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A model is proposed for gas flow through porous media in the presence of a foam. It is assumed 
that the foam is transported through the porous medium as a system of bubbles bound in 
trains. It is assumed that the length of a train (or "caravan") is governed by the local capillary 
pressure and is a universal function of the degree of saturation with water, the properties 
of the porous matrix, and the properties of the surfactant. Since the train is a macroscopic entity 
(its length is much greater than the pore size), it behaves like a polymer chain immersed in 
a "Darcy fluid." A governing relation for the gas flow is derived in the spirit of the theory of 
Doi-Edwards polymeric liquids. Results predicted by the theory agree with experiment. 
The model also reproduces certain observed effects which existing theories have failed to explain. 

1. INTRODUCTION 

Various aspects of the flow of foam through porous me- 
dia have been discussed actively in the literature, but the 
fundamental question of the mechanisms for the motion of 
foam remains unresolved. The motion of a foam in a porous 
medium is usually represented as the flow of two interpen- 
etrating phases: a liquid phase and a gaseous one. Analysis of 
extensive experimental information has established that the 
flow of a liquid in a foam flow can be described well by a 
generalized Darcy's law through the introduction of an ordi- 
nary relative On the other hand, certain fea- 
tures of gas flow in the presence of a foam cannot be de- 
scribed by a generalized Darcy's law. In other words, the 
foam radically changes the nature of the seepage flow of gas. 
A series of visualizing experiments has been carried out to 
identify the mechanism for the flow of a gas-foam system. It 
has been as a result that the foam in a porous me- 
dium is a gas dispersed in a wetting porous surface of liquid 
in such a way that some of the pores are partially covered by 
thin films which are stabilized by the surfactant and which 
are called "lamellae." The radius of a lamella is on the order 
of the pore radius.' A gas in a porous medium in the presence 
of a foam moves as a free gas and also as a system of gas 
bubbles. The mobility of a gas in the presence of a foam is 
several orders of magnitude lower than that of a free gas.122 
The mobility is reduced both by a blocking of gas paths by 
individual lamellae of the foam and also by friction of the 
lamellae with the wall of the effective channel in the motion 
of a gas bubble. (We are restricting the present paper to the 
case of a foam in which the typical size of an individual 
bubble is comparable to the size of a pore. The lamellae in 
this case cover the pore channel. In the opposite case, the 
foam moves through a porous medium as an ordinary bulk 
foam, with all the distinctive features of that case.8) 

' h o  approaches are currently taken in modeling the flow 
of a gas in the presence of a foam. Along the first approach, 
which starts from the lamella "break-and-reform 
m e c h a n i ~ m , " ~ ~ ' ~  the foam in a pore space is modeled by a 
system of "valves" which are continually opening and clos- 
ing. These valves are localized in certain (dangerous) posi- 

tions in the gas channels. The valve lamellae effectively 
block the gas paths, reducing the permeability of the gas. The 
process by which each valve breaks and reforms is regulated 
by the local pressure drop in the pores and by physical and 
chemical conversions in a ~amel la . '~  

Along the second approach it is assumed that all the gas 
in the porous medium is moving as an ensemble of bubbles 
which are bound in trains or "caravans" (the 
"bubble-train"" flow mechanism). The train of bubbles 
moves as some hypothetical entity averaged over a long time 
interval (see Sec. 2 for more details). According to this hy- 
pothesis, the resistance of the gas increases because of the 
friction of lamellae with the wall of the effective channel as 
the train moves. Although the picture of the interaction of the 
free surfaces of a lamella with the hydrodynamic field within 
menisci is complex," simple estimates in Sec. 2 show that a 
channel containing N lamellae increases the resistance of the 
gas by a factor of Nv, where v is the viscosity of the film 
wetting the pore. 

patzekI2 and Radke et aL5 have proposed a mechanical 
model for the motion of a foam based on the theory of two- 
phase seepage with certain elements of kinetics required for 
describing the generation and coalescence of bubbles. That 
approach is ordinarily referred to as the "population-balance 
method." This two-phase model is far from complete, since 
deriving the closure relations will require the statistical 
analysis of a large body of experimental evidence. 

We restrict the present paper to rheological aspects of the 
flow of a foam through a porous medium. In particular, we 
discuss a new flow model. The crucial mechanism for the 
motion of the foam in this model is a sliding of mobile 
lamellae along an effectively smooth channel. This channel 
forms from trapped lamellae and the wetting liquid adjacent 
to the grains of the porous matrix. Inside a channel the foam 
flows as a system of bubbles (oscillators) bound in a train. 
Each part of the train stretches or contracts by virtue of the 
compressibility of the gas in the bubbles. The joint flow of 
such trains through a system of self-organizing active chan- 
nels is interpreted as the motion of a foam. It is assumed that 
the system of active channels is altered by both the average 
macroscopic motion and a random walk of the bubble trains 
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in the pore space. Here we should point out that in the stan- 
dard approach (the second of those listed above) the lamellae 
move in unison only when the length of the bubble train is 
related in a certain way to the applied pressure gradient. 
Simple estimates lead to the relation13-l6 @ = ( v ~ ) - ~ ,  where 
5 is the length of the train. These estimates do not apply in 
the present context, since the gas is not identified with the 
bubbles. The length of a bubble train serves as an adjustable 
parameter of the model; i.e., it serves as a universal function 
of the degree of water saturation, the properties of the pore 
space, and the properties of the surfactant. 

