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The evolution of the nonlinear differential-difference equations modeling the operation of 
laser systems controlled by external delayed feedback has been reduced to the dynamics of 
analytically determined finite-dimensional mappings. The existence of a hierarchy of 
periodic multistable states of various structures has been demonstrated. Complex temporal 
structures, viz., metastable chaos, intermittency, and quasiperiodicity, have been 
found as a result of the bifurcation of many-dimensional mappings. 

1. INTRODUCTION 

Various delayed-feedback loops appear naturally when 
sources of optical coherent radiation are included in com- 
plex electronic networks and can be intentionally created 
for the purposeful regulation of the spatial and temporal 
state of a system. Some simple examples are provided by 
hybrid and completely optical bistable resonator  device^,"^ 
an external-cavity semiconductor laser,3 and lasers with 
electro-optical parameter  modulator^.^^ 

The differential-difference equations describing such 
devices exhibit nontrivial dynamics, particularly high- 
dimensional dynamic chaos and multistability. lo The latter 
is known to be a fundamental property of the basic struc- 
tural elements of an optical computer and is therefore of 
great practical importance. From the general theoretical 
standpoint their investigation is important for understand- 
ing the relationship between the discrete and continuous 
approaches to describing dynamic phenomena and for re- 
vealing the general laws shaping the complex dynamics in 
infinite-dimensional systems with a delaying argument. 

In the present study we considered some important 
classes of nonlinear differential-difference equations, which 
are basic equations in the theory of laser systems. The 
corresponding models were based on single-mode rate 
equations for lasers with electro-optical loss modulators in 
the cavity1','* and in the pumping,'3*'4 which employ feed- 
back with an optical delay loop. The investigative proce- 
dure was based on the asymptotic method developed in 
Refs. 15 and 16 for studying nonlocal irregular oscillations. 
The use of this method is allowed by the presence of a large 
parameter in the models considered below. Ultimately, it is 
possible to reduce the original problem of the dynamics of 
a continuous temporal flux in an infinite phase space to a 
problem of the dynamics of finite-dimensional mappings 
that can be determined analytically. It is possible to reveal 
a set of multistable, structurally different periodic regimes, 
to obtain their asymptotic forms, and to determine their 
domains in the parameter space and in the phase space of 
initial conditions. 

It is important to note that the method developed in 

this paper is fairly effective and quite general. For example, 
it was used to investigate relaxational oscillations in radio- 
physical problems in Refs. 17-19, to study the dynamics of 
a model of a nuclear reactor in Ref. 20, and to explore 
some important problems in mathematical economics, 
medicine, and chemistry in Refs. 15, 16, and 21-23. 

We specially stress the important role of the analytical 
equations for complex oscillatory regimes that can be ob- 
tained in the problems considered below. They not only 
provide a good approximation for real values of the phys- 
ical parameters, but also make it possible to optimize the 
parameters of the oscillations on the same basis. In addi- 
tion, owing to the highly relaxational character of the so- 
lutions, reliable numerical investigations cannot be per- 
formed even with the aid of modern computers. In this 
respect asymptotic formulas are irreplaceable. 

We begin by studying the relaxational auto-oscillations 
in the system of single-mode rate equations 

Such equations model the dynamics of the output of a 
laser with a nonlinear element such as a Pockels cell, 
whose losses increase with increasing intensity of the laser 
radiation passing through the external feedback loop. They 
were first proposed in Refs. 24 and 25 for the purpose of 
determining the conditions for suppressing peaks of free 
generation with the aid of negative feedback. 

The variables and parameters in ( 1.1) have simple 
physical meanings: u is the intensity of the laser radiation 
normalized to the saturation intensity of the radiation, the 
value of y is proportional to the gain of the active medium, 
A is the ratio of the unsaturated gain to the loss coefficient, 
which does not depend on the radiation intensity, a char- 
acterizes the feedback depth, and v is the intracavity radi- 
ation damping rate in terms of the population-inversion 
relaxation rate. The current time t and the delay time r due 
to passage of the radiation through the feedback loop are 
normalized to the population-inversion relaxation time, E is 
proportional to the intensity of the radiation from outside 
sources, particularly the noise radiation of the same direc- 
tion and frequency as the radiation generated. Eqs. (1.1) 
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hold when we consider lasing regimes with times for vari- 
ation of the output characteristics that do not significantly 
exceed the round trip time of the radiation in the cavity. 

The regions of stability and instability of an equilib- 
rium state were determined in Refs. 26 and 27 on the basis 
of linear analysis. The numerical solution in regions of 
instability showed that periodic pulsing of the radiation 
develops in the system. For some laser parameters the sys- 
tem displays a hierarchy of multistable periodic states 
(which oscillate slowly and rapidly) and a hysteretic de- 
pendence of the pulsation period and amplitude as the de- 
lay time T increases. Under the optimal parameters for the 
realization of such multistability, the population-inversion 
relaxation rate D and the intracavity radiation damping 
rate Vpk are of the same order, and high pumping levels 
and smaller intracavity losses are possible. For example, in 
a gas laser with an intracavity radiation damping rate 
Vpk= 5 x lo6 s- ' and a population-inversion relaxation 
rate ~ = 1 . 0 5 ~  lo7 s-' we obtain v=0.952, A=4.2, 
A=47.6. In a dye laser with Vpk= D = ~ x  lo8 s-' the 
possible parameters of the system are u=2, a =0.5, and 
A =  100. In a rare-earth laser with Vpk= 10' s-' and 
D= 1.1 X lo6 s- ' these parameters can have the values 
u=36.364, a=0.045, and A=2273.73. Thus, the phenom- 
enon of multistability can occur for A> 1. 

In the case of solid-state lasers, for example, a ruby 
laser with a population-inversion relaxation rate D =  1800 
s-' and an intracavity radiation damping rate Vpk= lo8 
s-', the relationship between the parameters in Eqs. ( 1.1) 
is different: v=2.22 X lo5, a=0.004, and A=6.67. Here the 
large parameters is u %  1. The numerical solution showed 
that only a slowly oscillating solution is realized in this 
case. This is also confirmed by experimental investigations 
of a ruby laser with negative feedba~k.~  When the delay 
time was T=  100 nsec, the laser output had the form of a 
sequence of regular pulses with a duration from 0.1 to 2 ps 
(depending on A), a repetition time equal to 15-50 ps (i.e., 
the period of the auto-oscillations was - 100-500 T), and 
an intensity an order of magnitude greater than the inten- 
sity of the peaks of free generation. 

