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The process of self-action of beams of highly distorted wide-spectrum waves propagating in 
nondispersive media with cubic nonlinearity is examined. It is shown that in such media 
trapezoidal sawtooth-like waves form, whose self-action is accompanied by nonlinear 
energy dissipation at shock fronts. There is a marked beam narrowing in a self-focusing medium, 
but in the focal region the amplitude increases unsubstantially. The properties of the 
nonlinear field equations for the beams are investigated, and both exact and approximate solutions 
are found. 

1. INTRODUCTION exceeds a critical value.4 Then the amplitude of any spatial 

The experimental observation of certain nonlinear phe- 
nomena in the spectra of nondispersive waves is beset with 
considerable difficulties due to the simultaneous operation of 
a large number of resonant interactions between the spectral 
components. As a result of the interactions, the spectrum gets 
enriched with a variety of harmonics and combination fre- 
quencies; these take away a considerable part of energy and 
reduce whatever effect we are interested in.' In particular, 
self-action effects occur in their "pure" form only in highly 
dispersive media, in which higher harmonics cannot interact 
resonantlv with the fundamental freauencv wave. Here. non- . , 
linearity affects only the amplitude and phase characteristics 
of the signal without actually enriching its spectrum; this 
allows one to speak of the "self-action" of a quasi- harmonic 
wave. 

Generally, however, the term self-action may be given to 
a nonlinear change in the behavior of any wave object pro- 
vided the object is quasistable, that is, the nonlinearity in- 
volved does not lead to its destruction or to its effective 
interactions with other wave entities. In this sense it is pos- 
sible to speak of the self- action of quasiharmonic signals, 
which are stable in highly dispersive media, as well as of the 
self-action of objects with marked nonlinear properties. Ex- 
amples of these latter include solitons, shock waves, and, 
typical of acoustics, periodic sawtooth perturbations and 
solitary shock pulses, whose shape is stable and asymptoti- 
cally universal for a wide class of initial signals.' 

Among other fundamental wave phenomena is listed the 
self-action of spatially modulated signals (wave beams); a 
good case in point is the self-focusing e f f e ~ t . ~  In dispersive 
media this phenomenon is described by the Schrodinger type 
equation3.4 

Here A is the amplitude of the wave of frequency w traveling 
with a speed c along the z axis coinciding with the wave 
beam axis. The Laplacian A, is taken with respect to the 
transverse coordinates x ,  y ;  y is the cubic nonlinearity co- 
efficient. It is known that Eq. (1) describes the instability of 
the initial plane wavefront in the cases when its intensity 

. . 

perturbation harmonic (perturbation being an increment to 
the plane nonlinear wave amplitude) grows exponentially as 
a function of distance z. Thus, in a self-focusing medium 
(y>O) the plane wave is unstable; it breaks down into sepa- 
rate focusing beams each carrying a power of the order of the 
critical one.5 

The propagation of waves in nondispersive media gives 
rise to a strong distortion of temporal profiles and to the 
formation of sawtooth waves of complex spectral composi- 
tion.',' The approach based on Eq. (1) is here inapplicable in 
principle and one should start with a more general equation,6 

Equation (2) describes a wave field u.  Unlike Eq. (1) for the 
amplitude A,  it contains an extra variable r= t -z/c, the 
time in the traveling coordinate system. For a correct de- 
scription of the shock fronts that form in the medium, a 
high-frequency dispersion with a coefficient 8 is included. 
Note also that Eq. (2) is similar to the equations governing 
the nonlinear acoustics of bounded beams,7 but differs from 
them in the type of nonlinearity involved. 

In acoustical problems Eq. (2) may correspond to a beam 
of shear waves in a solid8; the variable u then has a meaning 
of the vibrational velocity of material particles. In Ref. 9 it is 
shown that the occurrence of self-focusing in a cubically 
nonlinear medium should lead to a new type of surface 
waves. Finally, the field approach (2) is becoming important 
in optical problems involving the self-action of femtosecond 
laser pulses.'0 

A formal change from (2) to (1) is possible if in Eq. (2) 
one sets u =A(x,y ,z)exp(ior)+ compl. conj., S+O. How- 
ever, this approach, which is common in nonlinear optics and 
relies on an a priori assumption about the spectral composi- 
tion of the wave, often fails when applied to nondispersive 
media. 

