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Charge exchange between a solid surface and an atomic particle departing from the surface is 
treated within the framework of the nonstationary Anderson-Newns model. A justification 
is given for treating initial conditions as equilibrium in the sense of the total "hybridized atom 
+ surface" system. An analytical solution for the final charge state of the atomic 
particle is obtained, and the existence of two charge exchange channels, dynamic and memory- 
related, is demonstrated. Situations in which one of the channels dominates are analyzed, 
as is the case of the quantum interference of the channels. The effect of temperature on electron 
exchange is treated in detail. A method for determining the degree of the local heating 
of the electron subsystem of the solid in the region of interaction with the beam is suggested. 
Charge exchange in secondary ion emission from a metal, both in the low- and high- 
temperature regimes, is considered. The solution obtained demonstrates the existence of two 
mechanisms, tunneling and thermalization, for formation of the charge state of an ion. 

1. INTRODUCTION 

This paper presents a theoretical discussion of the elec- 
tron exchange processes involved in the scattering (or 
emission) of atomic particles from the surface of a solid. 

The problem requires a multi-particle approach and is 
generally treated on the basis of the Anderson-Newns 
m0de1.l'~ Within this model, the charge exchange problem 
was first treated by using the Keldysh formalism3 and sub- 
sequently discussed based on the method of equations of 
m ~ t i o n . ~ , ~  

In these studies, the final results are obtained in the 
"wide-band'' approximation and under the assumption 
that the "memory" effects in the system may be neglected. 

In a more general form (in particular, with a touch on 
the memory effects), the problem is treated in Ref. 6. Sub- 
sequently, in the review article of Brako and ~ e w n s '  it is 
pointed out that very often the memory regime may also 
dominate, in the scattering of atomic particles from a non- 
metal surface, in the case of a resonant electron exchange 
with a surface state band; it is noted, however, that there is 
no consensus on the subject. 

The basic difficulty one faces is the simultaneous inclu- 
sion of different factors of importance, particularly for low 
velocities of the atomic particle (weakly nonadiabatic mo- 
tion). 

Accordingly, in the present work the authors have de- 
liberately addressed a situation where the influence of a 
bounded band spectrum on the charge state of an atomic 
particle may be neglected (this problem was treated by the 
authors in more detail elsewhere8), and concentrated on 
the problems of resonance tunneling in the case of a weakly 
nonadiabatic motion (the atomic particle energy below a 
few hundred electron volts). The problem then reduces to 
describing the departure from an initial state which is equi- 
librium in the sense of the total, "hybridized atom + sur- 
face," system. 

The present work treats the effect of such initial con- 
ditions on the final charge state. An additional resonance 
charge exchange channel associated with the system mem- 
ory is investigated and it is shown that its existence simul- 
taneously with the "dynamic" charge exchange channel, 
may lead to a quantum interference of the two. 

A detailed discussion of the effect of temperature on 
the electron exchange process is given, and a method for 
estimating the local heating of the solid's electron sub- 
system in the solid-beam interaction region is proposed. 

By considering the shift of atomic levels due to the 
image potential, a description of the charge exchange in the 
secondary ion emission from a metal is given. At present 
there exist two basic models describing the electron ex- 
change in secondary ion emission, the electron tunneling 
model9 and the semi-phenomenological model due to 
Sroubek.lo Both employ the kinetic equation but, due to 
different approaches used, are in effect independent. Al- 
though the basic features of secondary ion emission are 
qualitatively described by either model, a great deal of ex- 
perimental data exist which can be adequately described by 
only one of them. In the present work we have been able to 
obtain, within the quantum mechanical description, an an- 
alytical solution for the ionization probability of the sec- 
ondary particle. Analysis of the solution shows that there 
are generally two ion charge state formation mechanisms, 
tunneling and thermalization, corresponding in their es- 
sence to the above mentioned models. Under certain con- 
ditions, one of these prevails. 

2. PROBLEM FORMULATION 

The Anderson-Newns model Hamiltonian is 
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where Ck+ and C z  are the creation operators for the elec- 
tron in a band state I k )  and in the orbital state I a )  of the 
moving atom. Because of the independence of the two spin 
subspaces the spin index is dropped. The parameters of the 
Hamiltonian ( 1 ) are time-dependent owing to the motion 
of the atom. The energies Ek and E,(t) are measured from 
the Fermi level. 