The important role of E, which is proportional to the 
intensity of the radiation from external illumination, was 
also revealed numerically. If a regime of periodic pulses of 
stimulated emission is realized, external illumination of 
even weak amplitude (EZ  10-~-10-~, i.e., on the level of 
the intensity of the noise radiation of the same direction 
and frequency as the radiation generated) causes signifi- 
cant shortening of the pulsation period in comparison with 
the solutions when E=O. 

It is technically convenient to regulate the lasing in a 
semiconductor laser by modulating the pump current 
through a feedback 1 0 o ~ : ~ ' ~  

Such an optoelectronic system can serve as a source of 
short pulses and can be employed in optical signal trans- 
mission and processing systems. Short light pulses, whose 

period correlates with the delay time in the feedback loop 
and varies abruptly as the constant component of the in- 
jection current is swept, have been obtained 
experimentally .779 

The variables and parameters in (1.2) have the same 
meaning as in ( 1.1 ), f (y) is a positive, monotonically in- 
creasing function, which characterizes the dependence of 
the gain on the carrier inversion y, and the relaxation rate 
of the absorption coefficient y > 0. A simple case that is 
frequently used in practice is a linear dependence with 
y = 1 and f (y) =y. Other alternatives, which take into ac- 
count various processes in the working zones of the semi- 
conductor, were presented, for example, in Ref. 29. Opto- 
electronic feedback is assumed to be infinitely high-pass, 
i.e., to have an unlimited bandwidth, and may be repre- 
sented by the term a u  (t-T). 

In a real experiment the bandwidth P of the feedback 
loop is limited. This situation reduces the number of de- 
grees of freedom that can be introduced by feedback from 
cc to N = ~ T P  (Refs. 8 and 29) and can significantly alter 
the dynamics of the system. To take into account the lim- 
ited bandwidth of the feedback loop in our case, instead of 
( 1.2) we should treat the equations8 

where r is the nonlinearity coefficient of the filter and z( t )  
is proportional to the voltage in the feedback loop. In the 
limit p- co (1.3) takes on the form of (1.2) with a feed- 
back depth constant a -ar .  

Many phenomena pertaining to the dynamics of injec- 
tion diodes, for example, self-pulsing, have been explained 
on the basis of the concept of a two-component laser. Then, 
instead of (1.2) we should consider the system 

where ko is the saturated value of the absorption coefficient 
k and y is relaxation rate of the absorption coefficient in 
terms of the population-inversion relaxation rate. When 
different parameters are introduced, these equations can 
model the spatially nonuniform distribution of the injec- 
tion current, the refractive index, the characteristics of the 
band structure, the presence of impurities with saturable 
absorption, e t ~ . ~ '  

We note that the limited bandwidth of the feedback 
loop and the presence of a saturable absorber can be taken 
into account in a similar manner in the problem of the 
modulation of intracavity losses [Eqs. ( 1.1 )]. 

In the case of semiconductor lasers, A, T, and a usually 
have values of order unity, and v-  lo3. The problem of 
investigating the asymptotes of steady-state regimes of sys- 
tems ( 1.2)-( 1.4) for u s  1 naturally arises. One distinctive 
feature of these equations is the fact that the "degenera- 
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FIG. 1. Initial functions $(s) for solu- 
tions of the system (1.1) of various 
structure. 

3 : .  ---- 1" 
- r  f 0 :+< r l,=r+q r,=?r+a -r 0 t?= r+r(c) 

cies" (which we obtain by dividing the first equation by v 
and treating the case of u-'=O) do not provide informa- 
tion on the dynamics as v+  c c ~ .  Consequently, the ampli- 
tudes of the oscillations increase without bound, and the 
duration of the peaks of u( t )  tends to zero. Therefore, 
when ~ $ 1 ,  we shall consider regimes consisting of short 
pulses. 

Let us consider the investigative method. The phase 
space of the systems considered is the direct product of a 
Banach space C~-T,,l of functions continuous in [-T,O] by 
the real line R', i.e., values of the functions u from CL-T,ol 
and the values y ~ ~ '  are assigned as initial conditions. Us- 
ing arguments of a physical nature, we separate the (fairly 
broad) set S({), which depends on the vector parameter {, 
and we consider solutions with initial conditions from this 
set. Uniform asymptotic approximations of all such solu- 
tions can be constructed, and it can be shown that after a 

ture with alternating peaks (of finite duration) and spikes 
(whose duration is very short when il is large) of radiation 
intensity. In Sec. 5 we construct periodic solutions of sys- 
tem ( 1.1 ) for u $ 1. In Sec. 6 we present mappings which 
appear in the problem ( 1.2) for u $1 and E = 0 and show 
that their bifurcation results in the appearance of complex 
temporal structures, i.e., metastable chaos and intermit- 
tency. In Sec. 7 we take into account some important phys- 
ical factors affecting a real experiment: the presence of a 
high level of spontaneous radiation in the laser mode, the 
limited bandwidth of the feedback loop, and the presence 
of impurities with saturable absorption. 

2. Periodic solutions of the system (1.1) for 1 & 1  and E=O 

certain time interval these solutions again belong to S. A Let us first examine the simplest solutions of Eqs. 
sequencing operator, which maps a function from S ( f )  ( 1.1 ) , in which there can be no more than one peak (raised 
Onto a that is S(5)? is defined. segment) in an interval with a length equal to the delay T. 

It turns out that the properties of this sequencing operator Such solutions are termed slowly oscillating. 
are assigned in the principal finite-dimensional mapping We determine the set of initial conditions under which 
5=g(O.  Thus, a fixed point of the mapping corres~onds to the problem will be solved. Let Sot Cl T,ol be the set of 
a fixed point of the sequencing operator, and the latter functions q(s) having the properties (Fig. la)  
corresponds to a periodic solution of the original system of 
the same stability. We note that the asymptotic integration 
method makes it possible to obtain uniform asymptotic 
formulas for steady-state regimes with arbitrary accuracy. 
These formulas, however, are excessively cumbersome; 
therefore, we restrict ourselves to a study of only the prin- 
cipal terms of the solution asymptotic form. The method 
used was described in detail in Refs. 31-33. 

The material of this paper is organized in the following 
manner. In Secs. 2 4  we study relaxational solutions of 
system ( 1.1 ) for il) 1. In Sec. 2 we show that the evolution 
of the slowly oscillating solutions of the system ( 1.1 ) in the 
absence of outside radiation sources (E=O) is described by 
a one-dimensional nonlinear mapping, while the evolution 
of the rapidly oscillating solutions with m > l  pulses in an 
interval of duration T is described by a (2m+ 1)- 
dimensional mapping. In Sec. 3 we obtain finite- 
dimensional mappings for E > 0 and show that the rapidly 
oscillating structures are quasistable. In Sec. 4 we discuss 
the question of the existence of solutions of complex struc- 

The level of population inversion at the initial moment 
y(O)=lc,  and c t ( 0 , l ) .  

