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It is shown that by studying the correlation properties of electrical resistivity and 
magnetization in metallic superlattices, in addition to measuring the absolute magnitude of 
the magnetic susceptibility, the main parameters characterizing the various possible 
mechanisms for giant magnetoresistance in superlattices can be determined; one mechanism is 
due to the change in the intensity of "mixing" of the electronic trajectories of conduction 
electrons with different spins upon passage from layer to layer, while another involves a change 
in electron scattering by defects in the interface between layers as the mutual orientation 
of the magnetization of neighboring magnetic layers changes. 

1. INTRODUCTION rule, considerably less than L, we will henceforth neglect 

The discovery in 1988 of the giant magnetoresistance 
effect (GMR) in Fe/Cr superlatticesl was followed by the 
appearance of many articles devoted to the study of the 
magnetic and transport properties of multilayer structures 
of alternating ferromagnetic and normal metals (see the 
bibliography in the review2 and the joint monograph3). 
Apart from the desire to establish its physical nature, the 
chief interest in systems exhibiting GMR is in using such 
materials to learn more about the magnetic properties of 
the charge carriers. 

At present it is generally accepted that GMR results 
from the dependence of the effective mean free paths of 
electrons in different spin states on the type of magnetic 
ordering in the superlattice layers. However, which partic- 
ular mechanisms lead to this dependence remains open to 
question. Is GMR a consequence of "mixing" of the tra- 
jectories of electrons from different spin sub-bands, char- 
acterized by different bulk mean free paths, occurring as an 
electron passes from layer to layer? Or does the change in 
the mutual orientation of the magnetizations of neighbor- 
ing layers simply lead to an appreciable change in the in- 
tensity of scattering of charge carriers at interfaces? What 
is the relative contribution to the GMR effect of bulk and 
interface scattering? 

We describe below a treatment of the GMR effect 
within the framework of a quasiclassical kinetic theory of 
transport phenomena on the basis of a relatively simple 

the finite thickness of the nonmagnetic layers. We consider 
that in the ground state (magnetic field H=O), neighbor- 
ing moments Mi and Mi+, are antiparallel (Fig. la )  and 
lie along the easy magnetization axis Oy in the plane of the 
layers. The application of a magnetic field H in the plane of 
the film changes the orientation of the vectors Mi, where 
their modulus is assumed to remain constant: lMil =M,. 
The relative orientation of neighboring moments will be 
characterized by the angle 13=0(H) between Mi and Mi+ ,. 
In an arbitrary magnetic field (in Fig. l b  the disposition of 
Mi is shown for specimen magnetization along Oz), the 
mean over the x coordinate of the relative magnetization is 
p (H)  = M(H)/M,= cos 0/2. In fields H exceeding the sat- 
uration field H,, the density M coincides with the satura- 
tion magnetization M,= M,, . 

The maximum value of the magnetoresistance SR (H)  
= R ( H )  - R (0) will be characterized by the parameter 
A = [R (H,) - R (O)]/R (0) ,  while the change in resistivity 
with field is described by the dimensionless function 
S(H) = [R(H) - R (O)]/[R (H,) -R (O)]. By finding the 
values of S and ,u as functions o f a o n  the basis of exper- 
imental R ( H )  and M ( H )  dependkqces? the correlated de- 
pendence of these quantities can then be estabiished, elim- 
inating the common variable H. As will be shown below, 
we can compare these curves with the theoretical depen- 
dences by expressing the experimental results in the form 
6 = S (p2) in order to estimate the microscopic parameters. 

superlattice model; analytic expressions are obtained both 
for the magnitude of the GMR effect and for the correlated 3. ELECTRICAL RESISTANCE OF A SUPERLA~ICE 
dependence of magnetoresistance and magnetization. We 
describe how the formulae obtained may be used in com- Let ~ , ( k )  represent the spectrum of conduction elec- 
bination with experimentally observed dependences t~ an- trons in the ferromagnetic metal, where a is + or - cor- 
swer the questions posed above. We also discuss analysis of responding to the two electron ~olarizations; a= - rep- 

experimental data1 in terms of our model. resents those electrons with spin parallel to the 
magnetization M and a= + corresponds to those antipar- 