It is assumed that the dependences on k  and t in the 
hybridization matrix element Vak( t)  separate: 

We will assume that the level Ea is always opposite the 
band of the solid and lies far enough from the band edges; 
that the characteristic time T for switching hybridization 
on and off is large [i.e., T(Ea-El)  % 1, T(E2-E,) ) 1, 
where El and E2 are the lower and upper band edges re- 
spectively ( f i=  l)];  and that the density of k  states is a 
sufficiently smooth function of the energy Ek in the vicinity 
of E,. These requirements are, in particular, quite justifi- 
able for wide-band materials under the above mentioned 
conditions on the motion and on the position of Ea .  There- 
fore in the following we assume that the band size is infi- 
nite, that the Fermi level is taken to be the origin, and that 
it is adequate to apply the wide-band approximation for the 
resonance level width A 

independent of w.  
The time dependence Ea(t)  is defined as Ea[z(t)], 

where z(t) is the trajectory of the atomic motion. By the 
shift in the electron level E,(z) is meant a shift due to the 
presence of the image potential. The introduction of the 
E,(t) dependence in this way is only justified in the case 
when all the characteristic times of the process, including 
the charge exchange time ( - 1/A), turn out to be much 
greater than Maxwell's relaxation time tM for the nonequi- 
librium charge density. For normal metals, due to high 
conductivity we have t M z  10" S, and the above require- 
ment is fulfilled. For lower conductivity materials tM may 
prove comparable to the charge exchange time and so in- 
troducing Ea(t)  manually is not entirely correct (to ac- 
count for the effect of the image in this case one needs, as 
a minimum, to employ information about the dynamic di- 
electric permittivity of the system). In some cases 
(tM% l/A, tM% T )  the shift in level E, due to the image is 
negligible (E, z const. ) . 

The characteristic dependence of the (hybridization) 
matrix element Vak on time is shown in Fig. 1: 

is the switching (off) time, a  is the characteristic decay 
length of the wave function outside the sample and ul is 
the surface-normal component of the velocity u of the de- 
parting atom. 

The presence of a gentle portion in the U(t)  depen- 
dence is due to the existence of the saturation region for the 
hybridization Vak and also to the existence of the turning 

FIG. 1 .  The characteristic dependence of the hybridization matrix ele- 
ment V,,(r) = V,,U(t)  on time. 

region for the scattered atom. Without going into details, 
we note that both the regions begin at the distances to the 
surface of the order of the interatomic distance in the solid. 

It should also be noted that the U(t) dependence is not 
generally symmetric about the point t=O. This relates to 
the fact that the scattering of an atomic particle from a 
solid surface is an inelastic process, that is, part of the 
particle's energy is lost in the scattering act. A consequence 
is that the characteristic time for switching hybridization 
on turns out to be less than that for switching off. In the 
case when the atomic particle loses an insignificant part of 
its energy, the difference between the characteristic times is 
small. Moreover, as will be made clear below, we will be 
primarily interested in the departure process (i.e., t > to). 
Therefore, in what follows, by T we mean the character- 
istic time for switching hybridization off. 

Apart from the atom approach conditions already in- 
troduced, in what follows we will only treat a weakly non- 
adiabatic motion. We will consider the non-adiabaticity 
parameter TA to be sufficient that the time the atom stays 
in the region where the hybridization Vak is more or less 
constant, is of the order of ten or more characteristic 
charge exchange times l/A (for an atomic weight in excess 
of 10, this requirement is fulfilled up to particle kinetic 
energies of order a few keV). Then within the framework 
of the Anderson-Newns model one finds that, by the time 
instant to (see Fig. 1)  the entire system "atom + surface" 
will, to good accuracy, attain the equilibrium populations. 
But, since the above model contains no information about 
any dissipation processes, we will assume that the time 
over which hybridization is more or less constant is suffi- 
cient for the electron subsystem to attain equilibrium, with 
a certain temperature 8, in the region of its interaction with 
the scattered beam. And, generally speaking, 8 need not be 
equal to the ion temperature in this region. 

Thus, measuring time from to (see Fig. 1 ), we arrive at 
the following departure model problem: 

where U(t)  is a certain switching-off function, with a char- 

123 JETP 79 (I), July 1994 Klushin et a/. 123 



acteristic time T [cf. Eq. (4)]. At t=O, the entire system 
"atom + surface" is in equilibrium at temperature 0. 