From the standpoint of physical realization, this is the 
simplest initial condition corresponding to an intensity of 
the initial external illumination at the noise level (or its 
total absence) and to the selection of t=O as the time when 
it reaches u (0) = 1. 

We solve the problem by successive integration in 
steps. In the interval t~ [&TI, where 6 is an arbitrary, fairly 
small constant, which does not depend on A, Eqs. ( 1.1) 
with initial conditions (2.1 ) can be reduced to a system of 
singularly perturbed equations: 
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In all cases there is a stable fixed point at co=g(co), 
g'(co) < 1. We define the sequencing operator II 

where 

The terms which are much smaller than p are included 
here and below in o( 1). Equations (2.2) satisfy the condi- 
tions of Tikhonov's theorem;34 therefore, their solutions at 
t ~ [ S , r ]  will tend to the solution of a degenerate system 
when p = 0: 

A boundary layer which reconciles the initial conditions 
appears in the interval te[O,S]. In the second step, ~ E [ T  
+6,2~] ,  the asymptotic evaluations give the equalities 

which hold under the condition 

A(t,c)<O for all t ~ ( O , r ] ,  (2.5) 

where 

is satisfied. 
We now seek the solution of Eqs. ( 1.1 ) in the interval 

te[2r,t2($,c)], where t2 is the second positive root of the 
equation u ( t )  = 1. For t > 27 the formula for y(  t) from 
(2.4) and u(t-7) = o ( l )  hold as long as u( t )  is suffi- 
ciently small; therefore, 

Hence we obtain t2=2r+b(c)+o(1) ,  where b(c) is a root 
of 

The solution is plotted schematically in Fig. la. It follows 
from the asymptotic formulas obtained [(2.3)-(2.7)] that 
the problem of the further construction of the asymptotic 
forms of the solution of u( t)  and y( t )  at t >  t2 reduces to 
the original problem with the replacement of c by F, where 

The properties of the mapping g(c) are the principal 
factor determining the character of the solution of the orig- 
inal infinite system. Figures 2a and 2b present plots of this 
mapping for the laser parameters given in the introduction. 

and we note that it maps the initial set S ( c )  onto itself, 
since u(t2+s,c,$) €SO and y(t2,c,$) =Ac. It follows from 
this and general theorems of functional analysis3' that 
there exists a fixed point of II corresponding to an attractor 
in the phase space of system ( 1. I ) ,  i.e., to a stable limit 
cycle with a period T=2r+b(c0)  +o( 1) and asymptotic 
characteristics that can be determined from (2.3 )-(2.7) 
when c=co. Condition (2.5) demarcates the domain of 
this attractor in the parameter space. The solution obtained 
is in good agreement with the results of numerical analysis. 

Figures 2c and 2e present plots of A(7,c) for parame- 
ters characteristic of a gas laser and a dye laser. In the 
former case it is negative everywhere, and a slowly oscil- 
lating solution exists for all T >  0. In the dye laser violation 
of condition (2.5) results in the appearance of one or sev- 
eral "spikes" of radiation intensity in an interval of dura- 
tion 7, and a new set of initial conditions, which assigns 
new rapidly oscillating structures, thus forms. Such a set 
can also be assigned directly from physical arguments as 
the initial intensity of the external illumination in the form 
of several fairly powerful pulses in an interval of duration 
7. 

We select the initial conditions for rapidly oscillating 
solutions in the following manner. Let S ( q )  
x [q= ( q l  ,p2,...,qm)] be the set of $(s) that are continu- 
ous and positive in [-7,0] and have the following proper- 
ties: 

-7+'P1 -7+P1+'92+p3 I-, *(s)ds 

+ q2,] satisfies the conditions AR - N 

Such a set assigns the initial radiation intensity in the form 
of m pulses of intensity -d, and duration p2, separated by 
the intervals q2,+ ( j = 1, ..., m), as shown in Fig. lb. More 
detailed evaluations for d, were presented in Ref. 11. 

We construct the asymptotic (for il> 1) solutions of 
system (1.1) with initial conditions from S ( q )  and y(0)  
=Ac(p). In the interval te[S,ql] we have 
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where c(p)  = 1 -exp( -r+pl +p2). We shall assume be- 
low that a condition of the form (2.5) is satisfied for all 
t~ [0,p2]. Then for t~ ( p l  ,p, +p2] we have 

~(t ,$)=il( l -exp(pl- t)  +o ( l ) )  

and for t ~ [ p ,  +p2,t2] [t2 is the second positive root of the 
equation u ( t )  = 1] 

where 

Hence we determine t2+pl  +p2+ b(c) as a root of the 
equation p (t2 ,s,p) =O. 

When the conditions (for each iteration) 

FIG. 2. The mapping (2.8) (a,b) and the functions 
A(t,c) and Af(t,c) for u=0.952 (a,c,d), 2 (b,e,f) and 
a=0.5.  

are satisfied, the sequencing operator II transforms 
($(s),Ac) into an element of the same type 

and to determine ,q2,...,Q)2,,,) and F to o( 1) we ob- 
tain the relations 

The dynamics of this (2m + 1)-dimensional mapping spec- 
ifies the structure of the rapidly oscillating attractors of 
Eqs. ( 1.1 ) for E = 0 and A fairly large. 
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3. SPECIAL FEATURES OF LASING UNDER A WEAK 
EXTERNAL INFLUENCE 

If there is weak external illumination or noise of the 
same direction and frequency as the radiation generated in 
the system, then E >  0 holds, and the slowly oscillating 
solution takes the following asymptotic form. In the first 
step, t~ (O,T], Eqs. (2.3) hold. In the second step, 
t €  ( T , ~ T ) ,  we obtain 

when the condition 

is satisfied for all t ~ ( 0 , ~ ] .  Integration in the interval 
t~ (2r,t2) reveals that t2(4,c) -27 as A- W .  Hence, the 
system has a stable periodic solution with a period T = ~ T  
+o( 1). We note that the pulsing period is shortened in 
comparison to the case of E = O  and that the value of the 
minimum radiation intensity increases from - exp ( -AN) 
to -~ j l - l .  

The condition k(t ,c)  < 0  is stronger than A(t,c) <O 
(Figs. 2d and 2f); therefore, rapidly oscillating regimes are 
more characteristic of Eqs. ( 1.1 ) with E > 0. When they are 
constructed, we obtain the mappings 

The mappings (3.2) can be written for the most part [ne- 
glecting terms o( l ) ]  in the form of a single difference equa- 
tion of order 2m for z ~ = ( ~ I , ~ ,  which has the solution 

where the vj are complex constants specified by the 
initial conditions and the p j  are the roots of the character- 
istic equation pm+pm-l+.. .+p+l=O. Hence pi 
=exp[2nij/(2m+ I)], and after n iterations of the opera- 
tor II, we have 

where the ~ , k  differ from one another by an integral mul- 
tiple defined by 27~/(2m + l ) . 