This paper is organized as follows. In Sec. 2.1 we con- 
struct a model for the motion of an individual bubble train 
through an effective channel. We then (in Sec. 2.2) derive 
certain relations for the flow of a gas in the presence of a 
foam, as in the theory of Doi-Edwards polymeric liquids. In 
Sec. 3 we use the example of a 1D foam flow to discuss 
consequences of the model. The results of this study are 
summarized in Sec. 4. 

2. BASIC MODELS 

In constructing a model we restrict the discussion to the 
case of a two-phase system, e.g., gas-water foams in the 
absence of oil. Such foams are used to control the mobility 
of gases in porous media.17318 Some other applications are 
discussed in Ref. 18. 

The fundamental entity in the modeling is the foam- 
carrying gas (a "continuous-gas" foam5). In this case there 
are gas channels not covered by foam lamellae in the porous 
medium. The flow of gas through such channels is absolutely 
the same as the ordinary two-phase seepage regime. We re- 
call that in the standard theory of two-phase seepage the 
entire pore space is partitioned into two interpenetrating 
continua.19 The degree of saturation of each phase is deter- 
mined by the local capillary pressure: a characteristic func- 
tion of a porous material and of saturating gases called the 
"Leverett function." The curve of the flow of each phase can 
be described completely by introducing relative permeabili- 
ties in a generalized Darcy's law. 

Since the hydrodynamic behavior of a liquid in a foam 
flow can be described well by a generalized Darcy's law, we 
will focus on a gaseous continuum. In it, part of the gas 
circulates freely, while another part is distributed among 
bubbles. The freely circulating part of the gas will be called 
the "free gas." In the spirit of the hypothesis of bubble 
trains, we assume that the bubbles are moving in the form of 
a system of trains through the porous medium. We need to 
stress that in each realization (i.e., at each instant of time) 
bubbles may also be moving individually. However, the hy- 
drodynamic processes in which we are interested occur over 
a seepage time scale which is far longer than the time scale 
for the sliding of a lamella along a pore. Specifically this 
time scale is characteristic of the motion of a lamella at the 
microscopic level, since, after it is produced, a lamella can- 
not traverse a distance greater than a few pore radii.20 At the 
seepage time scale the sliding of individual foam lamellae 
along the effective channel is perceived as motion of a 
bubble train (in a time exposure). 

FIG. 1. Partitioning of the pore space into a system of active channels and 
blocks along which the free gas moves. The distance between neighboring 
effective lamellae is much greater than the size of a pore, so each link of a 
bubble train contains a multitude of elementary bubbles (the grains of the 
pore matrix are hatched in the inset). 

A bubble train cannot move in just any arbitrary way, 
since the pore space imposes an effective sliding channel on 
it. This region of the pore space is controlled by the mecha- 
nisms for the creation and disappearance of foam lamellae 
and also by the presence of other bubble trains and the flow 
of free gas. For a macroscopic description of the hydrody- 
namic picture of the flow, the detailed structure of the net- 
work of active channels is unimportant. It can be character- 
ized by the single parameter ,$, the typical mesh size.16 This 
parameter is on the order of the length of an individual 
bubble train. 

In accordance with the discussion above, we partition 
the overall pore space (the gaseous continuum) into a system 
of active channels and a system of porous blocks filled with 
free gas. We can then assume that each bubble train is mov- 
ing independently in an average hydrodynamic field, which 
incorporates collective effects. Along this approach, the 
bubble-train model plays the role played by the Routh model 
in polymer (Fig. 1). 

2.1. Bubble train in an active channel 

We turn now to a construction of a model of a bubble 
chain. We assume that the train consists of N lamellae whose 
centers of mass are at the coordinates rl ,r2,...,rN. The lamel- 
lae are connected by links of length a (this is the "wagon 
length"). We also assume that the interval between lamellae 
is much smaller than 6. Generally speaking, the pressure 
within each bubble differs from the pressure of the gas sur- 
rounding the train. As has been shown') experimentally,23 
this picture of the foam flow is fairly realistic, and it incor- 
porates the possible deformation of the individual bubbles in 
a chain. 