3. A STUDY OF THE NONSThTIONARY ANDERSON-NEWNS 
MODEL WITH EQUILIBRIUM INITIAL CONDITIONS FOR 
THE WIDE BAND 

3.1. Method of equations of motion 

We change to the Heisenberg representation and use 
the system of units in which fi= 1. Using the equations of 
motion for operators it is not difficult to obtain the equa- 
tion of motion for the average nu(?) = (C: ( t )Ca(t)  ): 

Using in (6)  the solution of the equation of motion for 
Ck(t), i.e., 

xexp[-iEk(t--t ')], ( 7 )  

and its conjugate for Ck(t), it is found that, for the wide- 
band approximation ( 3 ), 

x exp [ - iEkt] - c.c.), (8)  

where 

A ( ? )  =h [u ( t )12 .  (9)  

The solution to the equation of motion for the correlation 
function (C: ( t)  Ck(0) ), after substituting the expression 
for ~ k + , ( t )  and using Eq. (3) has the form 

Substituting Eq. (10) and its conjugate into Eq. (8) ,  after 
a little manipulation we obtain 

Xexp[- A(t")dt"]2Im I:. 

Note that expression ( 1 1 ) involves arbitrary initial condi- 
tions. If one takes initial conditions to be nonequilibrium 
(in the sense of the entire system with nonzero hybridiza- 
tion), 

then Eq. ( 1 1 ) transforms into the form 

i.e., into the Brako-Newns r e ~ u l t . ~  In what follows we will 
employ equilibrium initial conditions. 

3.2. Determination of equilibrium initial conditions 

Equilibrium initial conditions for (c: (0) Ca(0) ), 
(C: (0)  Ck(0) ), and (c: (0)  Ck, (0)  ) have been deter- 
mined using the temperature Green's functions (for more 
of the details of the two- time formalism, see, e.g., Ref. 11 ). 
The corresponding system of algebraic equations for the 
temperature Green's functions ( ( C  1 C ) ) and 
((Ckl C:))E turns out to be closed and is solved straight- 
forwardly. Also, in finding ( (Ck+ (0)  Ckt (0)  ) ) use has been 
made of the following statement which is readily proved 
from the spectral density properties of the temperature 
Green's functions: 

where B, A are certain operators; the coefficient V =  f 1 
and its choice is a matter of convenience for determination 
of ( B  I A>,  line (in the following 7 = - 1 throughout). 

Finally, using the wide-band approximation (3) the 
equilibrium initial conditions are as follows: 
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(C: (O)Ca(O))=na(0) Ea( T )  = Ea=const. TO be specific, we take Ea < 0 and 
perform the entire analysis for R +  ( cc ), hence forth simply 

A + m  
-- 

d o  1 R+. [In the case Ea > 0, we note that due to the electron 
- n l-, exp [o/B] + 1 [o ~ ~ ( 0 )  ]'+A2' -hole symmetry, all the results below should be referred 

to Na(m )]. It will also be assumed for simplicity that 
( I2)  I E a I T >  1. 

4.1. Zero temperature. The formation of two charge 
exchange channels 

Integrating over t in ( 16), and after some algebra (see 
d o  Appendix A) ,  we obtain for the ionization probability of 

the departing atom the following expression: 

x {G?)GO,(~)GO,!~) - GF)GF)GO,!")), 
2 r l E a ( T  exp[-TA] 1 1 1 

(14) R + = -exp[---- 2 + ( T A ) ~  2 2  -[- - - arctan 1 E 1 
n 

where, for brevity, we have introduced the notation 
I & l  - 

Final theoretical result 

Using Eqs. ( 12), ( 13), and ( 14) it proves possible to 
reduce Eq. ( 1 1 ) to a more compact form: 

r rt 1 

A + m  
exp[- J A(tf )dtf ] 

na(t) =- 
do I i  0 

n l-, exp[o/B] +1 o-Ea(0)+iA where 

+ lof d t f ~ ( t f ) e x p  

2 

(15) 
1 

From Eq. (15), it is easily shown that the expression for 
the ionization probability of the departing particle, 
R + ( t )  = 1 -na(t), can be written in the form 

A(tl)dtf The first two terms in (17) give a monotonic dependence 
A +. e ~ p [ ~ m ]  e x p [ - J o t  ] 

R+( t )= -  d o  I on the inverse velocity (T ) ,  whereas the third represents 
n l-, exp[w/8]+1 o-Ea(0)+iA oscillations on its background. Clearly the oscillations will 

only be noticeable if their amplitude is comparable to that 
+ lot dtf u ( t f  )exp of the carrier dependence. 

