Then in 
Sec. 3 we use the interband Coulomb interaction and the 
interaction between the electrons and the longitudinal optical 
phonons in the random-phase approximation to derive and 
solve the equations of motion for the Green's functions in 
terms of which the angle of induced rotation of the probe- 
wave polarization is ultimately expressed. This type of ap- 
proach, similar to that employed previously in a number of 
treatments of Raman scattering in A3B5 semiconductor plas- 
mas (see, e.g., Refs. 14 and 15) enables us to treat the role of 
shielding in the electron system in a systematic way. Further- 
more, this approach enables us to treat such delicate effects 
as the spin splitting of the conduction band to third order in 
the electron momentum. Inclusion of this splitting has a fun- 
damental importance, since in a number of cases it deter- 
mines the amplitude and the density dependence of the OFE. 
The experimental technique is described in Sec. 4. The re- 
sults of experiments for InAs and InSb crystals, along with a 
qualitative interpretation based on the theory developed in 
Secs. 2 and 3 are presented in Sec. 5. 

2. EFFECTIVE INTERACTION HAMILTONIAN 

The Hamiltonian l? of the electron system in the field of 
electromagnetic radiation takes the form 
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Here g i ( k )  is the Bloch energy of the ith band (in the ab- 
sence of the field). The creation and annihilation operators 
@if , ,  @, ,  for states with wave vector k in the ith band are 
replaced by the electron operators ak;+ ,  a ik  or the hole op- 
erators b i k ,  b&, where the subscript i runs through values 
corresponding to the conduction or valence bands; .&,(w,) 
are the Cartesian coordinates of the amplitudes of the vector 
potentials; YGik, ,  are the matrix elements of the Cartesian 
components of the operator 

where a is the Pauli matrix and V is the periodic lattice 
potential. For conciseness in (5) and also in (9) we have 
omitted the subscript A from the wave vectors KA corre- 
sponding to the light fields with frequencies ox. Quantiza- 
tion in Eqs. (4) and (5) is based on the unperturbed Bloch 
functions. As can easily be shown (see, e.g., Ref. 14, Ch. 5) 
inclusion of the term H in Eq. (3), which is quadratic in the 
field, gives rise to a small correction -m,lm (here m, is the 
electron effective mass in the conduction band; in InAs 
m,-0.02 m) in the effective interaction Hamiltonian. In or- 
der not to complicate the presentation excessively we will 
therefore temporarily disregard H", and will later insert it 
into the effective Hamiltonian. 

In the calculations below it is convenient to transform 
the original Hamiltonian (3)-(5): 

The operator is chosen so that H has no terms that are 
off-diagonal (od) in the band indices and linear in the field: 

The condition (8) is satisfied by the operator 

Transformations such as (7)-(9) have frequently been em- 
ployed in semiconductor theory, starting with the work of 
Luttinger and ~ 0 h n . l ~  A modified technique for using the 
transformation (7)-(9) to calculate high-order nonlinear op- 
tical processes was developed by Ganichev et a1.l7 

We introduce the density operator 

and write down the expression for the internal energy of the 
electron system in the field of the light waves: 

where p(') is the ith term in the expansion of the density 
matrix in powers of the field. To get the components of the 
cubic susceptibility tensor X(3) it is necessary to calculate 
terms of fourth order in ,A, entering into Q. We used the 
Hamiltonian (7), including terms of all orders in the field 
(see Ref. 17), as well as the technique for calculating the 
nonlinear reaction of the system to external perturbations.'8 
Without writing down the fourth-order terms explicitly we 
note that they can be constructed solely from the following 

A , . . .  

combinations of the operators HA, HAd, S: 

Now we must distinguish from among the contributions (12) 
those which are important specifically for the nonlinear 
mechanism of interest in the present work, associated with 
fluctuations in the density of free carriers. For this mecha- 
nism the quantity X(3)  is determined by the state population at 
the bottom of the conduction band, corresponding to small 
values of the kinetic energy i;Lki,. Under these conditions we 
can use the fact that the ratio p - of the diagonal 
matrix elements of the operator H' to the off-diagonal ele- 
ments, corresponding to permitted interband transitions, is 
small (see, e.g., Ref. 19, Ch. 4 and App. 12), and neglect 
terms containing the operator H;. Under other conditions 
these contributions can be quite significant. Thus, contribu- 
tion I11 plays the dominant role in OFE for two-photon reso- 
nances of the form ho+hKl=E,  in allowed-forbidden 
band transitions. This case was studied in detail in Refs. 5 
and 7. 