We denote by p, the initial gas pressure in an individual 
bubble. We wish to derive an equation of motion of the 
bubble train after a pressure perturbation. Under the influ- 
ence of the perturbation, the ith bubble is deformed, and its 
length becomes a i  = a + pi . Using the equation of state of the 
gas, we have 

p ia i=p i - , a i - ,=  ... - - p,a. (1) 

For two neighboring bubbles we thus have 
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Going over from a discrete variable to a continuous variable that the gas pressure at the right end of the train abruptly 
s = a i  in (2), we find increases by an amount Ap. The pressure elsewhere in the 

active channel is constant, equal to its initial value. The 
JP d2P ~ P J P  - --P 7- -- =07 boundary conditions and the initial condition of the problem 
ds ds ds ds are thus 

Using Newton's law with a friction constant y, we can write 
the equation of motion of the foam lamellae as 

where A is the cross-sectional area of the channel. Taking the 
continuum limit in (4), we find 

Also using the equation of state of the gas in differential 
form, 

we can rewrite Eq. (5) as 

The structural irregularity of the pore space renders the mo- 
tion of a lamella along a pore channel stochastic. Prieditis 
and ~ lumenfe l th '~  and, a bit later, ~ o s s e n ' ~  showed that a 
lamella moves through a capillary within a regular structure 
by jumping from one stable position to another. Such a mo- 
tion can be described as a random walk in pressure space. In 
this context, it is more convenient to introduce a stochastic 
force in the main equation. This force will model the pulsat- 
ing component of the capillary forces, which tend to pull a 
lamella into a contracting throat of a pore channel and to 
expel it from a diverging throat. Since the stochastic force is 
of a microscopic nature, it is Scorrelated in time and space: 

The main equation describing the motion of the bubble train 
thus becomes 

To demonstrate the collective properties of the motion of 
the lamellae in the train, we use a linear version of Eq. (8); 
i.e., we consider the case of small pressure perturbations. In 
this limit the average displacement of a lamella (the average 
is taken over realizations of the stochastic force) is described 
by a diffusion equation: 

There is an instructive example demonstrating the transition 
of a bubble train from a state of rest into motion. We assume 

We solve (9), (10) by the standard methods, writing the 
solution in the form 

where 

Here R is the universal gas constant, n is the number of 
moles of gas in a bubble, and T is the temperature. The 
pressure distribution along the train tends toward a linear 
distribution as time elapses: 

m 
exp(-Akt) k ~ s  

k 
sin 

The average velocity of the train remains constant, equal to 

Expressions (11)-(13) are evidence of the collective nature 
of the motion of the foam lamellae. The pressure drop causes 
the foam lamellae to move nonuniformly; i.e., the bubbles in 
the train become deformed in such a way that the pressure 
gradient tends toward a constant value along the chain. The 
time scale of the restructuring, T, ,  depends on the friction 
constant of an individual lamella, on the initial pressure, 
and-the most important point--on the length of a train. Let 
us estimate the friction constant. We recall that a lamella 
consists of a plane film and menisci. We assume that the 
characteristic longitudinal and transverse dimensions of the 
menisci are comparable in magnitude. Modeling a lamella by 
a rigid disk, and ignoring end effects, we then find the 
lamella resistance force: 

Consequently, the friction constant is given in order of mag- 
nitude by y = 2 ~ v r ,  where r is the pore radius. End effects 
lead to a more complicated dependence of the friction con- 
stant on the pore radius and to a dependence of this constant 
on the lamella velocity.ll Nevertheless, this estimate is cor- 
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rect in order of magnitude, and it allows us to distinguish the 
collective "elastic" effect from other interactions within a 
train. It also leads to the conclusion that the relaxation rate of 
the pressure gradient in pore space is governed by the relax- 
ation rate of the pressure gradient along the bubble trains. 
Let us clarify the latter assertion. We consider a pore channel 
of length 5 filled with a free gas. In a first approximation, the 
pore channel can be represented as a system of wide pores 
each of volume V, connected by narrow capillaries of length 
1 and radius r .  We assume that the gas in the capillaries is 
flowing in accordance with the Poiseuille law. We write a 
balance equation for the gas flow rate in the ith pore: 

q i= '~(Pi-2Pi- l+Pi-2) .  

In the continuum limit, this equation reduces to a differential 
equation with a diffusion coefficient 

Here ug is the viscosity of the gas. Assuming l = r ,  and re- 
peating the calculations for a determination of the relaxation 
time for the preceding problem, we find 

The ratio T r / T ,  is thus on the order of the ratio of viscosities 
U I U , .  Using this estimate, we conclude that the pressure in a 
gas block relaxes to its steady-state distribution essentially 
instantaneously after the application of the pressure gradient, 
while the pressure relaxation in the active channels takes 
place over a time on the order of Tr%- T ,  . 

2.2. Motion of a bubble train in an average field 

Our basic purpose in this subsection of the paper is to 
derive governing relations for gas flow in the presence of a 
foam, allowing for the particular features of the motion of 
lamellae at the microscopic level. Since the original problem 
is quite complex, we introduce some simplifying assump- 
tions. 

Assumption 1. As we have already stated, we are re- 
stricting the discussion to the simple case in which the num- 
ber of lamellae in a train is constant. We will call this the 
"saturation limit" and distinguish it from the "flow regime," 
in which growth and division processes play a governing 
role. 