Analysis of the ionization probability ( 17) in the case 
TA - 10 yields (see also Fig. 2): 

a )  if I Ea 1 < 0.6A (in particular, I Ea 1 <A), then to 
( 16) good accuracy 

In the following two limiting cases are discussed, of either 
weak or strong variation of Ea(z) with distance. 2 

n 

4. ANALYSIS OF THE CASE E,=const 
It should be noted that this result has been obtained by 

In this section we will assume that U(T) =exp[-t/T], other methods (see, for example, Refs. 3 and 5). 
where T is the switching -offtime (4), and that b)  when 1 Ea 1 > 1.5A we obtain 
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FIG. 2. The dependence of the ionization probability of the level 
E,(E, < 0 )  of the departing particle on the parameter TA =aA/v, (in- 
verse of the velocity). Curves: I-] E,J -0.6A; 2-1 E,J - 1.lA; 3- 
(E,J  -1.8A. 

- 
1 1 

"I  ] +--'[3(- 
T ( ~ + \ E ) * )  (TA)  4 2  

In particular, if one assumes that ( E, I $ A ( ( E ( $1 ) 
then 

- 
A 

-- for (E, I =A) ;  
r I E a I  

C )  in the case ( E, I - (0.8-1.3)A, expression ( 17) rep- 
resents a weakly modulated oscillatory dependence on the 
inverse velocity T (the oscillation amplitude being 10- 
15% of the carrier dependence amplitude, see Fig. 2). 
Note that as a function of the parameter T / 2  [which is just 
the effective decay time of the width A(t) of the tunneling 
transition probability], R+ oscillates at a frequency 
- IEaI. 

All of this can readily be understood physically. When 
the velocity of the departing atom is infinitesimal (T-+ cc ), 
then R+ - 0 (since E, < O), that is, the level E, possesses 
an electron. As the velocity is increased, there arises the 
possibility of ionization of the level E,. This can proceed 
via two channels. 

FIG. 3. Formation of two charge exchange channels in a weakly nona- 
diabatic departure of an atomic particle from a surface. ( a )  Channel 
involving the electron transfer into an excited state above E, due to the 
finite value of the characteristic interaction switching-off time; (b)  Chan- 
nel associated with the memory of the system (in the sense that the 
conditions as of to, see Fig. 1, have an influence on the final charge state). 

The first channel-corresponding to case a)-is due to 
the fact that the effective staying time of the atom in the 
region of interaction with the surface is finite and hence 
there is a nonzero probability for the electron to transfer to 
a vacant place above EF, see Fig. 3. The initial state does 
not play a major role because, for a slow departure, the 
population probability of the level E, is close to unity; what 
is important is the degree of nonadiabaticity of the depar- 
ture, so in the following we will call this channel dynamic. 

The second channel-corresponding to case b)-has to 
do with system memory effects. The effect of hybridization 
is that the electrons are in some sense collectivized, that is, 
to some extent they belong to the sample and to some, to 
the level E, ( (C;Ck)#0). There is a continuous exchange 
of electrons between the level and the band, most actively 
involved being the electrons with energies around E,. On 
switching hybridization off, the electrons are distributed 
between the sample and the level E, (we can speak of an 
atom electron and of a sample electron). The probability of 
ionization of the atom in such a process is determined by 
the integrated contribution from the difference between the 
charge flows from the atom into the zone and vice versa, 
thus being proportional to exp[- J;A(t)dt]. Clearly, this 
probability depends both on the initial state and on the 
manner in which hybridization is switched off. 

In the case where the contributions to the charge ex- 
change from the two channels are comparable, the chan- 
nels interfere, which leads to an oscillatory dependence of 
the ionization probability on the inverse velocity. 