For E > 0 the rapidly oscillating solution of ( 1.1 ) has 
the form of a sequence of 2m+ 1 pulses with a period 
T Z ~ T ,  a duration =r/(2m + 1 ) (when yjk and K ~ ~ )  are 
small, and an interval between pulses ~ ~ / ( 2 r n  + 1 ). The 
intensity of these pulses depends weakly on the intensity of 
the initial pulses and, after several iterations, is determined 
from (2.3), in which c=com= 1 -exp[-~/(2m+ I)]; 
therefore, the basin of attraction of such solutions is fairly 
broad. It is important to note that since I p j  I = 1, the map- 
ping for zm is not coarse. This means that the terms of 
order o(1) appearing in (3.2) can accumulate as the num- 

FIG. 3. Numerical integration of Eqs. (1.1): u=0.952, a = 4 . 2 ,  ~ = 5 ,  
L=47 ,  &=0.1 ( a x )  and v = 2 ,  a = 0 . 5 ,  ~ = 1 . 5 ,  L=100,  E=O (d) .  

ber of iterations increases and the solutions of such a struc- 
ture can vanish at (asymptotically) large times, small T, 
and large m. 

Rapidly oscillating solutions exist when E >  0 holds, if 
the following conditions are satisfied: 

A(t,cOm) < 0, 

Hence it follows that if (3.3) is true for m=O, it certainly 
holds for m = 1, 2, ... . Therefore, the number of limit cycles 
with periods T,z 27/(2m + 1 ) in the phase space of the 
system increases without bound as A- W ,  i.e., multistabil- 
ity is realized. Figures 3a-3c present examples of numeri- 
cal solutions of system ( 1.1 ) for parameters that are char- 
acteristic of a gas laser under various initial conditions. 
When the delay time in the feedback loop T=  5, five steady- 
state lasing regimes with pulse repetition periods 27/(2m 
+ 1 ) , where m = 0, 1 ,. . .,4, are discovered. 
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The solutions obtained as a result of the nonlinear 
analysis exist at each value of 7, if A is fairly large. The 
more closely 7 approaches 0 or co, the higher is the min- 
imal value of A = A 0 ( r )  at which such cycles exist. As T 

increases at a fixed A) 1, cycles with a period of 27 are born 
first, then cycles with a period of 2 ~ / 3  appear, and so forth. 
Similarly, the cycles with a period of 27 die first, then the 
cycles with a period of 2 ~ / 3  die, and so forth. As has been 
shown, the cycles can also die when conditions (3.3) are 
violated. While a cycle which has died can be restored 
under the first scenario when A increases, this does not 
occur under the second scenario. 

4. DYNAMICS OF THE SOLUTIONS OF SYSTEM (1.1) WITH 
"SPIKES" 

When the system ( 1.1 ) was investigated numerically, 
regimes with a qualitatively different structure were discov- 
ered along with the slowly and rapidly oscillating attrac- 
tors described above. An example of such a solution is 
presented in Fig. 3d. It exists in the phase space simulta- 
neously with the slowly oscillating solution. Besides the 
radiation peaks with a finite duration (which does not de- 
pend on A), it has spikes, which are characterized by the 
fact that the values of u vary from unity to asymptotically 
large values and drop back down to unity during an as- 
ymptotically short (as A - ca ) time interval. We shall show 
below that the dynamics of such complex attractors is de- 
scribed by a finite-dimensional mapping. 

Let us first consider the simplest structure for E=O, in 
which the peaks and spikes alternate in a strict pattern. 

We define the set of initial conditions such that the 
corresponding solution would begin a peak at t= 0 and that 
a spike of radiation intensity would appear before it at a 
certain S = { E  ( -r,O) (see Fig. lc). We use So((,p) to 
denote the set of continuous positive functions $(s), where 
SE[-7,0], which have one spike at ( of duration A and 
energy p and satisfy the conditions (Fig. lc) 

We present the asymptotic forms of the solutions as 
A +  co with the initial conditions u(s) eSo((,p) and y(0)  
=Ac, where C E  (0, l ) .  In the interval t e  (O,T] we have 

In the interval t~ (T,T+ 71 we obtain 

y(t,$) =A[1-exp(.r-t)+0(1)1. 

Here 

and 7 is determined as the first positive root of the equation 
R (q,C,c,p) = 0. If no such root exists, we set 7 = 0. The 
energy z of the new short pulse at the time T+T is found 
from the equation 

Assuming that u(t)  is asymptotically small in the interval 
t~ [~+7+6,27],  we obtain 

Our assumption is valid, if we require that 

R, (t,t,c,p) < 0, when t~ ( T + T , ~ T I .  (4.2) 

Condition (4.2) is similar to condition (2.8) for slowly 
oscillating attractors and demarcates regions in parameter 
space where regimes with successively alternating intensity 
peaks and spikes can occur. 

In the interval t ~ [ 2 ~ , 2 r + a ]  we have 

where 

Therefore, a will asymptotically coincide with a root of the 
equation pl(2r+a,g,c,p) =O. We introduce a sequencing 
operator according to the rule 

Under condition (4.2) we have 

where 

Thus, the problem of constructing the asymptotic 
forms of the solutions of Eqs. ( 1.1 ) with initial conditions 
(4.1) reduces to the original problem with (, p, and c 
replaced by f, jj, and F, respectively. The evolution of these 
solutions is determined by iterations of n, and the latter 
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are given by the three-dimensional mapping (4.3). When 
conditions (4.2) are satisfied and A is sufficiently large, the 
steady-state trajectories of this mapping correspond to a 
rough steady-state regime of system ( 1.1 ) of corresponding 
structure. 

When there is external illumination ( E  > 0),  the three- 
dimensional mapping (4.3) reduces to the two- 
dimensional mapping 

where 

is a root of the equation R' (+,c,p) = 0, a- 0, %id 
c=F(6,p).  

Synthesizing the approaches to constructing the set 
So((,p) and the set of initial conditions for the rapidly 
oscillating solutions, we can obtain the conditions for the 
existence of attractors which assign solutions with several 
peaks and spikes during an interval of duration T, and we 
can write down the corresponding finite-dimensional map- 
ping corresponding to the dynamics of these attractors. 