Assumption 2. We consider exclusively slow flows, for 
which the seepage time scale is longer than the relaxation 
time T ,  . In such flows the pressure distribution in the blocks 
at any instant can be regarded as a steady-state distribution. 
Actually, this assumption is not particularly restrictive. There 
is a fairly substantial class of flows which arise in problems 
of chemical technology, e.g., in oil and gas recovery, which 
satisfy these conditions. 

Let us use these assumptions to derive governing rela- 
tions for gas flow in the presence of a foam. These equations 
can be written down immediately provided that we know 
how the effective force acting at a given point in the porous 
medium can be calculated from the bubble-train model. This 
problem is conceptually close to the problem of calculating 
effective stresses in the physics of the elasticity of rubber. In 

the case of the flow of bubble trains, the elastic force acting 
along a chain plays the role of entropic intramolecular forces. 
To calculate the contribution of elastic forces to the effective 
force we can thus use the familiar formula24 

Here we have used the continuum version of the bubble- 
train model, so u(s,t) is a unit vector directed along the sth 
link of the train, A is the cross-sectional area of the active 
channel, and c is the concentration of trains in the flow. The 
angle brackets mean an average over the orientation of the 
links. 

To pursue the calculations we rewrite Eq. (14) in the 
form 

Here we have introduced the isotropic tensor 4, in the defi- 
nition of the pressure [see expression (36) below]. This for- 
mula is our starting point for deriving the governing rela- 
tions. 

We can demonstrate the derivation of the equations by 
making use of a gedanken experiment proposed by Doi and 
~ d w a r d s . ~ '  We assume that at time t = O  a sample containing 
a foam undergoes a sudden uniform deformation and is then 
maintained at a constant deformation. Since the carrier phase 
has no rigidity, the system must go into a new equilibrium 
state similar to its initial state. The problem thus reduces to a 
description of how the relaxation occurs. 

In this context, a "sudden deformation" of the sample is 
to be understood as the sudden introduction of the sample 
into a flow with a constant velocity gradient, i.e., the imagi- 
nary organization of a "tensile" or "shear7' flow (Fig. 2). 

The motion of the foam after the deformation can be 
broken up somewhat arbitrarily into stages. In the first stage 
the system of active channels is deformed because of the 
flow of the carrier gas. To describe this motion we introduce. 

Assumption 3. In the first stage of the motion, the 
lamellae are carried freely by the gas. In other words, each 
point of the active channel is subjected to an affine deforma- 
tion. 

This is the strongest of the assumptions introduced here, 
and it requires some comments. The active channels, which 
in turn consist partly of foam lamellae, change configuration 
as a result of the velocity gradient. This effect is at odds with 
the picture of these channels as rigid tubes. Direct observa- 
tions confirm this picture of the self-organization of an active 
channel:22 the nonuniform pressure gradient causes some of 
the lamellae forming an active channel to break up, while 
others jump to new stable positions in pore channels. In ad- 
dition, some of the lamellae reappear. As a result, the active 
channel takes on a new configuration. The hypothesis of an 
affine deformation is equivalent to a coarsening of our origi- 
nal picture of the self-organization of the effective tube. It 
conforms to the spirit of the bubble-train hypothesis. We re- 
call that the length scale of a train is much longer than the 
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FIG. 2. Schematic diagram of the relaxation process. The trains represent a 
compressible gas in an effective bubble. a) Bubble train in the original state 
(points A,B,C,D,E); b) immediately after deformation (points 
A ' ,B'  ,C' , D '  ,E '), the bubbles are either stretched or compressed; c) after 
the first relaxation process, the lamellae are displaced in such a manner that 
the pressure gradient is balanced; e) after the second relaxation process, the 
bubble train "creeps out" of the deformed channel through reptations. 

size of the pores. We can easily verify this point by estimat- 
ing the effective length of a link. Using the approximate 
formula16 a = r 2 p g / c  for this estimate, and assuming p g = 3  
bar, a = 3 0  dynlcm, and r=1oP3 cm (Ref. 17), we find 
a=102r .  We thus see that the microscopic level in this prob- 
lem corresponds to a length scale much larger than the pore 
size. In this approach, the bubble train is modeled in the 
deformation stage by an infinitely thin soap filament in a 
Darcy fluid (i.e., a fluid with characteristics averaged over 
the pore space). 

As a result of the deformation, some parts of the train are 
stretched out, and others compressed. For slow flows we can 
assume that the ends of the trains are maintained at a con- 
stant pressure gradient immediately after the deformation. 
Each train thus relaxes after the deformation to a state in 
which the pressure gradient is constant along the train. We 
will call this train deformation process the "first relaxation 
process." During this first relaxation process, we might note, 
there can be no change in the conformation of an active 
channel. 