2. BASIC CONSIDERATIONS 
allel. A, are the areas of the corresponding Fermi surfaces 
specified in quasimomentum k space by the expression 

We consider a superlattice of layers of ferromagnetic E, (k)  =f ,  where f is the chemical potential of the metal. 
metal, each of which has thickness L and magnetic mo- The transport properties of a ferromagnet depend on the 
ment density Mi. Since in real lattices which show GMR magnitude of the electron velocities v, =a&, (k)/ak at the 
the thickness of the layers of nonmagnetic metal is, as a Fermi surfaces of the spin subbands, and also on the fre- 

113 JETP 79 (I), July 1994 1063-7761 /94/070113-05$10.00 @ 1994 American Institute of Physics 1 1  3 



FIG. 1 .  Magnetic ordering o f  ferromagnetic layers in the present 
model o f  a metallic superlattice: a )  initial state in the absence o f  
an external magnetic field: M,, , =-M,  ; I M ,  I = Mo; mean mag- 
netization o f  the superlattice M=O; b) O <  H <  H,;  

r M=M,cos  @/2; c )  H > H , ;  M = M o .  

quency of electron scattering by bulk defects v, or the 
corresponding mean free path lengths I, =v,/v, . 

In a rigorous semiclassical description of the response 
of a superlattice to the application of an electric field E, it 
is necessary to write down the system of well-known ki- 
netic equations for the nonequilibrium part of the distribu- 
tion function giving the number of particles $I(:')(x,k) in 
each of the layers i, and to supplement it with boundary 
conditions that specify the distribution functions of elec- 
trons that start from each of the interfaces as a linear com- 
bination of the distribution functions of electrons incident 
upon a given interface from both adjacent layers. The 
scheme for deriving these conditions is analogous to that 
given earlier.4,5 

To establish the boundary conditions we consider the 
quantities that characterize electron interaction with the 
interface between two ferromagnetic layers. Let R, be the 

tions for $I?)(x,k) to equations for the distribution func- 
tions $I,(k) averaged over the x coordinate, which in view 
of the equivalent kinetic properties of all layers does not 
depend on i number. The equations for $I,(k) are obtained 
by integrating the original kinetic equations for +:)(x,k) 
over x and subsequently using the boundary conditions to 
express all of the resulting $I(xi,k) in terms of the distri- 
bution function of electrons incident on the boundary. 
Since we are interested in the case in which the mean free 
path I, exceeds the layer thickness L and an electron trans- 
fers "information" from the boundaries x,=x* L to the 
boundaries x=xi  without significant loss, the difference be- 
tween the distribution functions of the incident electrons 
and the averaged functions can be neglected in the result- 
ing expressions. As a result we obtain a closed system of 
two equations for the averaged distribution functions 
$Iu(k) of electrons belonging to different spin subbands: 

probability of coherent (specular) reflection from an inter- 
layer boundary of an electron with given spin projection a ,  
when its energy and tangential quasimomentum are con- 
served and the signs of the normal components of the qua- 
simomentum Kc, and velocity $ are reversed (assuming 
mirror symmetry of the Fermi surface relative to the plane 
k,=O). We also introduce the matrix TU2,, of the coeffi- 
cients of coherent transmission through the interface, 
where u l  and a2 are the spin projections in the initial and 
final states with quantization axes zl and z2, directed along 
M1 and M2 and rotated by an angle 8 relative to one an- 
other. Scattering processes at the interface will be charac- 
terized by diffusion coefficients S,. The quantities R, T and 
S satisfy the normalization conditions 

The boundary condition for the distribution function 
$12) (xi, k",) at the boundary x=xi for current flow along 
the layers is of the form 

where e is the electronic charge and 6 ( ~ )  is the Dirac delta 
function. The system of equations (3)  has a simple physi- 
cal meaning. With the present approximations, the exist- 
ence of interfaces leads to the appearance in the collision 
integral of, firstly, an additional "outgoing" term (the sec- 
ond term in square brackets can be interpreted as the ef- 
fective electron drift velocity from a state with spin a due 
to scattering at layer interface defects and transitions from 
a state with opposite spin upon coherent transmission 
through an interface) and secondly, an "incoming" term 
[the second term on the left-hand side of Eq. (3) ,  propor- 
tional to $I( -,) , describing the change in distribution func- 
tion 4, due to arrival of electrons from the ( -a) spin 
subband upon coherent transmission through the inter- 
face]. 