The nonlinear many-dimensional mappings obtained 
above can be fairly complicated and have rich dynamics.36 
For example, in the case of the existence of several attrac- 
tors for a mapping, multistability of a different type will be 
observed. The coexistence of different attractors (differing 
with respect to the amplitude and duration of the peaks 
and spikes) is then possible, but they have the same struc- 
ture (i.e., the same number of peaks and spikes in a pe- 
riod ) . 

5. PERIODIC SOLUTIONS OF THE SYSTEM (1.1) FOR v% 1, 
e=O 

As was pointed out in the introduction, in solid-state 
lasers, for example, a ruby laser, the intracavity radiation 
damping rate greatly exceeds the population-inversion re- 
laxation rate. In this case, which is important for practical 
applications, the large parameter in Eqs. ( 1.1 ) is TV % 1, 
with ~ ( 1 .  Let us consider the slowly oscillating solutions 
in such a situation with the initial conditions 

The functions $(s) satisfy the conditions (see Fig. Id) 

Under the initial conditions selected there is an abrupt 
rise in the radiation intensity [u(t) % 1] in the interval 
t~ [O,tl], and the pulse duration satisfies t1 -0 as v- m. We 
determine the energy in the pulse p from the equation 

We next integrate system (1.1), noting that, owing to the 
negative character of the feedback, u( t )  is asymptotically 
small in the interval t~ ( t l  ,t2). Therefore only slowly oscil- 
lating attractors are realized, and their dynamics is deter- 
mined in the basic approximation by iterations of the one- 
dimensional mapping 

where p(c)  and x(c)  are roots, respectively, of Eq. (5.1 ) 
and 

a p =  (A- l)x+(c-p-A)(ePX- 1).  

When the values of the parameters correspond to the pa- 
rameters of the laser in the figure, the mapping (5.2) has a 
stable fixed point co, which corresponds to a regime in 
which stable periodic pulses of radiation are generated with 
an energy in each peak p=p(c,) and a period 
T = r+x(co), which reaches values hundreds of times 
greater than r ,  iq good agreement with the experimental 
data. 

When external illumination is present, Eqs. ( 1.1) do 
not allow such solutions, since the conditions for con- 
structing the sequencing operator II are not satisfied. A 
numerical solution reveals that complicated irregular las- 
ing regimes are possible here. We also note that the struc- 
ture of the solutions excludes rapidly oscillating attractors 
when there is negative feedback. 

6. RELAXATIONAL AUTO-OSCILLATIONS IN THE MODEL 
(1.2) WITH ~ $ 1  AND E=O 

In this section we present data on the existence, struc- 
ture, and asymptotic forms (for u% 1) of a rich set of 
steady-state periodic temporal structures with different dy- 
namic properties in the absence of external radiation ( E  

=O). \ 
We first evaluate the set of initial conditions for the 

slowly oscillating solutions. We assign the value of the 
radiation intensity in the interval s~ [-T,O] from the set So 
of nonnegative functions p(s )  E C ~ - , ~ ~  satisfying the con- 
ditions 

p ( ~ ) = l , p ( s ) < l  for S=O, I:7 &)ds < v-l12. 

The level of population inversion at the initial time is y(0)  
=c, with yf (c) > 1. Physically, this corresponds to a ra- 
diation intensity at the noise level in the interval se [- T,O] 
and the choice of t=O at the onset of the emission pulse, 
with u(0)  = 1 (Fig. 4a). We use t l ,  t2, ... to denote the 
successive positive roots of the equation u(t,c,p) = 1. 

Under the initial conditions chosen there is an abrupt 
rise in the radiation intensity to u( t )  % 1 in the interval 
t~[O,t,], and the pulse duration satisfies t,(p,c) -0 as 
v- m. We apply the theory for constructing solutions de- 
scribed above to the simple case of a linear dependence of 
the gain on the population inversion, which is often em- 
ployed in practice: f (y) =y, y= 1. Then we find that the 
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FIG. 4. Initial functions p ( s )  and solutions of 

c b  , =  

Eqs. (1.2) and (1 .3)  of various structure. 

.--.--------- C - S )  ;I 7) 

- r 0 1,- r r I ,  1 0 r 1, r - - 

dynamics of the slowly oscillating solutions of system ( 1.2) 
are determined by iterations of the one-dimensional map- 

ping 

where p(c)  and b(c) are roots of the equations 

~ ( T , c )  + (A- 1) (6-7) + [ap+ (c-~-A)e-'l [ l  

Here 

a(x,c) = (A- l ) x +  (c-p-A) (1 -ecX), (6.4) 

and it is assumed that 

Figure 5a presents plots of mapping (6.1), which 
were constructed for typical values of the parameters of 
semiconductor lasers. For a > O  it has a stable fixed 
point co, which corresponds under condition (6.5) to a 
stable periodic solution of system (1.2) with a period 
T =  b(co) +o( 1 ), T > T, a generation peak energy 
po=p(co), and a maximum amplitude 
uo=u(co- 1 -In co) + 1 + o ( l ) .  The asymptotic values ob- 
tained closely correspond to the data from the numerical 
integration of Eqs. ( 1.2). As expected, when there is pos- 
itive feedback, the oscillation period T is close to the delay 
time T. 

As the delay time in the feedback loop increases, the 
portion of the mapping (6.1) in which the inequality (6.5) 
is not satisfied expands (it is denoted in Fig. 5 by a dashed 
line). Therefore, slowly oscillating solutions are realized 
here under severe conditions, i.e., when a high initial level 
of population inversion y(0)  =c, is created where c > c*, or 
there is a quasistatic increase in T. 

The upper bound of the region for the realization of a 
slowly oscillating attractor with respect to T in the param- 
eter space is determined from the condition a(r,c0) =O. 
The lower bound corresponds to small (asymptotically) 

values of UT. More precisely, it can be found near the 
boundary for disruption of the stability of the equilibrium 
state.8 

The requirement a(r,c0) < 0  implies reproduction of 
the assigned initial set of functions So, i.e., the absence of 
radiation pulses during an interval of duration T. Its viola- 
tion results in the appearance of one or several pulses dur- 
ing such an interval and the emergence of new periodic 
structures, i.e., rapidly oscillating solutions. Such a situa- 
tion arises when there is positive feedback ( a  > 0)  and can 
also be realized directly in the physical problem by assign- 
ing initial external illumination in the form of several 
pulses during an interval of duration T. 