2. PLANE WAVE IN A MEDIUM WITH CUBIC NONLINEARITY 

For a plane wave, Eq. (2) assumes the form of the modi- 
fied Burgers equation, 
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FIG. 1. 

Here we have used the nondimensional notation 

The constant uo ( w )  has the meaning of the characteristic 
amplitude (frequency) of the wave field; z l  is distance in 
units of the shock formation length z, ; r is the ratio of the 
nonlinearity (2,) and absorption (2,) scales. In what follows 
the subscript 1 on the variables z l ,  TI ,  ul  will be dropped. 

Of particular interest is the case of small T, when dissi- 
pation effects are unimportant everywhere except for the im- 
mediate vicinity of the shock fronts, steep portions of the 
profile, of duration AT-T, that form as the wave 
propagates.' For T=0 ,  the solution to Eq. (3) is written in 
terms of the implicit function 

where (P(T)= u ( 0 , ~ )  is the initial wave profile. 
Suppose that a harmonic signal T= sin T is specified at 

the input to the nonlinear medium. The process by which this 
profile becomes distorted in the medium is shown in cted in 
Fig. 1. In contrast to quadratically nonlinear media, here all 
the parts of the profile shift in one and the same (positive) 
direction parallel to the T axis. Thus, a nonlinear addition to 
the wave velocity arises, capable of producing self-focusing 
of the beams. 

In the evolution process, the wave profile (5) ceases to 
be unique. Taking into account the finite value of r makes it 
necessary to construct discontinuities in the solution (5).  
Since Eq. (3) implies the integral $;"udr=const, it follows 

that the discontinuity can be achieved, as in the solution of 
the conventional Burgers equation, by using the "equal 
area" rule.' 

However, starting at some point constructing the a cer- 
tain the profile is no longer such a trivial procedure. This 
problem has been treated in detail in Ref. 11; here we will 
only quote the main results necessary for the subsequent dis- 
cussion. 

The solution everywhere satisfies the condition u(z , r  
+ T) = - u(z, T), SO the half-periods of the wave are all dis- 
torted in the same way. For z = 1, in each of the periods two 
shock fronts begin to form, a "compression" front and a 
"rarefaction" front. Specifically, let us consider the shock 
near the point T= T (Fig. 1). Let A (z) = u(z, T,~(Z) - 0) and 
B(z) = u(z, T,(z) + 0) be the values of the field u to the left 
and to the right of the shock, and T, be the position of the 
shock on the time axis. For z =  1 we have ~ , = 3 ~ / 4  
+ 112, A = B = I/&. As the distance z is increased further, 
the jump amplitude Au=A -B grows; until z=z ,  
= 9.601, the required construction may be carried out on the 
basis of the solution (5), with the aid the "equal areas" rule. 
For z=z ,  , it turns out that A + 2B =O.  The use of the solu- 
tion (5) at distances z>z, is no longer incorrect. To illustrate 
this point, consider a step-shaped wave, or "jump" (Fig. 2). 

Let the front of the jump be at the point T= T,, and A 
and B be the values of u to the left and to the right of the 
front. The velocity drS/dz of the jump in the comoving co- 
ordinate system is found, for T+O, from Eq. (3) by means of 
the equal-areas rule': 

As to the displacement velocity of the smooth portions of the 
profile, we see from the solution (5) that it equals d r ldz  
= u2, i.e., has the values A to the left and B2 to the right of 
the shock. The jump will be stable if the smooth portions of 
the profile (Riemann waves) come running onto it from ei- 
ther side. In other words, to the left of the front the pertur- 
bations must move faster, and to the right, slower than the 
shock: B2< (A 2 + ~  B + B 2 ) / 3 6 ~  2.  This condition is equiva- 
lent to the set of inequalities (A -B)(A + 2B) >O,(B-A) 
(B+2A)cO. For the sake of definiteness, let A >O, A >B. 
Then the second inequality holds automatically, whereas the 
first yields 

If the condition (7) is not met, the initial jump is not stable; 
as the wave propagates, the jump rearranges itself in such a 

u u 4 
a A  b 

A ---------- 7- 

FIG. 2. 
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FIG. 3. 

way that to the right of the front the wave is distorted by the 
perturbations "running away" from the shock. A new shock 
front is established which satisfies the condition A + 2B = 0. 
Note that d r,/dz= B2, i.e., the perturbation just ahead of the 
shock moves with the same velocity as the shock itself (Fig. 
2b). 