After the first relaxation process has ended, the bubble 
train moves in serpentine manner without any change in 
length. At each instant, the ends of the train change spatial 
positions because of a displacement of the "point of birth" 
of foam lamellae at the tail of the train and of the "point of 
death" of the lamellae at the head of the train. After the first 
relaxation process has ended, the train thus "creeps" out of 
the deformed tube and creates a new active channel through 
a random walk of a head bubble. We will call this "libera- 
tion" process the "second relaxation process." A correspond- 

ing problem for a polymer chain was studied by de ~ e n n e s ' ~  
and Doi and ~dwards." Over a short time interval At, the 
lamellae move along the channel in such a way that a link of 
the train with the coordinate s occupies that point of the tube 
which at the time t was the position of the link with the 
coordinate s + As: 

Here As is the random distance traversed by the bubble 
train over the time At. This motion-the creep of a chain 
along a tube-is called "reptation."26 Calculating the diffu- 
sion coefficient, defined as 

is an important problem for this approach. The diffusion co- 
efficient depends on the properties of the pore space, the 
degree of water saturation, the concentration of trains, etc. 
For rough estimates, on the other hand, it is sufficient to 
consider only two types of forces which control the motion 
of the train at the microscopic level: viscous and capillary 
forces. A random motion of a train along an active channel is 
possible if these forces are balanced: vU=u, where U is a 
characteristic velocity of a lamella, and u is the surface- 
tension coefficient. We thus find a time scale for the diffusive 
motion of a lamella: 

The diffusion coefficient is thus given in order of magnitude 

by 

The complete set of parameters on which the diffusion 
coefficient depends thus reduces to a single parameter: the 
effective length of a bubble in a train. 

We turn now to the basic calculations. We consider the 
change in the effective force over a short time interval F. 
This change is determined by three components: 

AdFf=cAVP(t).  SS(s,t)ds, A,Ff=cAVP(t) I"' 

Here VP(t) is the pressure gradient in a block at the time t, 
SS is the change in the tensor S due to the macroscopic 
deformation, AS is the change in the tensor S due to repta- 
tions, and SVp(s,t) is the change in the pressure gradient 
along a train due to the first relaxation process. Equation (17) 
is none other than the first term of a series expansion of the 
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effective elastic force in 7'. We are assuming that before the 
deformation was applied, the foam was moving along with 
the gas under a pressure gradient VP( t ) .  

We will first calculate the first term in (17). Over the 
time interval T the active channels undergo changes in con- 
figuration because of the macroscopic deformation. If E is 
the tensor describing the macroscopic deformation, then the 
point with Cartesian coordinate R  goes into the point 
R1=E .R.  Making use of the affine nature of the deforma- 
tion, we find an equation which relates the tangent vectors 
before and after the deformation: 

Substituting this equation and the expression2' 

into Eq. (15), we find 

(19) 

Here v  is the velocity of the free gas, D i j = ( V i v j + V j v i ) / 2 ,  
and cp  is the number of bubble trains per unit volume in the 
flow. To calculate the third term in (19) we make use of the 
results of Doi and ~ d w a r d s ' ~  (a brief derivation of this equa- 
tion is offered in Appendix I): 

I 2  
F 7 ) - ~ ~ ( t ) =  V V - F ~ + F ~ . ( V V ) + +  V D . V P ( ~ )  

where 

Equations (20) and (21) describe the change in the effec- 
tive force immediately after the macroscopic deformation. 
We wish to calculate the change in the effective force during 
the first relaxation process. We recall that during this first 
relaxation process there is a redistribution of lamellae in the 
train in such a manner that the applied pressure gradient is 
balanced by the elasticity of the gas in the bubbles. In this 
stage of the relaxation, the conformation of the active chan- 
nels remains essentially the same. To calculate the longitudi- 
nal pressure gradient in a channel we use the linear version 

of the bubble model. Introducing g ( s , t l )  =(Vp(s , t r  ) .u (s , t ) )  
for the longitudinal pressure gradient, we find from (9)  

At the ends of the train the pressure gradient is related di- 
rectly to the pressure gradient in a block, so we write the 
boundary conditions as 

Immediately after the deformation, the distribution of the 
pressure gradient along the channel becomes an initial con- 
dition of the problem: 

We can write a solution of problem (22)-(24) in the 
form 

S 
g ( s , t l ) = g o + g t - g o  - + E  wi sin 

5 i 

where 

w =  5 2 ~ ~ ~ [ w ( s ) - g ~ - ~ ~ + ~ ~  - " 5 sin Ii";'"i - ds .  