Generally speaking, fourth-order contributions in u can 
still arise because the density operator po of the electron 
system without interactions also satisfies a transformation of 
the form (7): 

We must, however, keep in mind that the fluctuation mecha- 
nism we are interested in applies only for identical or close 
wave frequencies interacting nonlinearly, when 5, 
=lux- ox,  I/(EgIA - wA)< 1 holds. Calculating the contribu- 
tions containing the commutators ,j] which arise due to 
(13), we can easily convince ourselves that they are of order 
-lo in comparison with I. 

By virtue of these considerations it thus remains only to 
take into account contribution I. This implies in turn that the 
problem of calculating X ( a )  reduces to calculating u in first- 
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order perturbation theory with the Hamiltonian for the effec- 
tive interaction between the electron system of the crystal 
and the electromagnetic fields: 

where we have included the interaction term H ,  which is 
quadratic in the field in the original Hamiltonian (3). 

Now we can explicitly introduce the expression for d4) 
corresponding to contribution I. Using the standard tech- 
nique for calculating the reaction of the system to external 
influences,18 we find 

where 

is the retarded two-time Green's function. 
We now turn to consideration of the effective Hamil- 

tonian (14). We use it to treat electron transitions from the 
conduction band c through virtual states in the valence band 
V: ca+vaf+cp ,  where a and p are spin indices. These 
transitions can be accompanied by electron spin flip due to 
spin-orbit interaction, which plays an important role in many 
conductors, among them A3B5, in determining the top of the 
valence band. In the Kane model the Hamiltonian can be 
expressed in terms of the band structure parameters E,, mc , 
and the magnitude of the spin-orbit splitting Aso at the top of 
the valence band. We thus have 

where q = K,, + K ~ ?  is the sum of the wave vectors and we 
+ have written P:)= P& - pq,- I,Z; P ~ , ~ , Z ,  P ~ , - ~ ~ ~  are the 

electron density operators with spin projections +1/2 in the 
direction (elez); F('), F(') are the electric field strengths; e i ,  
e, are the unit vectors of the light wave polarization with 
frequencies wi and w, . In our case each of these frequencies 
can assume the values + w, +-a. The coefficients A, and B ,  
have the following form: 

where 

The second terms in the square brackets in (18) are associ- 
ated with the spin-orbit interaction. In particular, we have 
B,=O at Aso=O. 

A Hamiltonian of the form (17) has been used in many 
treatments of Raman scattering of light in semiconductors 
(see Ref. 14). 

3. CALCULATION OF THE INDUCED ROTATION OF THE 
POLARIZATION 

To derive and the corresponding components of the 
tensor X(3) we must calculate the Green's function on the 
right-hand side of (15). In analogy with Hamilton and 
~ c w h o r t e r , ' ~  who used Eqs. (16)-(19), we write 

where 

( e i e , ) ~ ,  asp+ iBCaapf eiej), (21) 

Equations (17)-(22) are written using the basis functions 
IS, 1/2),  IS, - 112) of the conduction band. However, we can 
no longer put off treating the spin splitting of the conduction 
band by the perturbation which is cubic in the electron mo- 
mentum p: 

where p, is the bounding Fermi momentum for electrons in 
the conduction band and QoF determines the inverse spin 
relaxation time for the so-called precession mechanism (see 
Refs. 20 and 21). An explicit expression for a,, will be 
given below [see Eq. (52)l. Despite the small value of the 
splitting produced by the operator H s ,  it substantially 
changes the form of the Green's functions (20)-(22), which 
in the final analysis qualitatively changes the OFE pattern. 
Taking H ,  into account, we can write the new basis functions 
for the conduction band in the form 

Q, 0 
-exp[ i T )  sin IS,$ 

In the system of coordinates with z axis parallel to ele2, only 
the z component of the Pauli matrix remains in Eq. (21). In 
the new basis we have 
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C O S O  ep i@ sin O 

e" sin O - cos O (25) 

In (24) and (25) we have used the notation 

The expressions that follow will be written in the basis (24). 
Let us find the equations of motion for the quantities 

gap(p,v). To describe the effects of screening of density fluc- 
tuations systematically it is necessary to take into account the 
interelectron Coulomb interaction and the interaction be- 
tween electrons and longitudinal optical phonons, which 
changes the effective interelectron interaction. The latter ef- 
fect is described by the dielectric function 

where R,  and R,  are the frequencies of the longitudinal and 
transverse oscillations of the optical phonons 
(fl: = R : E , / E ~ ) .  We write the corresponding electron- 
phonon Hamiltonian in the form 

where l;, $ are creation and annihilation operators for lon- 
gitudinal optical phonons; the index a labels the subbands of 
the conduction band c split with respect to spin. 