The stability condition (7) may be derived in a different 
way, by considering the internal structure of the jump.'' We 
take the corresponding solution to Eq. (3) to be of the form 
u(z ,  T )  = U(O = r- C Z ) ,  where C =  dr,ldz. Integrating once 
and using the relation (6) we find 

It will be recalled that the boundary conditions are: 
U ( -  m )  = A ,  U ( +  m )  = B ,  A >B.  Equation (8)  can be inte- 
grated straightforwardly, but the structure of the solution is 
more conveniently analyzed in the phase plane ( U ,  dUld6) 
(Fig. 3). The solutions differ qualitatively for three possible 
cases for which the quantity A + 2B is positive, zero, or is 
negative. These three situations there correspond Figs. 3a, b, 
and c. 

For A + 2B > 0 (Fig.3a) there exist a solution to Eq. (8) 
which describes the structure of a shock front of width 
A T- r, the transition to the boundary values proceeding ex- 
ponentially. In the case A + 2B = 0 (Fig. 3b), the cubic poly- 
nomial on the right-hand side of Eq. (8) has a degenerate 
root U = B = -A/2, with a consequence that the transition to 
U=B proceeds not exponentially but rather with a slower 
power law. Finally, for A + 2 B < O  (Fig. 3c) none of the so- 
lutions to Eq. (8) satisfies the boundary conditions. Thus, the 
requirement for a regular shock transition leads to the in- 
equality (7). 

Let us now return to the discussion of the sinusoidal 
initial signal. Its profile is distorted in such a way that as 
A + 2BhO as z h z ,  . At large distances z>z, , according to 
Eq. (7) the quantity A + 2B cannot decrease further and the 

condition A + 2B = 0 must be satisfied.ed. The quantity B is 
maintained at the level -A12 because a new wave starts to 
"flow out" of the shock front. 

Now consider the corresponding characteristics of Eq. 
(3) (for r = 0 )  and the shock trajectory (Fig. 4). For z<z,  
the entire region (7,  Z )  is covered by characteristics origi- 
nating in the region of the initial data, the straight line 
z=0. The trajectory of the jump forms as a result of inter- 
sections and has a slope intermediate between those of the 
characteristics that intersect. For Z = Z ,  it is found that the 
characteristic approaching the jump trajectory from the right 
is a tangent. For z>z,  , the "shadow region" lying between 
the jump trajectory and this characteristic (and dashed in Fig. 
4) is not reached by any of the characteristics stemming from 
the initial data region. Further, as pointed out, the velocity of 
perturbations at the point T= T,+ 0 equals the shock velocity. 
Consequently, the characteristics stemming from the shock 
trajectory are, at each point, tangents, whereas the trajectory 
itself is the envelope of the family of these characteristics. 

The process we have described is conveniently treated as 
refraction, at the jump trajectory, of the characteristic lines 
coming from the left. If U -  is the value of u at a given 

FIG. 4. 
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characteristic, then after the refraction u changes to 
U+ = - U-12. The angle of inclination also changes discon- 
tinuously from the value d z l d r =  U I ~  to 4 K 2 .  Such a 
treatment implies that, for any z, the region (r ,z) is covered 
only by those characteristics stemming from the region of the 
initial data. 

In the case of a periodic wave, a multiple refraction of 
the characteristics takes place. For a sinusoidal initial profile, 
it proves possible to find the asymptotic waveform for z% 1 
(Ref. 11): 

where 8= r- r,(z), ~ , ~ = b  In zfr , ,  b=nl(3-2 In 2), and 
T, is a constant which cannot be predicted from an asymp- 
totic analysis. Numerical calculation yields T,= - 1.73. In 
the expressions (9), the functions U1(6) and U2(8) do not 
depend on the distance and are given by the relations 

Thus, as a result of nonlinear evolution, the sinusoidal profile 
transforms into a sawtooth one (see Fig.1). However, unlike 
quadratically nonlinear media, here the saw teeth do not have 
a triangular1 but rather a trapezoidal shape. 