By solving Eq. (3) ,  we can find the current density in 
the superlattice averaged over x, 

X (xi, Kc,,). (2) e 
j=m Jd3k#4,(k) 

All the incident terms proportional to S on the right-hand 
side of Eq. (2)  vanish because of the assumed scattering and its conductivity a= j/E, which can be represented in 
symmetry in the boundary plane and the odd parity of the the form 
distribution function $I in kY and K .  However, the bound- 
ary conditions depend implicitly on S through the normal- a = a + + a - + a T ,  ( 5  

ization condition of Eq. ( 1 ) . where 
Since it is sufficient to know the mean current density 

j over the x coordinate to evaluate the effective conductiv- 
= (2rrfi) e' J~A,(U:)~L;; ity of the superlattice a ,  we can go from the known equa- ( 6 )  
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cos ( 8/2 ) i sin ( 8/2) ex= ( 
isin(8/2) cos(8/2) 

The integration in Eqs. (6) and (7)  is carried out over the 
Fermi surfaces A,, and we have introduced the effective 
mean free paths LL = 1,/[1 +S, (l,/L) u:] in the super- 
lattice, which depend on the direction of the electron ve- 
locity relative to the interface ( u i  = I & 1 /u, , j = x ,  z) . 
The quantities A: = Lk/L  are the relative path lengths. In 
deriving Eq. (7)  for a,, the equality of off-diagonal com- 
ponents of the T-matrix was used, which is a consequence 
of the microscopic reversibility of the coherent transmis- 
sion process: T + - = T - + = T. 

As follows from Eqs. (5)-(7), the presence of layer 
interfaces in the superlattice influences the conductivity in 
two ways. First, scattering processes at imperfect interfaces 
lead to a reduction in the effective mean free path of cur- 
rent carriers of both spin subbands from l, to the value 
LS,. In the present approximation, the expressions for o, 
are identical for conduction electrons in the two spin sub- 
bands of a bulk ferromagnet, up to the L: for 1, . Second, 
the existence of coherent electron transmission processes 
through an interface leads to a contribution ar to the con- 
ductivity whose magnitude depends on the coherent trans- 
mission coefficient T and the difference between the effec- 
tive lengths L; and L" and on the difference in electron 
velocities of different spin subbands. We note that the sign 
of a, can be either negative or positive for an arbitrary size 
ratio of the Fermi surfaces A + and A - , as can easily be 
seen from Eq. (7) ,  and only in the special case of complete 
coincidence in the velocity distribution on the surfaces A+ 
and A- can it be definitely stated that aT<O. As a result, 
the magnetoresistance of superlattices, usually negative, 
can have the opposite sign in certain cases. 

4. ORIENTATION DEPENDENCE OF THE S AND T 
COEFFICIENTS 

So far we have not made any assumptions about the 
form of the dependence of the diffusion and coherent trans- 
mission coefficients S and T on the angle 8 between the 
magnetic moments of adjacent layers. The explicit form of 
S and T can be determined for specific quantum- 
mechanical models of an interface. Here we shall, however, 
restrict ourselves to determining the overall functional de- 
pendence of S and T on 8 for an arbitrary scattering po- 
tential at the interface between magnetic layers. 