Strictly speaking, the second and fourth terms on the 
right-hand side of (28), which were introduced to describe 
the Coulomb and electron-phonon interactions, should be 
subjected to the transformation (7)-(9) just like the Hamil- 
tonian (3). In the transformed Hamiltonian and in the expres- 
sion for the internal energy, additional terms of all orders in 
the field of the electromagnetic wave then appear, including 
the Coulomb and electron-phonon interaction. We will not 
take into account these corrections to the quantities calcu- 
lated here, assuming instead that 

and that electron-phonon coupling is weak. For materials 
like InSb or InAs, Eq. (29) is satisfied at free-electron den- 
sities no> 1017 cmp3. Furthermore, terms describing "spin 
flip" (here we are talking about the projection of the spin in 

the direction i) should be added to the second and fourth 
terms on the right-hand side of (28). However, these correc- 
tions contain the factor 

where u ~ , ~  are the Bloch amplitudes. This factor differs sig- 
nificantly from Su,f only at large values of q; these are un- 
important in the present case. 

Using the Hamiltonian (28) we find equations of motion 
for gap in the usual manner in the random phase approxima- 
tion (see, e.g., Ref. 22, Ch. 3). After Fourier transforming we 
find 

where f (9 is the electron distribution function in the c band. 
The integration in the last term on the right-hand side of (30) 
is performed over solid angles in k space. In Eq. (30) we 
have introduced the spin relaxation time T, and the relaxation 
time T~ for the electron momentum. 

We introduce the notation 

1 vq= v - q v + i ~ , ~ ,  vaP= v - R a p + i ~ G .  (31) 

Solving (30) we find 

4.rre2 %: C y,++$'" "3.4'($ v )  = - 
gap 

k,a,P 1 

where (...) represents averaging over angle and 
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Note that the first term on the right-hand side of (32), which 
describes electron density fluctuations, does not depend on 
the spin splitting of the conduction band. The latter enters 
only into the second term of (32), associated with spin- 
density fluctuations. It is very significant that, as can be seen 
from (32) this term, unlike the first, is not suppressed by 
Coulomb shielding. This result is of course a consequence of 
the fact that the spin-density fluctuations do not carry electric 
charge. 

When the frequencies f l  and w of the probe and pump 
radiation are nearly equal and propagate nearly parallel, the 
frequency differences v and the differences in the wave vec- 
tors q are such that 

As a rule we have 

For convenience in the notation below we introduce the 
quantities and 7aP, defined by 

To within terms of second order in f laprp we have 

+ap= <p( 1 - <pv;), 

where 

V1= ~ - ( f l ~ ~ ) ,  V ; = ( ( V - ~ ~ ~ ) ~ ) .  

More detailed analysis reveals that X I  ", - 7;'. Then we 
P-l 

have 

where 

Since 7; is smaller than the other quantities of the same 
dimensionality, when the "hydrodynamic7' conditions (36) 
hold we find 

Equations (20)-(22), (32)-(35), and (39)-(41) deter- 
mine the internal energy of the electron system in the 
field of the light waves. The components of the cubic sus- 

ceptibility tensor k3) are found by differentiating four 
times with respect to the Cartesian components F(') of the 
fields whose frequencies wi assume the values +w, rtfl. In 
evaluating the differences in the components of the suscep- 
tibilities determining the magnitude 8 of the OFE, we 
will assume for simplicity that the distribution function f ( & )  
is a Fermi step function. Since we have in mind the interpre- 
tation of experiments performed at 300 K or 90 K, this re- 
quires explanation. Because of the small effective masses 
and high ( 1 0 ~ ~ - 1 0 ' ~  cmP3) densities no under experimental 
conditions, the electron gas is at least partly degenerate. In 
this case the approximation of f ( Q  by a step function yields 
reasonable estimates for the parameters of the problem. On 
the other hand, as long as we can only contemplate qualita- 
tive comparison between theory and experiment, the extraor- 
dinarily difficult analysis of the temperature dependence of 
the OFE is not justified. 