The asymptotic solution (9), (10) is an exact solution of 
Eq. (3) for r = 0 .  Let us demonstrate this point. Let 
$= r,(z) be the nonlinear phase shift. Changing to the 
"traveling" time 8 =  r- fi we write Eq. (3) in the form 

We seek a solution of the form u =A(z)U(8), where A (z) is 
the wave amplitude and U(8) a function describing the tem- 
poral profile. We obtain 

from which it inevitably follows that 

Here C1 and C2 are some constants. Since 
dA ldz< 0, d +Idz> 0, these constant are positive. Integrat- 
ing Eqs. (13) we obtain 

where Ao=A(0), Go= @(O), and it is assumed that 
U(0) = 1. The profile (16) is shown in Fig. 5a. The function 
U is a two-valued function defined for 8>00 
= (C2- 1- C2  In C2)/2C1. Note that u:= C2.  Such a many- 

223 JETP 79 (2), August 1994 

FIG. 5. 

valued solution is physically meaningless, but its rising 
branch can be used to describe the sawtooth wave profile. To 
this end, let the saw interval ( -  n,0) be described by the 
function U(B), the interval (O,n), by - U(8- n ) ,  and so 
forth (see Fig. 5b). The smooth portions will be linked by 
vertical shock lines. It might seem that, in this way, one 
could construct a whole family of sawtooth solutions differ- 
ing in the ratio A :B. In reality, however, there is only one 
possibility, the one which is shown in Fig. 1 and corresponds 
toA:B=2:-1. 

Let us prove this. Let U,(8) be a sawtooth solution and 
b = BIA = U,(O+ 0). The requirement for a unique solution 
yields I b 12 Uo , that is, b 2 3 c 2 .  In other words, 

On the other hand, the jump can be stable only if 
d i , b l d z > ~ ~  or, from Eq. (13), if 

From Eqs. (17) and (18) it follows that B 2 = c y t 2  or 
b2= u;. It is precisely this case which is illustrated in Fig. 
5c. Since ~ ~ = d $ l d z ,  it follows, as discussed above, that 
BIA = - 1:2, or b =  - 112. This also implies that Uo= 112, 
i.e., 

The constant C1 is found using Eq. (16) and the condition 
U(- n )  = 112 to give 
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It is readily seen that the solution obtained, Eqs. (14)-(16), 
(19), (20), is identical to the asymptotic form given by Eqs. 
(9) and (10). 

Now write the first two of Eqs. (13) in a different form, 

where P=2C1-0.184. This formulas show that the saw- 
tooth wave experiences self-action. In fact, in the case of 
linear absorption the amplitude varies in accordance with the 
equation dAldz = - d. Comparing this form with the first 
of Eqs. (21), for the absorption coefficient we have, formally, 
that a(A ) = PA 2/2. Further, if one considers the wave veloc- 
ity c ,  then from the meaning of the quantity $ we have 
c P ' - c i l = d $ / d z ,  where c0 is the velocity of the linear 
wave (for A -+ 0). The second of Eqs. (21) implies 

Thus, in a cubically nonlinear medium with no disper- 
sion there exist waves which do not change their profile as 
they travel. These are "trapezoidal sawteeth." They suffer 
self-action associated with the nonlinear absorption 
a=  a(A) and with the nonlinear dispersion of the propaga- 
tion velocity, c = c(A). A point of fundamental importance is 
that both of these phenomena always occur simultaneously 
because both are due to one and the same nonlinearity. 

In dispersive media, in which the model (1) describes the 
process adequately, the only manifestation of self-action is 
the amplitude dependence of the wave velocity. So here self- 
action proceeds in its "pure" form. In nondispersive media, 
in parallel to self-focusing, the competing nonlinear absorp- 
tion mechanism always operates. In what follows, the impli- 
cation of this for the process of self-focusing of intensive 
wave beams is considered. 

3. SELF-ACTION OF BEAMS 

Let us consider the nonlinear equation (2). We rewrite it 
in the dimensionless notation of Eq. (4): - 

The number 

is equal to the ratio of the nonlinear length z ,  , Eq. (4), to the 
diffraction length zd= wa2/2co. It allows one to compare the 
diffraction and nonlinearity contributions to the distortion of 
the wave field. Here a is the characteristic initial beam size. 
The transverse coordinates on the right-hand side of Eq. (23) 
are normalized to the scale a .  