Rotation of the coordinate system about the x axis by 
an angle 8 corresponds, as is well known, to a bilinear 
transformation in the E, space of tw9-component spinors, 
given by the rotation operator V: (8)  = exp(i&,8/2), 
where is the first Pauli spin matrix. Using the explicit 
form of these matrices and their commutation properties, 
the operator ex can also be represented in explicit form: 

Writing out the action of the rotation operator on an 
eigenfunction of the operator &*, it is easy to show that the 
probability of finding an electron with positive spin projec- 
tion on the z2 axis, rotated by an angle 0 relative to z,, is 
v = cos2 (8/2) provided that this probability in the previ- 
ous coordinate system was equal to unity. Knowing 7, it is 
easy to express the coefficients S, in explicit form as func- 
tions of v in terms of the values of these quantities at =0  
and v = 1, which we denote by s, and s, +As, respec- 
tively: 

Analogously 

where t is the probability of coherent electron transmission 
through an interface between layers, when the latter are 
antiferromagnetically ordered from one surface (A, ) to 
the next ( A ,  ). All the newly introduced quantities s, , 
As, , and t are, in the general case, functions of k, and at 
a given energy they depend on the angle of approach of an 
electron to the interface. As it is not our aim in the present 
work to study effects that depend on such a dependence, 
we henceforth consider these quantities to be numerical 
constants of the theory. 

In this way, knowing the relations in Eqs. (9)  and 
( l o ) ,  the dependence of the conductivity a on 7 can be 
calculated theoretically using Eqs. (5)-(7), and conse- 
quently so can the specific electrical resistance of the su- 
perlattice p ( ~ )  = a-' (q). Finally, we have the possibility 
of directly comparing the experimental dependence s ( ~ ~ )  
with the corresponding calculated function S(V) .  

5. "OCTAHEDRAL" MODEL OF THE FERMI SURFACE 

The hardest part of analyzing the GMR effect on the 
basis of Eqs. (5)-(7) is the need to integrate over the 
Fermi surfaces A+ and A _ ,  which have a rather compli- 
cated shape in real ferromagnetic metals. In striving to 
obtain analytic expressions for the S (V)  dependence, one 
must choose a simple model of the electron spectrum ~ , ( k )  
for practical calculations. Below we use the dispersion re- 
lation 

~ + ( k ) = u *  1 IkJI FE,, (11) 
J 

in which the parameters are the electron velocity u, and 
the spin splitting energy E,. The main feature of the model 
spectrum of Eq. ( 1 1 ) is the constancy of the electron ve- 
locity vector on different parts of the Fermi surfaces A+ 
and A _ ,  each of which is represented by a regular octahe- 
dron. In this model, the fact that the magnitude of the 
electron velocity component depends on the position of the 
wave vector on the Fermi surface can, in fact, be neglected: 
the quantities entering the expressions under the integral in 
Eqs. ( 6 )  and (7)  are u ,  - l / d ;  the integration over the 
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surface A, reduces to a simple summation and the expres- 
sions for the conductivity a can be written in the form of 
explicit algebraic expressions: 

Since the dependences of S and T on q  are given by 
Eqs. ( 9 )  and ( l o ) ,  Eqs. ( 1 2 )  and ( 1 3 )  enable A  to the 
calculated and the explicit functional S ( q )  dependence to 
be found, in which the quantities I , ,  s ,  , As,, and t  act as 
parameters. We make one more simplification, putting 
A+ =A - =A. Taking account of the difference between A  + 

and A- in the cases considered below leads to a non- 
fundamental renormalization of some quantities, without 
changing the form of the functional 6 ( q )  dependence. The 
final expression for the specific electrical resistivity assumes 
the simple form 

8.rr3$?i3 1 l + ( A S + + A Y ) t ( l - q )  
p " ' = ~ ~ ~ S + + ~ ~ + 4 ~ S + ~ ~ t ( l - q )  ' 

( 1 4 )  

where A",AhS, ( q )  = A , / [ l  +A+ ( s+  + A s + q ) ] .  
It is now not difficult to find the form of the S ( q )  

dependence, 

where the coefficients a and f l  can be expressed in terms of 
t, s ,  , As,, and I ,  . We will not give the general form of a, 
p and A  here because of the complexity of the expressions, 
but will discuss instead the more interesting limiting cases. 