We find 

where qi: is the Thomas-Fermi shielding radius, we have 
written r i= ( -  l) ' ,  and 

The quantities . Z a p  are given by Eqs. (39), where now 
u = v F ,  p=pF [see the definition (31)]. It should be kept in 
mind that the spin splitting of the conduction band at the 
Fermi level satisfies f l o F ~ n , ,  v ~ ~ ~ A ' ~  . Here Aw and Aq, 
in Eq. (43) stand for differences in frequency and wave vec- 
tor among the various lines of the pump radiation spectrum. 
Let us clarify this somewhat. The experiments which will be 
described below in Sec. 4 were performed with probe and 
pump radiation including either several lines of the rotational 
spectrum of the laser radiation or a single line (actually each 
of these lines itself has line structure consisting of 
longitudinal-transverse laser radiation modes). 

In the case of a "comb" of almost equidistant lines, the 
rotational contribution to the observed effect comes from all 
possible four-wave processes of the form 
f l r=wrr-wst+f l , .  If we take into account the phases of 
the individual rotational lines, the expression for 2K in Eq. 
(43) is replaced by 

where pr is the relative intensity of the rth rotational line. 
Next we will consider both Raman contributions to .% 

and contributions of the individual rotational lines. We will 
also distinguish between intra- and interbranch components 
( a = P  and a Z p ) ,  where the intermediate virtual states 
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(which the electron reaches under the action of the perturba- 
tion ~ 5 : ) )  are in the same spin branch as the initial state or in 
a different branch. 

We begin by considering the intrabranch components. 
For them we easily find 

Suppose all lines are rotational. The laser radiation spectrum 
consists of 1 narrow (width SV<S) components with relative 
intensities bi. Assuming for simplicity that they have the 
same phases, we find 

If we look at the simplest case, in which Pi= i - 'I2 holds for 
all i, then we have 

Hence 

where we can use (45) to calculate x('). For s%Sv, the 
quantity x(")(o) does not depend on density. As no increases, 
the magnitude of the OFE grows because X ( a ) ( t ~ h l )  con- 
tributes significantly to (47) with larger and larger values of 
t. 

For Raman contributions the intrabranch component is 
small, so that in this case we have ijPs13, &rp< 1, 
Re Gs2/3 4 1. 

Now consider interbranch components. In the case of a 
single rotational line we have 

where y is a numerical factor ( e l ) ;  a enters into the ex- 
pression for the spin relaxation time according to Ref. 20 
~ ~ - ~ = a ~ v ,  which can also be written in the form 

The value of a in Eq. (49) depends on the scattering behavior 
of the carriers. For example, for scattering on charged impu- 
rities in the case of the degenerate electron gas we have 
a-119 (Ref. 20), while for a nondegenerate gas we have 
a=105/32  (Ref. 21). Equation (48) is correct for values of 
no that are not too small, such that QOFPvFq. If 77 is not 

very small, then IRe 3Y121 is much less than unity. Thus, in 
the case in which both probe and pump radiation consists of 
a single line of the laser rotational spectrum the interbranch 
component dominates. The intrabranch component has the 
opposite sign, and as can be seen from (48) decreases in 
magnitude as no grows, which causes the induced rotation 
angle to increase. 

Let us now consider the intrabranch component of the 
Raman contribution to OFE. Under the conditions of the 
present experiments (see Sec. 4) the main contribution to 
.%(v,q) comes from the interaction between neighboring 
rotational lines. Then in the argument of .A" their frequency 
difference +Awl appears and 

In our experiment ~ w ~ = 3 . 7 - 1 0 ' ~  s-'. An estimate yields 

Thus, for no>  1 0  l 7  cmp3 we can expect &no) to increase 
sharply as the spin splitting of the conduction band at the 
Fermi level ( Q o F ) ~ n o  approaches the difference in frequen- 
cies of neighboring laser lines. 

The simple formula (51) holds for ~w~ - ( a o F )  9 7: ' . 
To describe the resonant region expression (39) should be 
used. 