In discussing plane waves we have shown that nonlin- 
earity leads to the absorption and acceleration of a wave. 
Since the wave amplitude varies across the beam, the latter 
effect acts to distort the wave front. This self-refraction may 
show up in the form of self-focusing. 

Apart from nonlinear processes, Eq. (23) also describes 
diffraction, which is important in the focal region. In other 

regions of space it can often be neglected, which enables one 
to simplify the analysis by employing approximate methods. 

3.1. NONLINEAR GEOMETRICAL BEAM ACOUSTICS 

In order to go over to the description of beams in terms 
of the nonlinear geometrical acoustics (NGA) approximation 
we introduce, as we did for the plane wave case, a new 
variable 8= 7- @(r,z). In the following we will consider 
circular, axially symmetric beams, in which r is the distance 
from the axis to the observation point measured in units of 
the beam radius a .  The phase shift $, unlike the plane 
waves, now also depends on r .  Equation (23) transforms into 

Note that the right-hand side of this relation describes only 
diffraction, whereas the analogous term in Eq. (23) is respon- 
sible for both processes, the diffraction and self-refraction of 
the wave. Neglecting the right-hand side enables one to in- 
tegrate this relation with respect to 0 to give 

Equation (25) is the generalization of Eq. (11) to the beam 
case. As before, we will be interested in the sawtooth waves 

whereA is the, as yet, unknown wave amplitude and U(0) is 
the previously found trapezoidal-saw profile. We use the last 
of Eqs. (13) to obtain 

using Eqs. (19) and (20). Substituting (26) into (25) we find 

Using (27), this gives 

Thus, a pair of equations is obtained which describe the be- 
havior of the wave amplitude [transport equation (28)] and of 
the wave phase [eikonal equation (29)]. The meaning of this 

224 JETP 79 (2), August 1994 0. V. Rudenko and 0. A. Sapozhnikov 224 



system becomes clear if one introduces the angle of inci- 
dence of rays, V=(N/2)d+ldr, and the cross-sectional area 
of the ray tube, S ,  

1 d -+ V - S = S  - -(rV). 
( d t  d:) r d r  

The operator dldz+ Vdldr corresponds to the differentiation 
dldl along the acoustic ray. With this in mind, and using the 
relation (30), we write Eqs. (28) and (29) in the form 

Equation (3l)implies that the wave amplitude along the ray 
occurs for two reasons: because the ray-tube cross sectional 
area changes, and because of nonlinear absorption. Equation 
(32) indicates that the nonlinear refraction takes place: the 
angle of incidence of the ray changes in the presence of a 
transverse gradient of the wave amplitude. 

3.2. ABERRATION FREE SELF-FOCUSING 

We consider next the paraxial region with a wave front 
taken to be parabolic 

Here f(z) is a function describing, to linear approximation, 
the change in the beam width and in the amplitude of the 
wave at the beam axis.5 From Eq. (29) 

Equation (28) for the parabolic front (33) has the exact so- 
lution 

in which the function @(r)  = A  (z = 0,r) describes the initial 
transverse beam profile. Once we have the solution (35) it is 
not difficult to specify Eq. (34) from which the unknown 
function f has to be found. In particular, for the Gaussian 
beam @ = exp(-r2), Eq. (34) takes the form 

The boundary conditions 

correspond to an initial beam having (in the dimensionless 
notation) unit width and a radius of curvature R.  Equation 
(36), we note, is a complex nonlinear integrodifferential 
equation with a second derivative. Therefore it appears sur- 
prising that the Cauchy problem (36), (37) has an exact so- 
lution 

where S l , 2 = ( J m + p ) / 2 .  
The result (38) has been obtained owing to the discovery 

of a change of variables of the form 

under which Eq. (36) is invariant. According to the formulas 
(39), f (0) = 0, f(0) = f (o), and 

In Eq. (40), the boundary conditions (37) are taken onto 
account. Thus, different values of the parameter X corre- 
spond, by Eq. (40), to different curvatures of the initial wave 
front. Therefore it suffices to find only one particular solution 
to Eq. (36) and then to apply the transformation (39) to write 
an arbitrary solution satisfying, for example, the conditions 
(37) at the boundary of the nonlinear medium. 