The set of initial conditions for such regimes consists 
of a level of population inversion y(0)  =c, where c > 1, and 
the set S( f ,P)  of the functions q(s ) ,  where SE[-T,O], 
which assign the values of the radiation intensity in the 
form of m peaks in this interval (Fig. 4b). The parameters 
f = ( f l  ,f2,...,fm) characterize the distance between pulses, 
so that O<f1+f2+ ...+[ ,<T, and when 
s = r + f l  + ... +f, holds, the j-th peak of q ( s )  of duration 
6, < begins; P= (pl ,p2 ,...,pm) characterizes the areas 
under the peaks (the energy of the pulses): 

The values of q ( s )  for the remaining s~ [-T,O) are asymp- 
totically small. 

Integrating (1.2), as before we note that the situation 
repeats after the time interval t2= b(c,f,pl) with c replaced 
by F and ([,P) by (c,F); therefore, the dynamics of the 
rapidly oscillating solutions of such a class is determined 
by attractors of the (2m + 1 )-dimensional nonlinear map- 
ping: 
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K to tho (m- 1)-pulse attractor 

where p =p(c) and b = b(c,f ,p, ) are roots of the equations 

A central point here is the assumption that each iteration 
satisfies the conditions 

The domain of the mapping (6.6) generally includes a 
stable fixed point (co,fo,Po), which corresponds to the sta- 
ble periodic solution of the original system with period 
T,=.r/(m+ 1) +x(co,f~,po) +o( 1). 

The transient regime preceding the periodic solution is 
extremely complicated and prolonged. The convergence 
properties of the many-dimensional mapping (6.6) are re- 

FIG. 5. Mapping (6.1)  for A= 1.5 (a,b), 
mapping (6.6) for m =  1 (c,d), mapping 
(7 .1)  for m = 3  ( d ) ,  and mapping (7.7) for 
m = l  (f):  a )  a=0.5, ~ = 0 . 9  ( I ) ,  2.2 (2) ;  
b )  a=-0 .5 ,  ~ = 0 . 2  ( I ) ,  0.3 (2); c )  
A=1.35,a=0.5, ~ = 3 ; d )  A=1.35,a=0.5, 
T= 1.2; e)  A= 1.5, a=0.5,  T= -1, 
&=0.001; f )  A= 1.5, ar=0.7, T= 1.4, 
p=20.  

vealed more easily by constructing the m-fold projections 
c,+,+,(c,) (Fig. 5c), from which it follows that the mo- 
tion of the trajectories of the mapping may be regarded as 
motion of the trajectories of m nonlinearly bound particles 
(radiation pulses) to a state that is homogeneous in time 
and space. As in the case of the slowly oscillating regimes, 
the region of initial conditions under which such conver- 
gence is possible is restricted. 

The upper bound with respect to T for the realization 
of an assigned rapidly oscillating regime in the parameter 
space is specified by violation of the inequality a(fo,co) < 0; 
i.e., in an interval of duration T one more pulse appears, 
then transition to the next rapidly oscillating solution oc- 
curs. 

The lower bound of a rapidly oscillating structure is 
associated with bifurcation of the fixed point of mapping 
(6.6) in the form of a subcritical Hopf bifurcation. When 
r decreases, the region of initial conditions for an assigned 
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regime narrows sharply, and the convergence of the map- 
ping deteriorates, so that the fixed point is achieved only 
after lo3 or more iterations (their number also increases 
with the order of the mapping, i.e., the number of pulses in 
an interval of duration 7). When T decreases further, the 
fixed point loses its stability (Fig. 5d), and after a certain 
number of iterations the system departs from the region 
where the particular attractor is defined due to the viola- 
tion of the condition (6.7) (an additional pulse appears) 
or (6.8) (one pulse disappears). This results in the forma- 
tion of a specific set of initial conditions, which lead the 
system to a neighboring attractor and then back, since the 
basin of attraction of the latter is restricted with respect to 
c. This dynamic process continues indefinitely until the 
system comes into the vicinity of the (m - 1 )-pulse attrac- 
tor. Upon numerical integration the dynamics of the orig- 
inal system (1.2) near the lower bound for the existence of 
a rapidly oscillating solution appears to be fully chaotic, 
and nothing predicts the sudden ordering of the structure 
(Fig. 6a). Similar metastable irregular regimes were ob- 
served in Ref. 37 for an N-dimensional mapping modeling 
the dynamics of a chain of N elements of a neutral net, and 
it was suggested that such processes may be regarded as an 
alternative to a steady-state chaotic regime, since the time 
to reach an attractor in transient spatial chaos increases 
hyperexponentially as a function of the number of ele- 
ments. 

FIG. 6. Numerical integration of systems (1.2) 
(a-c) and (1.3) ( d ) :  u=103, A=1.5, a=0.5 (a),  
-0.65 (b,c), ar=0.7 (d) ,P=20 (d) ,  ~ = 0 . 9  (a) ,  
0.45 (b) ,  0.95 ( c ) ,  1.4 (d) .  

We note that the inequality (6.7) is not as strong as 
(6.5), so that rapidly oscillating structures are realized 
over broad regions of parameters, which overlap with one 
another and with the region of slowly oscillating regimes. 
This multistability permits the observation of hysteretic 
effects in the system. 

In the case of negative feedback, the dynamics of the 
slowly oscillating solutions reduces to the dynamics of the 
one-dimensional mapping (6.1 ) considered above for a 
negative value of a. The conditions for the existence of 
such a temporal structure include the fulfillment of ine- 
quality (6.5) and the existence of an attractor for the map- 
ping. The period of the oscillations appearing in this case 
greatly exceeds the delay time T, just as in lasers where the 
negative feedback controls the additional losses introduced 
into the cavity, rather than the pumping. 

The region for the realization of slowly oscillating re- 
gimes in the parameter space is narrower than in the case 
of a > 0, even though (6.5 ) provides a broader region for 
the existence of these regimes. The upper bound of this 
region with respect to T results from the disappearance of 
the stable fixed point as a consequence of an inverse tan- 
gential bifurcation of the mapping, a typical plot of which 
is presented in Fig. 5b. As before, the dashed line denotes 
the portions of the mapping where the condition a ( ~ , c )  < 0 
is violated. After the laminar phase corresponding to mo- 
tion near the former attractor, the system enters a region 
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where more than one radiation pulse is generated in an 
interval of duration T, and after a certain time it returns to 
the slowly oscillating attractor owing to the negative char- 
acter of the feedback. Therefore, as 7 increases, irregular 
dynamic regimes with intermittency of the first type38 (Fig. 
6b), as well as regular cycles with a large period, may be 
observed. The latter differ from one another with respect to 
the number of alternating slowly and rapidly oscillating 
pulses. The dynamics of each such cycle is determined by 
iterations of the corresponding nonlinear one-dimensional 
mapping. For example, for a periodic solution with two 
radiation pulses separated by a time interval greater or 
smaller than the delay time T, we obtain (Fig. 6c) 

where p=p(c), g=((c), p l  =pl (c), and b=b(c), respec- 
tively, are roots of the equations 

Under the conditions 

and the presence of a stable fixed point co for mapping 
(6.9), we reconstruct the main characteristics of such a 
lasing regime: the period T =  b(co) +o( 1 ), the energies of 
the pulses generated p(co) and p l  (co), the amplitudes 

and the distance between the pulses g(co). 
The lower bound of such a temporal structure with 

respect to 7 results from violation of conditions (6. lo),  and 
the mapping (6.9) experiences an inverse tangential bifur- 
cation on the upper bound. This results in the appearance 
of complex irregular lasing regimes of the intermittency 
type. Here the laminar phase is represented by a pair of 
pulses following one another almost periodically, rather 
than single, almost periodic pulses. The correlational di- 
mensionality of solutions of such a class increases from =: 2 
to ~ 3 . 8  as T increases from 0.5 to 1.5 ( a =  -0.65, 
A =  1.5). 