4. EXPERIMENTAL TECHNIQUE 

To study the optical Faraday effect in n-type InAs and 
InSb we used a C 0 2  laser with a continuous longitudinal 
discharge and a Q-switched resonator. The pulses had a 
maximum power of -10 kW and a length of s; the 
repetition rate was - 5 . 1 0 ~ ~  pulses s. A diffraction grating 
(-100 lineslmm) or an aluminized mirror was used as one 
element of the laser cavity. Thus in various experiments we 
used either spectrally unresolved radiation, consisting of 
eight approximately equidistant narrow lines of the rotational 
spectrum in the 10.6 or 9.5 p m  band, or a single spectral 
component with width less than lo9 s-' was generated. 

Part (-2%) of the basic laser beam was split off and 
directed by the mirror at the slit of an IKM-1 grating mono- 
chromator (-100 lineslmm) in order to monitor the spectral 
composition of the light. Then the laser beam was split into 
two beams, one of which (the weaker) was used as the probe 
radiation, while the other was used as the pump. The two 
beams could be focused on the sample from either direction 
at a small angle with respect to one another. In the sample 
the angle between the beams was less than 1.5". The beams 
were mixed in the sample using a small diaphragm (diameter 
300 pm) fastened directly to the sample on the pump side. 
The pump could be focused on the sample in such a way that 
the diaphragm stopped all but the central part of the beam (at 
the level 0.7 of the maximum value of the intensity). The 
probe radiation was focused more sharply and almost coaxi- 
ally with the pump. Consequently the probe passed through 
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the region of the sample where the pump was propagating 
relatively uniformly, and did not experience much diffraction 
after passing through the diaphragm. 

Samples of n-InAs were cleaved in the form of thin 
wedges with an angle -3". They varied in thickness, de- 
pending on the density no of the free carriers so that 
a d 5  1.3.  The samples were fixed in the opening of the cold 
pipe of a vacuum nitrogen cryostat with windows made of 
BaF, . 

Along the path of the pump radiation in front of the lens 
that focused the radiation onto the sample, a quarter-wave 
plate of CdS was fastened, which transformed the linearly 
polarized laser radiation into circularly polarized radiation. 
After passing through the diaphragm and the sample, the 
beam was deflected by a small mirror to a photodetector used 
as a monitor. 

The probe radiation was linearly polarized. Its intensity 
at the sample was less than 3% of the pump intensity. After 
the sample in front of the photodetector along the path of the 
probe radiation an analyzer with polarization ratio 114.10~ 
was placed. The analyzer was fastened to a special worm 
gearing. This allowed us to measure very small rotation 
angles of the polarization plane of the probe radiation, and 
also to detect a small induced ellipticity or depolarization. 

In some experiments the probe radiation, after passing 
through the sample and analyzer, was directed to a mono- 
chromator and then to the photodetector. Thus, for the unre- 
solved probe radiation we could measure the rotation angle 
induced by the pump for each of the spectral components of 
the probe. In some experiments we used the second har- 
monic of the split beam (X=5.3 or 4.75 pm) as the probe. In 
this case a tellurium crystal was placed in the probe radiation 
channel, while the primary radiation was filtered out by a 
sapphire plate located right at the probe photodetector. The 
photodetectors were made from cooled "Svod" photoresis- 
tors. The load and hence the time constant T~,, of the probe 
photodetectors were chosen so as to integrate possible inter- 
mode beats resulting from four-wave interactions of the in- 
dividual longitudinal-transverse modes of the laser radia- 
tion ( ~ ~ ~ - 4 '  l ~ - ~  s). 

To reduce the effect of the light scattered from the pump 
radiation in the probe measurement channel, and also to sim- 
plify detection of the signal, the sequence of pulses was 
modulated by a chopper with frequency -25 Hz in front of 
the sample. The modulated sequence of electrical pulses 
from the photodetector was synchronously demodulated with 
a 5 . 1 0 ~ '  s strobe, and their envelope was resolved using a 
reference pulse from the monitoring photodetector. Then the 
envelope was amplified and the first harmonic was extracted 
and fed to a phase detector, the reference signal to which 
came from the modulator. The resulting signal was recorded. 

For each sample we measured the intensity of the probe 
radiation that passed through the analyzer as a function of 
the analyzer rotation angle @ for left and right circularly 
polarized pump radiation and measured the angle 0 through 
which the plane of polarization of the probe radiation ro- 
tated. The intensity of the pump radiation was chosen in each 
case so that there was almost no nonlinear absorption of the 

pump radiation or amplitude modulation of the probe. This 
meant that the probe radiation was weaker. 