Such a particular solution does exist: 

f (z) = [ I  + (8, + 62) .  (41) 

This is easily seen by substituting (41) into the integrodiffer- 
ential Eq. (36). Knowing the solution (41), from Eq. (40) we 
find the required parameter X = R - - S2. After this, trans- 
forming the solution (41) according to the expressions (39), 
we obtain the general result (38). 

We now turn to the analysis of the exact solution (38). It 
is seen that under the condition R 1 <  S2 the beam must col- 
lapse at the distance zSF=R/(S2R- 1). For small radii of 
curvature of the initial front of the diverging wave, when 
R-'> S2, the beam width can only increase. If at the input 
into the nonlinear medium the wave front is plane ( R + m ) ,  
the dimensionless focusing length is 

Equation (42) allows to estimate at what values of the 
number N ,  Eq. (24), appreciable self-focusing is possible. 
Note that the competing processes of nonlinear absorption 
and diffraction have spatial scales of order 1 and N-I,  re- 
spectively. The condition that ZSF, Eq. (42), be small com- 
pared to these scales leads to two inequalities 

which do not hold simultaneously. Hence the process of self- 
focusing in cubically nonlinear media with no dispersion 
cannot be important in principle. 

3.3. SELF-FOCUSING WITH DIFFRACTION 

It is clear that the shape of a wide-band signal (in par- 
ticular, of a trapezoidal sawtooth) should become distorted in 
the process of propagation since the components of the wave 
spectrum diffract differently. However, for N small the dif- 
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FIG. 7. 

FIG. 6. 

fraction effects are not large, and in the most interesting 
cases this difference may be neglected. If it is assumed that 
the spatial behavior of the higher harmonics matches the 
field at the fundamental frequency, then Eq. (36) for the 
function f should be modified by adding the term N2 to its 
right-hand side. The modified equation (36) is also invariant 
under the transformation (39). However, it has not yet been 
solved analytically because no particular solutions of the 
type (41) has been found. 

Figures 6 and 7 display the results of numerical integra- 
tion. The dashed lines 1 in Figs. 6a,b,c show the behavior of 
the beamwidth-determining function f(z) in the absence of 
diffraction [that is, the behavior described by Eq. (38)]. The 
solid lines 2 (for f )  and 3 (for the saw amplitude) are con- 
structed with account for the diffraction corrections. Figs. 6 
a,b,c correspond to increasing values N= 1oP3(a), lop2 
(b), and 10-1 (c); increasing N enhances the role of dif- 
fraction. The nondimensional self-focusing scale [recall that 
the dimensional scale was normalized to the shock formation 
length z,, Eq. (4)] approximately equals 264 (Fig. 6a), 32 
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(Fig. 6b), and 6 (Fig. 6c). Thus, the characteristic self- 
focusing length is many times nonlinear length z, ; hence the 
self-focusing definitely occurs at the stage of strongly pro- 
nounced nonlinear wave-profile distortions. 

The curves labeled 1 in Fig. 6 are constructed neglecting 
diffraction. They describe the collapse, the process in which 
the width of the beam drops to zero. The curves labeled 2 
contain the diffraction "bottleneck": the beam narrows to its 
minimum, which is just beyond the nonlinear focus, and then 
broadens. 

Of primary interest is the behavior of the amplitude. At 
short distances it decreases due to the nonlinear dissipation 
of energy at the fronts of the sawtooth wave. After this the 
nonlinear self-focusing slows the process down and can even 
amplify the wave a little in the focal region. Beyond the 
focus the beam becomes divergent; due to the divergence and 
nonlinear dissipation, the amplitude of the wave is reduced. 

As can be seen from the analysis of the curves in Fig. 6, 
in the absence of dispersion the cubic nonlinearity does not 
lead to any essential growth of the amplitude. Even though 
the beam is markedly narrowed and has a nonlinear constric- 
tion in it, the amplification factor is not large because of the 
fundamentally unavoidable absorption occurring at the shock 
front of the saw. 