Substituting these expressions into (15), we find the effective 
force in the first relaxation stage: 

Since the directions of the end bubbles of a train are 
random, uncorrelated with the directions of interior links, the 
first term on the right side of Eq. (26) drops out: 

The final expression is 
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x exp(- Ai( t1 -  t ) ) d s .  (27) 

Taking the limit t r  - t= $ 4 0 ,  we find the increment in 
the effective force caused by the first relaxation process: 

x C hi (wi(s , t )u(s , t ) )s in  
i I,' 

(28) 

To simplify (28) we use the method proposed by ~ a r i n . ~ ~  
Introducing a spectral decomposition of the force, 

and comparing Eqs. (28) and (27), we find 

A,Ffi= - Ai[Fj( t , t )]  rr.  (29) 

After the deformation, each mode in the expansion of the 
effective force thus relaxes to its equilibrium value over a 
time scale l /Ai.  To simplify the governing equation we use 
the single relaxation time T ,  . This approximation has proved 
successful in problems in polymer physics. Restricting the 
discussion to processes which play out over a time much 
longer than T, ,  we thus find an equation describing the first 
relaxation process: 

After the first relaxation process has ended, a constant 
pressure gradient is set up along the train. This gradient is 
approximately equal to the pressure gradient in a block. On 
the other hand, the conformation state of the train is far from 
equilibrium, because the train is in a state with a reduced 
configurational entropy. The train tends to escape from its 
original channel, "creeping" out of it. Using (16) and the 
definition of the tensor S(s , t ) ,  we write the condition for 
reptation motion: 

S(s , t+ A t ) = ( S ( s +  As , t ) ) ,  

where the angle brackets mean an average over realizations 
of As. Expanding the right side of this equation in powers of 
As, we find 

The factor in the second term referring to the small time 
interval ( A s l A t )  is none other than the average velocity of a 
lamella, which is directly proportional to the vectors u(0,t) 
and u(5,t) [see (25)l. Since the end links of the train are in 
random directions, the second term on the right side of this 
equation drops out after division by At. Equation (31) thus 
reduces to an equation which was first derived for the prob- 
lem of a polymer chain by Doi and ~ d w a r d s : ~ '  

By virtue of the random orientation of the end links of the 
train, the boundary conditions of the problem become 

An initial condition is imposed by the structure of the active 
channel after the deformation: 

Problem (32)-(34) is analogous to problem (22)-(24), so by 
comparing ArFf with (28) we find 

Here 6=.$2 /d~  is the time scale of the reptation motion of 
the bubble train. A corresponding expression was derived by 
~ a r i n ~ ~  for the increment in the stress tensor due to reptation 
motion of polymer chains in melts. 

To close the model we consider some conservation laws. 
The condition expressing the equality of the viscous forces, 
the pressure gradient, and the internal forces in this case 
plays the role of a governing relation for the gas flow in the 
absence of the foam: 

where k is a seepage coefficient. Taking the limit r'+O in 
(17), and using (20), (30), and (35), we find an equation for 
the internal force: 

d E ( t , t l )  
-- 

dt' - - E ( t , t 1 ) . V v ( t ' ) ,  E ( t , t ) = I ,  

and I/T,= l / T r +  116. System (36)-(38) describes the flow 
of a gas in the presence of a foam in a porous medium at a 
constant degree of water saturation. For an incompressible 
porous medium and for slow flows, we can ignore the com- 
pressibility of the gas in the blocks and use the balance equa- 
tion in the form 
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3. FLOW OF FOAM IN A POROUS TUBE 
"" 1\ 

We assume that the foam is injected into a sample of 
length H at a constant degree of water saturation. To describe 
the flow of the foam in this case we can use the system of 0.4 - 
equations which we have derived. We introduce dimension- 

0.2 - less variables and dimensionless functions: 

P F v t x -I I 

p=- ,  L = -  , t X+E, 0 0.2 0.4 0.6 0.8 1.0 
Po f '  " 0  rr X 

where p o = ~ 2 1 r r k  is the scale value of the pressure, f is the 
of the effective force, and vo=H1rr  is FIG. 3. Distribution of the effective internal force along a tube at various 

the velocity scale. In terms of these variables, the system of times. The foam is propagating with a moving front. 
equations becomes 

(41) (46) 

while the second is described by an equation with finite in- 
tegration limits: 

(42) 
r i  / r 7  A R  \ 

1 v ( r ) = P o ( r ) - b  
The parameter b = fkr,/H serves as a measure of the ratio of 
the internal forces which arise in the motion of the bubble (47) 
trains to the viscous forces, incorporating the resistance of 

Let us consider a flow at a constant pressure drop. Figure 
the effective medium in the gas flow. In the limit b+m the 

3 demonstrates the characteristic features of the conditions 
internal forces outweigh the viscous forces; in the opposite 

under which the tube becomes filled with foam. After an 
case, the flow obeys the ordinary Darcy's law for a gas with- 

increase in the pressure drop at the ends of the tube, a con- 
out a foam. 

stant pressure gradient is set up instantaneously along the 
Let us look at a possible experimental situation. In the 

tube [as follows from Eq. (42)l. On the other hand, the gas 
case of a given pressure drop, the boundary conditions and 

seepage rate along the tube cannot reach a steady-state value 
initial conditions become 

instantaneously. As long as the film front is moving along the 

For convenience in solving system (40)-(43), we intro- 
duce a new independent time variable: 