To end this subsection let us point out that the above 
approach to the case E, = const, 8 = 0 K differs from pre- 
vious ones and makes it possible to account consistently for 
the system memory terms. If we make use of the saddle 
point method in the standard way (i.e., by first integrating 
over energy and then over time, in analogy with Refs. 5 
and 7), certain difficulties will arise. If the initial instant of 
time is taken to be t= - C C ,  the major difficulty will be in 
accounting for the actual dependence U(t) (see Fig. 1 ). If 
we take the initial moment to be to and the dependence 
U(t) to be exponential, the main difficulty is that the in- 
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tegrand is irregular in the vicinity of the initial point, and 
in order to take into account the contribution from the end 
portion of the integration contour, a means to combat this 
difficulty will have to be devised. In either case it proves 
difficult to obtain a solution accounting for memory effects 
(in the sense that the conditions as of to, see Fig. 1, affect 
the final charge state), and this is apparently the reason for 
the lack of such solutions in Refs. 5 and 7. 

4.2. Finite temperatures 

We first note that in the adiabatic limit T + w we ob- 
tain from Eq. (15) a physically obvious result that 

In the study of the weakly nonadiabatic situation, we will 
assume - quite justifiably - that 8 &  A and 8 4  I Ea I since 
both I A I and Ea are of the order of electron volts ( 1 eV = 
11600 K).  

We consider two limiting cases: 8&1/T (low- 
temperature regime) and 0% 1/T (high-temperature re- 
gime). 

Clearly, in this case temperature effects will introduce 
a small correction irrespective of whether the dynamic or 
memory channel is dominant. 

Using the standard method for the approximate eval- 
uation of Fermi distribution integrals, we obtain from Eq. 
(16) the expressions for the dynamic charge exchange 
channel, 

and for the memory-related channel, 

where 

and the definition of f  (x) is given in Appendix A. 
Thus we see that if 8 T  < 1 and 84 A, the temperature 

correction is small and cannot alter substantially the de- 
pendence on T of the ionization probability of the depart- 
ing particle. 

1 
b)  8,-. 

T 
A different situation obtains in the high-temperature 

regime. In this case, temperature effects begin to dominate 
and it is therefore to be expected that 

R+ -exp[- I Ea 1 /el, which corresponds to the ionization 
probability of the level Ea for hybridization being switched 
off adiabatically (t-  ,8& I E, I ). 

In fact, using Eq. ( 16) we obtain 

Noting that 8T$ 1, the final result is 

Note that in this case R+ depends linearly on the kinetic 
energy E/'" of the departing particle because 
I / T ~ -   kin. 

It should be noted that the characteristic dependence 
of the ionization probability on 8 in the high-temperature 
regime 8 T S  1, just obtained for Ea=const, may remain in 
the case of Ea dependent on distance (see the next section 
for further detail) : 

We remind that by 8 we mean the temperature of the 
electron subsystem in the region of interaction with the 
incident beam, the value of the temperature not necessarily 
being equal to the ion temperature there (hereafter 80). 
From the shape of the dependence R f  (8)  in the high- 
temperature regime, it is not difficult to establish whether 
the electron subsystem is warmed-up in the interaction re- 
gion - and to what extent. 

Suppose we have measured the ionization probability 
of the atomic particles emitted from the surface as a func- 
tion of the temperature 80 for the high-temperature case 
(BoT$ 1 ). If the electron temperature in the interaction 
region, 8, and the ion temperature, 00, are equal, then the 
dependence of R+ on O0 will approximately correspond to 
the curve 1 in Fig. 4, i.e., R+ will grow rapidly with the 
temperature. A local heating of the electron subsystem will 
give rise to a gentle portion in the curve (see curve 2 in Fig. 
4),  because in this case the temperature is sustained more 
by an external heat-inducing agent (an incident beam, for 
example) than by the ion framework, even though this 
latter may be the main heat removal channel in the system. 
From the extension of the gentle portion one can assess the 
degree of the local heating of the electrons (see Fig. 4).  

5. INCLUSION OF THE SHIFT OF THE LEVEL E,(z); 
DESCRIPTION OF THE ELECTRON EXCHANGE IN 
SECONDARY ION EMISSION 

In the preceding section the case E,=const has been 
treated; in Sec. 5 we analyze the effect of the shift in the 
level Ea(z) on the final charge state of the atom. If the level 
Ea(z) varies strongly enough with the distance to the sur- 
face (so that it can intersect the Fermi level, for example), 
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a 
G' (s) =-G(s), 

as 

a 
G' (s) = -G' (s) , 

as 

FIG. 4. The characteristic dependence of the ionization probability R+ 
on the local ion temperature 9, in the bombardment region for the high- 
temperature regime OoT, 1 in the absence (curve I )  and in the presence 
(curve 2) of local heating of the electron subsystem in this region; O* is 
the electron temperature in the heating region. 

then the initial state ceases to be of any importance, that is, 
the memory effects may be neglected. As an example, the 
electron exchange in secondary ion emission in both the 
low- ( 8 T  g 1 ) and high-temperature ( 8 T  > 1 ) regimes is 
considered. As before, it is assumed that the width of the 
atomic level decreases exponentially with distance, i.e., 
A(z) = Aexp[- 2z/a]. 