Figure 7 is represented the dependence on the number N 
of the maximum amplitude (solid line) and of the distance at 
which the maximum is reached (dashed line). The maximum 
focus value, A,,,=1.65, occurs at N z 0 . 0 6  

3.4. INVARIANCE OF EQ. (23) UNDER A TRANSFORMATION 
THAT CHANGES THE CURVATURE ON THE FRONT 

The fact that Eq. (36) for the beam width f under the 
change of variables (39) follows the more general symmetry 
properties of the initial equation (23). In fact, when we apply 
the transformation 

r 
r = -  I I=u( l+Az) .  

1+Xz ' (44) 
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Equation (23) becomes 

Here 

It is seen that in the absence of dissipation, i.e., for 
T = f'= 0, Eq. (23) is not changed. 

Thus, given but one of the solutions i to Eq. (23), [or 
(45)] for beams in cubically nonlinear nondispersive media, 
it is possible to construct a whole family of new solutions 

right-hand side of Eq. (49), one must employ the solutions to 
Eq. (8), which describe the structure of the shock fronts. The 
result of the averaging turns out to be independent of the 
dissipation T : 

differing in the value of the parameter X, that is, in the initial 
wave front curvature. 

3.5. EQUATIONS FOR THE AVERAGE INTENSITY 

In describing the beam in Secs. 3.1 through 3.3, we used 
the fact that the time profile is stationary and represents a 
trapezoidal sawtooth (Fig. 1) with an "amplitude" depends 
on position. 

An alternative description is possible, based on the equa- 
tions for the intensity which are obtained by averaging over 
the wave period. This approach possesses greater generality 
and is not limited to quasistationary profiles alone. 

In the NGA approximation (see Sec. 3.1), Eq. (23) yields 
a pair of equations, 

(48) 

Here the overbar denotes a period average. Note that Eq. (47) 
represents the eikonal equation, and Eq. (48), of the transport 
equation. However, Eq. (48) contains the timelike variable 8; 
it differs from ordinary transport equations and may be 
called the modified Burgers equation.' 

Multiply Eq. (48) by u and average the resulting relation 
over the period. For the average intensity J=  i2 we have 

(49) 

The right-hand side of Eq. (49) describes wave absorption 
due to dissipative and nonlinear effects. In order to calculate 
it one needs to know the wave profile shape. For ideal media 
(r-+O), in the region prior to the shock formation the right- 
hand side of Eq. (49) equals zero (both for a harmonic signal 
near the boundary z =  0 and for a strongly distorted profile 
for distances up to z = 1). 

In the case of discontinuous waves (z> I), nonlinear ab- 
sorption must be taken into account even in ideal media 
since at steep fronts d l d e - - ~ - l .  In order to calculate the 

where v is a coefficient dependent on the shape of the pro- 
file. 

Thus, the system of equations for the average intensity 
takes the form 

dJ d 1 
-+ - (JV) + - JV= - V J ~ ,  
dz dr r 

The variable V= (N/2)d$ldr (the angle of incidence of the 
rays) has already been used in Eqs. (30) and (31). 

Where there are no discontinuities the right-hand side of 
Eq. (50) is equal to zero. In the general case, when the linear 
and nonlinear absorption mechanisms are both involved, the 
right-hand side of Eq. (51) will be a more complex function 
of J and z (which, however, is amenable to calculation for 
many situations of interest). 

When there are no shocks and the medium has no dissi- 
pative properties, the system (51), (52) is identical to the 
well-studied equations of aberrational optical 
s e l f - f o ~ u s i n ~ . ~ ~ ~  As is known, these admit an exact solution 
which predicts an intersection of the rays at distances 
z>N-"~.  The conditions that this length be small compared 
to the shock formation and diffraction scales (1 and N-'  in 
the dimensionless notation) are contradictory, thus proving 
self- focusing to be impossible for smooth profiles (z< 1). 

With the substitution J=  1/B, Eq. (51) reduces to a lin- 
ear equation for the new variable, 

which can be solved exactly. In the paraxial approximation, 
the solution for the average intensity J has the form 

and Eq. (36), which we have discussed in Sec. 3.2., follows 
for the function f .  