No rapidly oscillating solutions like those studied ear- 
lier exist when there is negative feedback. Complicated 
auto-oscillations of smooth form (not of a relaxational 
character) are realized at small values of 1 a 1 .  

7. STEADY-STATE GENERATION REGIMES OF A LASER 
DIODE IN THE PRESENCE OF A HIGH LEVEL OF 
SPONTANEOUS RADIATION, LOW-PASS FEEDBACK, AND 
IMPURITIES WITH SATURABLE ABSORPTION 

Semiconductor lasers have a high level of scattering of 
spontaneous radiation into the laser mode. This process 
can be taken into account in a simple manner with the aid 
of an additive term in the equation for the radiation inten- 
sity. Then E is a small positive quantity in ( 1.2). 

Despite the similarity between systems (1.2) for E = O  
and when E is small, their dynamic properties differ. When 
there is positive feedback, the main difference between the 
solutions considered below and those which were studied 
earlier is that even when E is small, an increase in the 
values of u ( t )  begins before the peak of u ( t  - 7) has been 
completed. Therefore, instead of So, the set of initial func- 
tions taken for the slowly oscillating solutions should be 
the more complicated set So(x,h), where x specifies the 
residual area of the peak of q ( s )  E C ~ - , ~ ~  adjacent to s= 
- 7: 

and h determines the level of population inversion y at the 
time of completion of the radiation pulse. As before, the 
value of y at the onset of the pulse is denoted by c (Fig. 
4c). 

The dynamics of the slowly oscillating solutions with a 
period T =T+o( 1 ) and initial functions from So(x,h) are 
described by iterations of the mapping for wo = c, + ax, : 

where 

under the condition 

For h, we have the nonlinear mapping @(hn,h,+l) =0, 
where 

yo(r,g) + d  
er-'dr ds. 

1 -yo(r,g) I 
As h,-ho(n+ to) we obtain w,-wo, where 
wo= ( 1 - a )  - ' [ ~ ( h ~ )  -aho]. On this basis we conclude 
that in the phase space of Eqs. (1.2) there is an attractor 
[under condition (7.2)], in which the first coordinate has 
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the structure of functions from So(x,h), where 
ax+y(0)=wo+o( l )  and h=ho+o( l ) .  The dynamics of 
c, and x, cannot be traced separately. Numerical investi- 
gations showed that solutions of this class can be discov- 
ered in the domain of the slowly oscillating regimes for 
E = O  by selecting appropriate values of E > ~,(v,A.,r), where 
E~ decreases with increasing vr. 

Condition (7.2) is stronger than condition (6.5) for 
system ( 1.2). Therefore, when E > 0 holds, rapidly oscillat- 
ing regimes are more typical. When their dynamics is ex- 
amined, the set of initial conditions is obtained on the basis 
of the procedures described above. The finite-dimensional 
mappings appearing along this route for the {,, which 
characterize the distance between pulses in an interval of 
duration r ,  are linear, i.e., 

and have the solution 

where the K , ~  differ from one another by an integral mul- 
tiple defined by 27~/(2m + l ) . 

The mapping (7.3) is not coarse, since all of its mul- 
tipliers satisfy I pj I = l .  This means, in particular, that the 
terms of order o(1) appearing in (7.2) can accumulate, 
i.e., can be summed as the number of iterations increases. 
This makes it possible to construct solutions only in a finite 
(asymptotically large as v- co ) time interval, which de- 
creases as the number of pulses in an interval of duration T 

increases. 
Numerical integration reveals that the dynamics of the 

rapidly oscillating solutions depends sensitively on the 
value of E (at a finite value of v ) .  The solutions exhibit 
quasiperiodicity. In the general case, the mapping for w, is 
a set of m segments of unwound spirals, which break apart 
when a radiation pulse appears or disappears in an interval 
of duration T, and then the process repeats with undefined 
initial conditions (Fig. 5d). 

It is important to note that the noncoarseness of map- 
ping (7.2), which causes irregular dynamics, results from 
the presence of an additive term in the equation for the 
radiation intensity modeling spontaneous emission into the 
lasing mode. A similar result is obtained in models of lasers 
with modulation of the losses in the presence of weak ex- 
ternal illumination. 

Asymptotic solutions (as v-+ co ) of Eqs. (1.2) with 
E > 0 cannot be constructed for negative feedback. Numer- 
ical integration of the original system reveals that complex 
regular and irregular lasing regimes having a predomi- 
nantly relaxational character (a smooth form) are possible 
here. 

The special features of lasing with low-pass feedback, 
i.e., with a limited bandwidth P, can be investigated on the 
basis of Eqs. ( 1.3). 

The set of initial conditions for the slowly oscillating 
solutions of ( 1.3) include the set of functions p(s),  which 

assign the values of the voltage z in the interval [-r,0], 
viz., p ( s )  =zoexp( -ps), the initial levels of population in- 
version y(0) =c(c > 1 ), and the intensity u ( t )  = 1 (see Fig. 
4a). 

As before, integrating ( 1.3) in the interval t c  (O,tl], we 
obtain equations for determining the pulse energy and the 
level of carrier inversion at the time the radiation pulse is 
completed: 

From the third equation in (1.3) we find 
z(t l )  =zo+prp+o( 1). In the interval t~ [t, ,r] we require 
u < 1; hence 

From these and the first equation in (1.3) we find the 
condition for fulfillment of this requirement, which re- 
stricts the domain for slowly oscillating solutions: 

In the interval te[r,tl], as long as u(t)  remains asymptot- 
ically small, we have 

Taking the time of the beginning of a new radiation pulse 
t, = b(c,zo) as the initial time, we arrive at a problem sim- 
ilar to the preceding problem with c and zo replaced by F 
and &,: 

and t2=b(c,zO) is a root of the equation 

Provided the inequality is satisfied, the two-dimensional 
mapping (7.5) describes the dynamics of the slowly oscil- 
lating solutions of system ( 1.3) with a period T= b(c,zo), 
where T > T. 