5.1. Low-temperature regime (OT4 1) 

Using Eq. ( 16) and neglecting the memory terms (as 
justified by the final result which is much greater than 
exp[ - 2 ca A ( t' )dtl] ) , we obtain an expression for the sec- 
ondary ion ionization probability: 

1 
R+=---lI I ds' ds" - sll 

Y' Y" 

Xexp -G(s1) exp -G*(sW) , 1.: I I.: I 

The contour y1(y') is obtained by deforming the real axis 
onto the upper (lower) part of the complex plane. It is 
assumed that A(s) and Ea(s) are regular in the vicinity of 
the contours y' and y"; that in preparing y' and y" the 
nonanalyticity points and branch points of A(s) and 
Ea(s) were not passed through; and that the contour 
yl(y") passes through the saddle point so($), which is a 
simple saddle point, i.e., 

By application of the saddle point method, for the integrals 
in Eq. (22) we obtain (for more details see Refs. 5 and 7) 

Thus the entire problem is reduced to that of finding the 
saddle point, i.e., to the solution of the equation 
G' (so) =O. 

Let us consider secondary ion emission from a metal. 
Its feature is that Ea(z), due to the image potential, varies 
rather strongly with the distance to the surface: Ea crosses 
the Fermi level (which we recall is taken as energy zero) at 
a certain point zo, i.e., Ea(z) > 0 for z < zo and Ea(z) < 0 for 
z > zo; Ea ( ca ) = ( p  - 1 ) < 0, where I is the ionization po- 
tential of the isolated metal atom, and p is the work func- 
tion of the metal. Note that, typically, z-a, and the con- 
dition 1 A1(zo) 1 < I EA(zo) ) is fulfilled. 

For the power-law decrease of Ea(z) characteristic of 
the image- induced shift in the level Ea,  the condition 
(A1(z0) I < ( EA(zo) ( in fact implies 

In this case it is a simple matter to obtain the saddle point: 

Substituting the above saddle point into Eq. (23) and not- 
ing that I A1(z0) \ < ( E;(zo) 1 yield the following result for 
the ionization probability of a secondary ion: 

5.2. High-temperature regime (8Tp 1) 

We begin by noting that the energy distribution of sec- 
ondary ions emitted from a metal or a semiconductor has 
a pronounced maximum in the energy range of 5-15 eV. If 
one estimates the temperature parameter 8 T  for this en- 
ergy range, it turns out that for Cu, for example, the situ- 
ation is close to the high-temperature regime for 8 > 500 K. 
The question of the electron temperature in the bombard- 
ment region is an open one. At least, there are reasons to 
believe that this temperature differs from the ion tempera- 
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FIG. 5. The energy of the atomic level E, and the function P ( z )  [see Eq. 
( 2 5 ) ]  versus the distance to the surface; z, the effective neutralization 
distance. r* the effective thermalization distance. 

ture in this region and may be strongly nonequilibrium 
(according to some estimates,12 6 may reach several thou- 
sand K).  

Integration over w in Eq. ( 15 ) yields 

where 

P(z) represents an asymmetric bell with a maximum at 
z*=a/2lnTA and a width of order a. In writing Eq. (25) 
it has been taken into account that A(z) varies weakly on 
the scale a/rrOT and that A (z*) = I/T<O. 

Now let E,(z) cross the Fermi level at point zo (typi- 
cally zo-a in metals). Also, in the high-temperature re- 
gime we normally have z*>zo (see Fig. 5). Then after 
some manipulation (see Appendix B) Eq. (25) reduces to 

(r  being the Gamma function). 
The first term in the expression for the ionization prob- 

ability R+ equals the value of R+ for the low-temperature 
regime and is due primarily to the kinetic effects associated 
with the relatively rapid change in the energy of the level 
Ea(z) at the point zo of its intersection with the Fermi 
level. The quantity zo is the effective neutralization dis- 
tance, that is, starting from z > zo there is a high probability 
for the electron to tunnel to an atomic level. The second 
term relates to the "atomic level thermalization" (that is, 

FIG. 6 .  The characteristic dependence of the ionization probability R+ in 
secondary ion emission on the inverse velocity T for various tempera- 
tures. The parameters are chosen as follows: A= 1.5 eV; E,= -2 eV 
[E , ( z )  = E , - E g d z ] ;  a=3  A, z0=2.5 A. The range of the parameter T 
from 15 to 80 eV corresponds (for AI, for example) to a secondary ion 
energy range of 100 to 5 eV. 

to the attainment of the atomic level population corre- 
sponding to the local electron temperature; z* is the effec- 
tive thermalization distance). 