The solution of transport equation (41) in terms of the new 
variables then becomes 

where B(x) is the unit step function. 
Using Eq. ( 4 9 ,  we examine two foam flow regimes of 

practical interest (detailed calculations are presented in Ap- 
pendix 11). The first displacement regime corresponds to 
propagation of foam through a sample, while the second de- 
scribes a relaxation of the system to a steady state. The first 
stage of the flow is described by the equation 

tube, the pressure distributions behind and ahead of the front 
are different. While the pressure gradient ahead of the front 
is uniform, the distributions of the effective internal force 
and of the pressure gradient behind the front are nonuniform. 
Figure 3 shows distributions of the internal force character- 
izing the effect of the foam at various times. After the break- 
through at the time t*, the foam relaxes to a steady-state flow 
regime. The breakthrough time is found from the transcen- 
dental equation 

Figure 4 demonstrates the quality of a foam as a function of 
the parameter b.  With increasing b ,  the breakthrough time 
increases; i.e., the quality of the foam improves. We will 
come back to this fact later on in a discussion of experiments 
which have been carried out. 

Figure 5 illustrates the primary effect of the foam on the 
seepage flow of gas: As time elapses, we observe a lowering 
of the rate of the seepage flow of gas. This effect was ob- 
served in the experiments of Refs. 1, 17 and 18 and was 
labeled a "gas-blocking This seepage regime is 
characterized by a significant lowering of the gas flow rate at 
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FIG. 4. Breakthrough time as a function of the pressure drop. I-b=1; 2- 
b=3; 3-b=5; 4-b=20. 

constant water saturation. It was pointed out in Refs. 17 and 
18 that the gas-blocking state cannot be reproduced in the 
existing models. 

Another effect of the foam is seen in a nonlinear depen- 
dence of the gas flow rate on the applied pressure drop in the 
steady state (Fig. 6). In the model proposed here, this regime 
is described by the system of transcendental equations 

It follows from Eq. (49) that internal forces have an 
appreciable effect on the gas flow only in a layer of thickness 
v adjacent to the entrance cross section of the tube. It is 
worthwhile to look at two limiting cases: the regime of slow 
gas flow and the high-velocity seepage regime. In the first 
limit, Eq. (50) reduces to 

FIG. 5. The "gas-blocking" flow regime. 
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FIG. 6. Typical diagram of the seepage rate versus the pressure drop, which 
is similar to the experimental curves. I-b = 1; 2-6 =3; 3-6 =5; 4-6 
=lo. 

In this case the effect of the internal forces propagates over 
the entire sample and reduces to a renormalization of the 
permeability. In the opposite limit, Eq. (50) becomes 

Here the effect of the foam reduces to the onset of a critical 
pressure gradient in the seepage law. In other words, the 
foam exhibits the characteristic features of a pseudoplastic. 
Combining the asymptotic results found, we can approxi- 
mate the nonlinear seepage law by a piecewise-linear law. 
The point at which the straight lines intersect (Fig. 6) has the 
coordinates 

Various versions of the piecewise-linear approximation 
have been proposed and discussed in the literature in connec- 
tion with the description of the flow of foams through porous 
media (see the reviews5'18). In that approximation of the 
seepage law, the quality of the foam is governed by the 
slopes of the straight lines and by the point at which they 
intersect. A simplified version of this approximation-the 
"pseudoplastic" model, in which the foam quality is charac- 
terized by a critical pressure gradient-is often used. In that 
model the foam quality is characterized by the parameter b, 
which is the critical pressure gradient in asymptotic limit 
(51). As the critical pressure gradient (or the parameter b) 
increases, the effectiveness of the foam increases. We recall 
that an increase in the parameter b also leads to an increase 
in the foam breakthrough time. These conclusions agree 
qualitatively with the experiments of Refs. 17 and 18. In 
addition, it was suggested in those papers that the break- 
through time be used as a test of the foam quality. Summa- 
rizing, we can conclude that the model reproduces the basic 
features of the flow of a foam through a porous medium. The 
flow which we have been discussing is governed by the pa- 
rameters T, and b. These parameters can be extracted from 
experimental data. Let us take a more detailed look at a 
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version of the experimental data represented in the form of a 
seepage law with a limiting gradient. In this case, we know 
the values of the critical pressure drop Po ,  the effective per- 
meability K, and the foam breakthrough time T*. Using Eq. 
(51), we can relate the initial parameters to the model param- 
eters: 

The system of equations (52) is closed, so the parameters 
b, r,, and k can be found in each individual experiment and 
then plotted as a function of the degree of water saturation, 
the pressure drop, and the properties of the surfactant. Un- 
fortunately, most of the experimental papers have reported 
results on only the steady-state seepage regime, or the effort 
has been focused on analyzing the propagation of the foam 
front. As a result, it is difficult at this point to identify the 
input parameters of the model. Nevertheless, we can work 
from the existing data to find some rough estimates of the 
effective length of a bubble train and thereby test the internal 
consistency of the model. We first estimate the relaxation 
time r, , assuming a=30  dynlcm, r = cm, and p g = 3  bar 