3.6. INVARIANTS OF MOTION AND THE SELF-FOCUSING 
PROCESS 

It is useful to remember that in the absence of dissipation 
( r  = 0) the initial equation (23) has the following integrals: 

dIl,21dz= 0. Here dr, = dxdy, d w l d ~ =  u. 
The process of change of the beam width can be de- 

scribed using the (u2-weighted) "average," over the cross 
section and time, of the square of its radius, 
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Differentiating Eq. (56), from Eqs. (55) and (23) we obtain 

This equation is readily integrated to give 

The result (58) allows one to determine the position of the 
focus, at which ( r f )+0.  

In particular, for a Gaussian beam of harmonic waves, 
u = exp(- 2) sin T, we have I I = ,rr2/2, I2 = ,rr2( 1 - l/8N), and 

From this, for the dimensionless self-focusing length we 
have the expression 

It is seen that self-focusing occurs only for N <  118, when the 
shock formation scale is at least a factor 8 less than the 
diffraction length. The optimal regime corresponds to 
N =  1/16, when zs,= 16. The latest data are consistent with 
the results of numerical integration given in Sec. 3.3. 

Thus, self-focusing occurs at best over a distance of 
many times the length z, . This means that the beam cannot 
collapse before shock fronts have formed. We had already 
reached a similar conclusion back in Sec. 3.5. 

This paper is devoted to one of the fundamental prob- 
lems in the theory of nonlinear waves. A possible application 
is the self- focusing of sound, whose feasibility was first 
indicated in Ref. 12. Later, the effect of thermal self-action 
of beams was observed in Refs. 13 and 14 in highly viscous 
liquids, where it bears a close resemblance to the light self- 
focusing effect.'x3 However, in the most important and most 
typical case of a medium with weak sound absorption, shock 
waves form and self-action processes operate differently. In- 
vestigations of the inertial (thermal) self-action of sawtooth 
waves (Ref.15, theory; Ref. 16, experiment) have confirmed 
this observation. As to the inertialess self-action of discon- 
tinuous waves, which in nondispersive media is only pos- 
sible in the presence of cubic nonlinearity (see Ref. I), ours 
is the first investigation into the subject. 

We have limited consideration to self-focusing media, to 
which correspond to positive values of the constant Eqs.(l) 
and (2). The case y<O (defocusing media), while less inter- 
esting physically is of greater practical value. Thus, the ther- 
mal defocusing of sawtooth waves often is a primary cause 
for the reduction in the maximum value of the field in un- 
derwater sound focusing,15 whereas the self-refraction of 
shock pulses causes the peak pressures in the focus.17 These 
phenomena have been observed repeatedly in the operation 
of high- power acoustic systems in technological and medi- 

cal applications.18~19 Therefore the self-defocusing and self- 
refracting of intensive waves in nondispersive media deserve 
a separate analysis that would take us beyond the scope of 
the present paper. 

The approaches we have developed may prove useful in 
describing self-action in media with weak dispersion (for ex- 
ample, for ultrashot light pulses). Dispersion should gener- 
ally lead to an additional broadening of the shock front thus 
reducing nonlinear losses. For example, in Eq. (36) the co- 
efficient p should decrease, whereas N  will retain its value. 
As a result, conditions for self-focusing to occur will be 
more favorable. This, however, is a general statement; to 
obtain specific estimates, new independent studies are 
needed. 

In summary, then, a study of self-focusing nondispersive 
beams in nonlinear media has been made which reveals fun- 
damental departure from the familiar results for waves in 
dispersive media. The resonant interaction between numer- 
ous harmonics, and shock front formation in the wave pro- 
file, call for a field description on the basis of the modified 
Khokhlov-Zabolotskaya equations. As the analysis of the 
equations has shown, the self-focusing process develops over 
lengths well in excess of the shock formation scale; the wave 
profile having a trapezoidal sawtooth shape, for which the 
inclusion of nonlinear damping is crucial even for an ideal 
nondissipative medium. There is competition between two 
processes, self-focusing and damping, both generated by the 
same nonlinearity. As a result, the width of the beam may be 
reduced substantially while the amplitude of the sawtooth 
increases little. 

Also, a number of remarkable properties of the field 
equations that govern the beam uations have been found; 
special methods of treating them for highly distorted, essen- 
tially nonharmonic waves have been developed, and exact 
and asymptotic solutions obtained. It is believed that the uni- 
versality of the models considered will make it possible to 
employ the above results in solving a wide variety of diverse 
problems in wave physics. 

The work is supported by the Russian Fundamental Re- 
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