In contrast to the case 8- CO, the upper bound with 
respect to T for the existence of slowly oscillating attractors 
in ( 1.3) is specified by a saddle-node bifurcation of the 
nonlinear mapping (7.4), rather than by violation of con- 
dition (7.5). Hence complicated irregular solutions are 
possible after the transition from slowly to rapidly oscillat- 
ing structures. 

Proceeding as in Sec. 6, for rapidly oscillating solutions 
with m> 1 intensity peaks in an interval of duration T (for 
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a > 0)  we obtain a (2m + 2) -dimensional nonlinear map- 
ping. As an example, here we present the case of m = 1: 

F = A + ~ - ~ [ A +  B(zlz;l - l)ee-Pe] - ~ z ~ z ; ' e - ~ ~  

where p(c)  and b(c,6,zo,zl) are, respectively, roots of the 
equations 

and the following inequality is assumed to hold for each 
iteration: 

(A-  1)C+A- (c-p-A)e-c+ B ~ - ' ( e - ~ c -  1 

The attractors of the mapping (7.6) correspond to steady- 
state lasing regimes of the original dynamic system. This 
investigation is a separate complex problem. Here we 
present some particular results. 

One special feature of mapping (7.6) is the narrow 
range of initial conditions leading to the attractor. This is 
the reason for the prolonged transient regimes, which differ 
structurally from the steady-state solution due to the vio- 
lation of (7.7). 

Unlike the case of an unlimited bandwidth, where the 
lower bound of the rapidly oscillating regime is specified by 
a subcritical Hopf bifurcation of the mapping (6.6) with 
the resultant formation of metastable chaotic structures, 
the mapping (7.6) exhibits a supercritical Hopf bifurcation 
with the formation of a limit cycle as T decreases. One of 
the projections of (7.6), c,+~(c,), is shown in Fig. 5f. This 
attractor of the mapping corresponds to the motion of 
phase trajectories on a two-dimensional torus (Fig. 6d). 
As the parameters vary, the cycle of the mapping (7.6) 
extends beyond the region where (7.7) is defined, and se- 
vere destruction of the two-dimensional torus occurs. We 
note that such a bifurcation sequence was observed exper- 
imentally in a C02  laser with an electro-optical intracavity 
modulator providing low-pass delayed feedback.29 

The steady-state lasing regimes in a two-component 
laser diode with optoelectronic feedback can be examined 
on the basis of Eqs. ( 1.4). We present some results regard- 
ing the existence, structure, and asymptotic behavior of the 
relaxational solutions of this system without dwelling on 
the details of the derivation, which are similar to those 
presented above. 

The slowly oscillating solutions with initial conditions 
from So (Fig. 4a), y(0)  =c, and k(0)  =h(h >O,c> 1 +h)  
are specified by attractors of the two-dimensional nonlinear 
mapping 

F=A+ (ap+ ~e-')e '-~, t5= ko+He-yb, (7.8) 

where 

C=cePP-A, H=hePrP-ko, 

provided the equality 

where 

is satisfied and p =p(c,h) and b= b(c,h), respectively, are 
roots of the equations 

When there is positive feedback, rapidly oscillating 
structures with m)l intensity peaks in an interval of du- 
ration T are possible in Eqs. ( 1.4). The dynamics of such 
structures (with pulse energies p j  and distances between 
pulses g j )  is specified by iterations of the (2m+2)- 
dimensional nonlinear mapping 

Em=r-61-52-...-Cm, 

if the inequalities 

61+62-b>01 a*(gl,c,h) <0  (7.13) 

are satisfied for each iteration and p(c,h) and b(c,h,Cl ,pl), 
respectively, are roots of Eq. (7.10) and 

The mappings (7.8) and (7.12) generally have a stable 
fixed point in the regions where they are defined. The 
boundaries of these regions are specified by conditions 
(7.9) and (7.13) and by the bifurcations of the mappings, 
which require additional investigation. 

8. CONCLUSIONS 

We have considered several simple models of lasers 
with optoelectronic delayed feedback. The problem of the 
dynamics of infinite-dimensional differential-difference sys- 
tems has been reduced to the problem of the dynamics of 
finite-dimensional mappings on the basis of special asymp- 
totic integration methods. 

It has been shown that the steady-state solutions have 
a complicated relaxational structure for real laser parame- 
ters. Multistability has been described analytically in the 
case of negative feedback and a large pump parameter A. 
This phenomenon is caused by the coexistence of attractors 
of different types (slowly and rapidly oscillating attractors, 
which create regimes with alternating intensity "peaks" 
and "spikes"). 
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In the case of positive feedback with u> 1, there may be 
a hierarchy of multistable periodic lasing regimes with dif- 
ferent structures (slowly and rapidly oscillating) and hys- 
teretic transitions between them as the feedback parame- 
ters vary. The birth and death of rapidly oscillating 
attractors are caused by different bifurcations of many- 
dimensional mappings. A subcritical Hopf bifurcation 
(feedback with an unlimited bandwidth) leads to metasta- 
ble chaotic regimes, and a supercritical Hopf bifurcation 
(low-pass feedback) leads to the organization of phase tra- 
jectories on a two-dimensional torus. 

In the case of negative feedback with u )  1, multistabil- 
ity is not realized. The slowly oscillating structures are 
destroyed as a consequence of a saddle-node bifurcation, 
which leads to irregular intermittency regimes and the for- 
mation of cycles of large period and complex structure. 
The dynamics of the latter are specified by iterations of the 
corresponding one-dimensional mappings. 

The important role of external influences acting on the 
system, for example, the level of spontaneous emission into 
the lasing mode, which cause irregularity in steady-state 
lasing regimes, has been disclosed. Such irregularity is a 
consequence of the neutral stability of the emerging linear 
mappings. 

The asymptotic formulas obtained make it possible to 
easily reconstruct the main characteristics of the oscilla- 
tions of the original system, to determine the regions of 
parameters and initial conditions under which the realiza- 
tion of a given regime is possible, and to reveal tendencies 
in the development of the dynamics as the parameters 
evolve. 

The results may be extended to more complicated sys- 
tems with delay that appear when problems concerning the 
dynamics of laser devices containing several coupled lasers 
are simulated. Descriptions of complex and diverse dy- 
namic effects can be obtained in this way analytically. 
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Research of the Belarus Republic (No. 93-02-16176). 
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