In general, then, in secondary ion emission one can 
distinguish among two mechanisms of charge state forma- 
tion, the tunneling mechanism (the term "tunneling" is 
somewhat vague in character, its application here being 
associated with the well accepted term "electron tunneling 
model" introduced9 for a similar mechanism) and the ther- 
malization mechanism. Which of the two predominates in 
the formation of secondary ions with high-temperature- 
regime energies, depends on the particular situation being 
studied. For semiconductors, the thermalization mecha- 
nism seems to prevail. For metals, the situation is more 
complex in that either the tunneling or the thermalization 
mechanism may dominate. This depends upon a variety of 
factors (behavior of the level E,(z), of the distance zo, 
level width A, local electronic temperature etc.) and re- 
quires that each case be treated separately. Nevertheless, in 
the general case it proves possible to predict the character- 
istic behavior of R* as a function of the inverse velocity T 
(see Fig. 6).  For small T (large velocities), the situation 
corresponds to the low-temperature regime and the only 
ion formation mechanism is by tunneling. With increasing 
T (decreasing velocity), a high-temperature regime is re- 
alized. However, even for the high-temperature regime, the 
tunneling mechanism may prove dominant until certain T 
values. As T is increased still further, temperature effects 
begin to show up and very soon the thermalization mech- 
anism becomes predominant in the formation of the ion 
charge state (changeover to saturation in the curve lnR+ 
of Fig. 6) .  

6. CONCLUSION 

The main results of the present work may be summa- 
rized as follows: 
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1. It is shown that for a weakly nonadiabatic motion of 
the particle the problem of the resonant charge exchange 
with a solid surface reduces to the description of the par- 
ticle departure. A justification for the use of equilibrium 
initial conditions is given ("equilibrium" in the sense of the 
total "hybridized atom + surface" system). 

2. An analytical solution of the charge exchange prob- 
lem is obtained within the framework of the Anderson- 
Newns model with equilibrium initial conditions for the 
wide band. 

3. A new technique for calculating the case 
Ea=const in the low-temperature regime is suggested, 
which enables one to consistently take into account the 
terms associated with the memory of the system. Based on 
this approach, it proved possible to demonstrate that two 
charge exchange channels exist: a dynamic channel (the 
transfer of an electron to an excited state above EF due to 
the finite characteristic time for the interaction switching- 
off process) and a channel associated with the memory of 
the system (in the sense of the influence of the conditions 
as of to, see Fig. 1, on the final charge state). Situations in 
which one of the channels is dominant are treated, and the 
case when the channels interfere is considered. 

4. A method is proposed for determining the degree of 
the local heating of the electron subsystem in the region of 
its interaction with the scattered beam. 

5. The charge exchange process in secondary ion emis- 
sion from a metal, with account for the shift in the level 
Ea(z) due to the image potential, is considered. Analysis of 
the solution shows that in the formation of the ion charge 
state, two basic mechanisms participate. The tunneling 
mechanism involves resonant neutralization that occurs 
when the atomic particle level crosses the Fermi level. The 
thermalization mechanism is via the attainment of the 
atomic level population corresponding to the local elec- 
tronic temperature of the metal in the bombardment re- 
gion. Depending on the particular situation and the partic- 
ular metal, either the tunnel or thermalization mechanism 
may predominate. 

APPENDIX A 

Integrate in ( 16) over t introducing the notation 

Then ( 16) transforms to 

+m 
R t = l  J, dx 1 eCA f (x )  + A A a r ( a )  I ', 

7T € 1  
where 

T ( a )  is the Gamma function and T(a ,  A) is the incom- 
plete complementary Gamma function. 

Note that in the adiabatic limit T + oo (A -* co ) we 
obtain the obvious result R+-0. 