From the measured value of the angle 0 and the probe 
absorption coefficient a we determined the coefficient of the 
cubic nonlinearity k3) responsible for the OFE [see Eqs. (1) 
and (2)]. 

In our experiments we studied the density dependence of 
X ( a )  in n-InAs and n-InSb samples under various conditions. 
Since some of the available InAs samples were nonuniform, 
we measured the transmissivity Ta t  a large number of points 
on one level and found the function In T(di). In fairly uni- 
form samples these curves were straight lines whose slope 
determined the value of a(w). 

The values of the intensity I, were found by measuring 
the pump radiation flux with a calibrated photoresistor with a 
large sensitive area immediately behind the diaphragm with 
no sample, and dividing this flux by the area of the dia- 
phragm. The resulting values of X ( a )  for each sample were 
correlated with the densities no found from Hall measure- 
ments. 

5. EXPERIMENTAL RESULTS AND DISCUSSION 

As shown by the experiments, the results of which are 
given below, angles through which the polarization plane of 
the probe rotated are quite large: -lo2 deg.cm/MW for InAs 
and -lo3 deg.cm/MW for InSb. In this connection we 
should discuss the possible contribution to the observed 
photoinduced polarization rotation of the processes men- 
tioned in the Introduction, associated with the spin orienta- 
tion of the carriers by the pump radiation. Since the measure- 
ments were performed in n-type samples, the effects 
associated with inter-subband transitions between complex 
valence bands, observed previously in Ref. 13, were negli- 
gible here on account of the low hole density. The electrons 
in InSb can in principle undergo spin orientation under the 
action of the radiation from the CO, laser due to two-photon 
interband transitions. This process was studied theoretically 
and experimentally in Ref. 23. It was found that, at least for 
T 2 8 0  K, no actual spin orientation occurs in InSb, which is 
a consequence of the short spin relaxation time. The contri- 
bution of the spin orientation mechanism due to indirect tran- 
sitions involving phonons between conduction bands through 
virtual states in the valence band was also evaluated. This 
contribution was found to be small in comparison with the 
observed magnitude of the effects and with the contribution 
of the spin-density fluctuation mechanism calculated above. 
Estimates of the polarization rotation of the probe radiation 
due to effects associated with spin splitting of the conduction 
band by the pump radiation gives rise to rotation angles an 
order of magnitude smaller than for the spin-density fluctua- 
tion mechanism. 

The experiments revealed that the density dependence of 
X ( a )  varies in cases when the spectral composition of both 
beams (with o close to R) includes a "comb" of rotational 
lines and when there is only one spectral component. The 
role of the Raman contributions emerges in the spectral de- 
pendence of the polarization rotation angle 0, which was 
found as follows. The probe and pump radiation were di- 
rected at the sample in the form of spectrally unresolved 
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FIG. 1. Dependence of x(") on n, in n-InAs. The pump and probe spectra 
consist of a set of rotational lines; 1, 2) pump and probe radiation propagat- 
ing in the same direction: I )  T = 9 0  K; 2) T = 3 0 0  K; 3) pump and probe 
radiation propagating antiparallel, T = 300 K .  

light beams containing eight rotational lines each. After pass- 
ing through the sample each spectral component was ex- 
tracted from the probe radiation successively and the rotation 
of the plane of polarization induced in it was measured. This 
spectrum was quite complicated. In particular, it contained 
four sign changes in an interval of 2 meV. Since this spectral 
behavior was found in p-InAs and p-Ge, we conclude that 
this type of spectrum is associated not with the microscopic 
OFE mechanism, which in these materials is related to the 
phototransitions of holes between subbands of the complex 
valence band13 and is distinctly different from that observed 
in the present work, but with the distribution of phases of the 
probe and pump radiation lines as they interact nonlinearly. 

The behavior of X(a)(n,) for the case of a comb in "par- 
allel" experimental geometry is shown in Fig. 1 (traces 1 and 
2). The rapid growth of X ( a )  for no> 1017 cmP3 corresponds 
to the Raman resonance at the transition between spin 
branches of the conduction band [see Eq. (51)l. At 
T =  300 K we could observe the peak described by Eq. (39). 
Note that the density dependence of X(a) found in one line of 
the rotational spectrum has a different form (Fig. 2). 

deg.crn 
3mp Tim- 

FIG. 2. Angle through which the plane of polarization of the probe radiation 
rotates as a function of n o .  The spectrum contains a single rotational line; 
T = 3 0 0  K. 