2 (Ref. 17). We use the approximate expression16 a = r  pgla 
for the length of a link. Substituting these values into the 
expression l / r r =  l / T r +  119, we find 

We thus have 7,-9. We also assume that the condition b+m 
holds experimentally; then from the first equation of system 
(52) and from Eq. (48) we find 

Using the experimental values of the breakthrough time, 
~ * - 1 0 ~  s (Ref. 17) and of the viscosity, v-10 cP (Ref. l l ) ,  
we find an estimate of the length of a train: 6-lo3 cm. The 
corresponding volume occupied by the bubble train, 
~ ~ - 1 0 - ~  cm3, is much greater than the pore volume 
~ ,=10- '  cm3. We now go back to the first equation of sys- 
tem (52), and we use the estimates u,=10-~ cP, K = I O - ~  
cm2, VP-1 bar, and H=100 cm (Ref. 17). We verify that 
the condition b=10%1 holds. The bubble train can thus in- 
deed be treated as a macroscopic entity in a Darcy fluid. We 
also note that in the case b-1 the scaling law 5-IVPI -'I2 

holds. This law can be found by assuming 

Using the definition of the parameter b, we then have 
@B I V P I  -'I2, where B = %-(a a / k ~ ~ ) - " ~ .  Estimate (53) is 
exact when the order parameter satisfies S-1. This situation 
is extremely likely near the entrance cross section of the 
tube, where the active channels tend to stretch out along the 
flow. 

The model proposed here simplifies substantially when 
the time scale of the seepage flow is much shorter than the 
relaxation time 7,. In this limit, we can ignore the last term 
in Eq. (37) and write the governing relation as a "modified 
Maxwell's law": 

4. CONCLUSION 
1. The flow of a foam through a porous medium is mod- 

eled as the motion of a "bubble train" in a "Darcy fluid." 
Moving along with freely circulating gas, the trains undergo 
changes in state because of changes in their intrinsic internal 
energy and also because of topological transformations. We 
have derived a rheological governing equation for a gas flow 
in the presence of a foam. This equation is similar in struc- 
ture to the equation for a viscoelastic liquid. 

2. The model reproduces the "gas-blocking state," in 
which the degree of water saturation remains constant be- 
cause of capillary forces, while the gas moves for a long time 
interval at reduced mobility. An increase in resistance is 
caused by bubble trains moving in the gas flow. 

3. The familiar piecewise-linear approximation of the 
gas seepage law in the presence of a foam can be explained 
on the basis of a model of two asymptotic seepage regimes. 
The first case corresponds to a slow flow of gas through a 
"matrix" formed by the bubble trains. In this limit the pres- 
sure drop is so small that it is incapable of displacing foam 
from the sample. After a critical pressure drop is exceeded, a 
high-velocity seepage regime sets in. In this regime the gas 
moves as if there were no foam at all. 

4. The effectiveness of foam as a blocking agent can be 
identified with microscopic characteristics of the foam on the 
basis of experiments on frontal displacement. The solution 
proposed here for the 1D problem makes it possible to iden- 
tify the parameters of the model if the breakthrough time, the 
inclinations of links in the piecewise-linear seepage law, and 
the link intersection point are all known. 
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APPENDIX I 

The average value of any quantity $(u) is given by 

sin 8 

4%- 
dpd8. (AI.1) 

The distribution function f(u) can be represented as a 
path integral. Before we go on to the basic calculations, we 
would like to offer a few comments, following the original 
ideas of Doi and ~ d w a r d s . ~ '  Each link of the channel has its 
own birth time, i.e., a time at which the part of the train 
occupying the given link begins its diffusive motion. We 
denote by t' the birth time of a segment which at time t 
contains the train link under consideration. We denote by the 
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vector u' the direction of the segment at the creation time. 
The vector u' is obviously distributed uniformly with respect 
to direction. After the birth time, the direction of a segment 
changes along with the macroscopic deformation of the me- 
dium, becoming 

at the time t .  For each u' the distribution with respect to 
directions is thus given by 

To find the distribution function of interest, we need to 
average this expression over the birth time t ' .  To do this we 
need to know the probability that the given segment was 
created in the time interval between t' and t ' + d t t .  This 
probability is given by 

Hence 

Substituting (AI.2) and (AI.3) into (AI.l), and replacing $(u) 
by the tensor u(s)u(s)u(s)u(s), we obtain Eq. (20). 

APPENDIX II 

To solve Eqs. (40)-(43), it is convenient to integrate Eq. 
(42) over the length of a tube: 

Substituting the solution of transport equation (45) into 
(AII.l), we find expressions (46) and (47). For a numerical 
realization, however, it is more convenient to rewrite (AII.l) 
in differential form, 

dv dP - dP0 dL 
- - 2 - b l O 1  dt dt  dx=  - - b I o l (  dt  - v  % - L i d X .  

Using Eq. (44), we find 

where 

Numerical results were found through a solution of the equa- 
tion. 
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