Next, put R+  in the form R + = I 1  +12+Re13, where 
the integrals 11,12, and I3 arise after the removal of the 
modulus sign from the expression for R': 

exp [ - TA] 
I, = 7T 

In writing I3 we have used the asymptotic form of the 
Gamma function: 

T ( c z + ~ )  -- (27T)1 /28-cz(~~)cz+d-1 /2  ,c>O (Ref. 13). 

The integral I3 is easily estimated by using the saddle 
point method (see Ref. 14); it can be shown that the lead- 
ing asymptotic behavior is given by the end portion of the 
integration contour (i.e., x = I E ( ). Then we have 

Making use of the representation of T ( a ,  A) in a continued 
fraction formI3 we can expand f (x )  in powers of 1/A 
giving 

1 l+ ix  1 4+7ix-x2 
f (x)  =- - 

2A (1-ix13 8A2 (1-ix) 5 +". . 
In the general expression R+ = I1 + I2 + Re13, noting the 
approximate calculation of 13, it makes sense to retain only 
the first term in the expansion of f  (x)  [in the analysis of 
various charge exchange channels, also the second term in 
the expansion of f  (x)  will be considered in 12]. 

APPENDIX B 

Let us break the integration over z in Eq. (25) in two 
regions, from - oo to z, and from z t o  + a. The point Flies 
between zo and z*, the only condition being that 
&zo& a/.rreT. Specifically let us assume that 5 z o -  a/% 
(see Fig. 5 ). The point Fplays an auxiliary role and, as is 
shown below, the result will be independent of its choice. 
For us here its is important that for z > Z  
I Ea(z) I 9 (EA(z) I a / d T  [E;(z) = (a/az)E,(z)]. For 
z < z  noting the dominant role of the vicinity of zo, let us 
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where approximate the behavior of the level by Ea(z) =Ei(zo) 
X (z-zo). Then Eq. (25) transforms into the form 

Recall that P(z) is defined in Eq. (25) and that 
FF(Ea(z),O) is the Fermi distribution. 

Let us take up the second term in the expression for 
nu( m ). Note that the integration over 7 is dominated by 
the region 17 1 < a/.rrOT. Then in the argument of the ex- 
ponential we can neglect the term iE~(zo)?/2ul compared 
to iE~(zo)r(z-zo)/ul since z-zo$a/~OT - 
(z>zo; z-zo-a/2). As a result, 

sinh .rrO~:-i0 1 

Now let us treat II separately. Performing integration by 
parts on z, and after a little manipulation in order to re- 
move the imaginary unit from the denominator using the 
Sokhotsky formula 

we obtain 

+E Jtm d r  
EA(zo)r E: (ZO)~ 

2a - m  exp[i ~ ( 7 1 ,  
u, sinh ( d T  a) 

lQ( r )  1 is a narrow peak of width 2vl /.rrlEi(zo) la at 
point r = 0  [for A(z) = Aexp[-2z/a] we indeed obtain 
Q ( r )  - r (  -iE~(zo)ar/2vl 1; I T ( iv)  12=.rr/77sinh(~v), r 
is the Gamma function]. 

Also, we generally have I AA(zo) I a/2 $8, i.e., the dom- 
inant contribution is given by a somewhat narrower vicin- 
ity of r = O  than a/z-OT, which allows one to write 

By performing the integration over r we obtain 

The last integral is easily evaluated by the saddle point 
method (the saddle point is y =0)  : 

Now consider the integral 12. Noting that, for z > z  
I Ea(z) I $ 6  and I EA(zo) (z-zo) I $6, it is found that 

We have neglected exp[EA(zo) (z-zo)/O] in comparison 
with exp[E,(z)/O] because I E,(z) I < I Ei(zo) (z-z0) I for 
z > F  (see Fig. 5) .  

It remains to show that I2 depends weakly on RZ Let us 
employ the approximation Ea(z) = E,(z*) + EA(z*) 
X (z-z*) [recall z*=a/2lnTA is the position of the max- 
imum of P(z)]. Then 
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where y[f, T A ( a ]  is the incomplete Gamma function, 
r(g) is the Gamma function, and r [ f ,  T A ( a ]  is the in- 
complete complementary Gamma function. It is taken into 
account that r ( f )  2 1, r [ f , ~ ~ ( a ]  -exp[- TA(?)] and 
T A ( 3  > 1 .  

The final result is 
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