FIG. 3. Dependence of X ( 4 )  on no in n-lnAs for pump and probe radiation 
having identical and substantially different frequencies: I) hw=0.117 eV, 
ho=0.234 eV; 2) fLo=hCl=0.117 eV. The beams are propagating in the 
same direction. 

In order to explain the density dependence of the OFE in 
the case of a single rotational spectral component it is nec- 
essary to take into account the competition between the in- 
trabranch component described by Eqs. (45)-(47) and the 
interbranch component [Eqs. (48)-(50)l. These components 
have different signs. The intrabranch component dominates 
for large values of no.  For small values of no the two con- 
tributions are comparable. But the data available at present 
are inadequate for a quantitative comparison between theory 
and experiment. 

When the probe and pump frequencies are substantially 
different, as one might expect, no rapid increase in X(a)(no) is 
observed for no> 1017 cmP3 (see Fig. 3, trace 2). In this case 
the occurrence of the Raman resonance in transitions be- 
tween the spin branches of the conduction band is naturally 
excluded. 

Measurements have been performed when the pump and 
probe beams were spectrally unresolvable and when the 
beams were directed at the sample from opposite sides. It 
was found that for all samples where measurements were 
made the quantity x(") is larger for "parallel" experimental 
geometry than for "antiparallel," and the rate of increase of 
X(a) (Fig:. 4) in the latter case was significantly lower.') In 
order to explain this we return to Eq. (43). For the OFE 
mechanism we are discussing the first term in (43) in the 
transition to antiparallel geometry does not change, the con- 
tribution of the i =  1 term in the summation for R=o is 
vanishingly small [see also Eqs. (34) and (391, but the i =  2 
term changes not only in magnitude but also in sign. Instead 
of q= KO- K,, in the argument of % now q'= K ~ +  K,=~K,, 
appears, with q' two orders of magnitude larger than q under 
experimental conditions. In this situation a regime develops 
in which spatial dispersion of the electron plasma occurs to a 
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1~ '" ' .10~,  un., CGSE typical of the spin-density fluctuation mechanisms. In the 
small-no range in InSb this behavior was not observed, 
which is consistent with the result of theory577 for the inter- 
band OFE mechanism. 

' h e  different signs of the angles 0 for parallel and antiparallel beams in 
Ref. 12 resulted because in that work the change in the direction of rotation 
of the polarization of the pump radiation relative to the probe radiation was 
not taken into account. 

FIG. 4. Dependence of X ( a )  on no for n-InSb: I )  when a single rotational 
spectral line is present; 2) for unresolved beams. Here T =  300 K. 

marked extent: q ' v F > ~ i 1 ,  Awl, and all components of .% 
for Raman processes are close to -1. In the first term on the 
right-hand side of (43), however, only the components de- 
scribing the interaction between neighboring spectral lines 
are large in comparison with unity. As a result, there are two 
terms with opposite signs in the right-hand side of (43) 
which are comparable in magnitude. It is this which is mani- 
fested in the observed decrease in the magnitude of the ef- 
fect. 

Until now we have been concerned with the situation in 
which the spin-density fluctuation mechanism dominated 
over the whole relevant free-electron density region. Experi- 
ments have been performed, however, in which a different 
OFE mechanism occurred for small values of no ,  associated 
with virtual allowed-forbidden electron transitions between 
the valence band and the conduction band under conditions 
close to two-photon resonance hw + h R = E g .  In particular, 
measurements were made in n-InAs with ho=0.131 eV, hR 
=0.262 eV, and in n-InSb with hw=hfl=0.117 eV. In the 
first case the interband mechanism and the spin-density fluc- 
tuation mechanism yield comparable contributions to the 
OFE for no- 1016 cmP3, but as no increases the spin-density 
fluctuation mechanism begins to play the major role. In InSb 
the interband mechanism dominates for n o s  2.5 . 1017 ~ m - ~ ,  
while at higher densities, such as in InAs, the spin-density 
fluctuation mechanism is the primary one. The sign of the 
effect in InSb at large values of no is the same as in InAs 
(see Fig. 4). The dependence on whether the pump and probe 
radiation are directed parallel or antiparallel is observed to be 
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