If the change in the diffusion coefficient As on passing 
from ferromagnetic to antiferromagnetic ordering is small 
compared with t  and s ,  , then P(a, and the function 

where 

while 

Here A> = A , / (  1 +A,s,  ). Therefore, if the experimental 
6(,u2) curve is parametrized by using Eq. ( 1 5 ) ,  which de- 
termines the values of a and p, and p g a ,  then from Eqs. 
( 17) and ( 18),  considered as a system of equations refer- 
ring to the unknown tA",nd tAS for given a and A, the 
numerical values of the products tAS and tA>an be 
found, as can their ratio y, which is equal to the ratio of the 
mean free paths: 

In the other limiting case, in which the transmission 
coefficient t is small compared with s ,  and As,, and the 
change in the diffusion coefficients is the main GMR mech- 
anism under conditions I ,  % L, the expressions for A, a 
and f l  take the form 

As+ As- As+ As- 
+ y - + ( l + y )  -7 

S + S - S+ - A= 
As _ As+ 9 ( 2 1 )  

l + y + - + y s  S- 
+ 

where y = s + / s - .  
By parametrizing the experimental curves according to 

Eq. ( 15),  the microscopic parameters &+/s+ , h s - / s - ,  
and s + / s -  can be established using the values of A, a, and 
f l  determined in this way: 

As- 1 -a - j3+ayA 
-= - 
s- 1 - Y  , 

where 

Thus, while the experimental R ( H )  and M ( H )  curves 
determine the correlation behavior 6( ,u2) ,  SO that the func- 
tion S ( q )  has finite derivatives do=d6/dq 1 17=o and 
d l  -d6 /dq  1 ,= l ,  the 6 ( q )  curve found experimentally can 
be approximated by the theoretical curve of Eq. ( 15) char- 
acterized by the same values of do and d l  and uniquely 
related to these parameters 

the experimental and theoretical curves then meet asymp- 
totically for q  = 0  and q  = 1 .  

If it turns out that 1st <a, then one can try to extract 
information on one or the other set of parameters either 
according to Eqs. ( 19) and ( 2 0 )  or from Eqs. ( 2 3 ) - ( 2 5 ) .  
If the parameters a and p are of the same order of magni- 
tude, then it can be asserted that either both of the GMR 
mechanisms indicated above provide a comparable contri- 
bution to the effect or that the influence of the "mixing" 
mechanism can be neglected. In the first case it is impos- 
sible to solve uniquely for their magnitude without drawing 
on independent data, because of the large number of un- 
known parameters. In the latter case an attempt can be 
made to verify the correctness of the proposal by using 
Eqs. ( 2 3 ) - ( 2 5 )  to determine As,/s,  and s + / s - .  
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FIG. 2. Correlation behavior of the relative magnetoresistance 6 and the 
square of the relative magnetization p2= 7:  the solid curve is based on the 
experimental data,' the dashed curve on Eq. (15).  The dashed lines de- 
termine values of the derivative of 6 ( 7 )  at 7 =0 and 7 = 1 .  Numerical 
values of the parameters are given in the text. 

6. EXPERIMENTAL RESULTS 

We illustrate the possibility of a practical implementa- 
tion of the proposed procedure for analyzing experimental 
results with an example of its application to GMR in the 
superlattice (Fe 30 A / c ~  12 A)35 (Ref. 1).  The observed 
value of the effect is A =-0.33. The plot of s ( ~ ~ )  on the 
basis of the R ( H )  and M ( H )  curves given by Baibich 
et al. ' is shown in Fig. 2 (solid curve). This function has 
finite derivatives do=0.45 and d, = 2.5 at ~ = 0  and v=  1. 
For the theoretical curve (dashed) shown in Fig. 2 and 
constructed according to Eq. ( 15), the parameters a and p 
are chosen according to Eq. (27) : a =0.45 and 8=-0.08. 
If we assume the "mixing" mechanism to be dominant, 
then Eqs. (19) and (20) yield tlS,/L2:0.37, t P / L ~ 1 . 9 5 ,  
and lY/l$ 2. 5.39. The value obtained for the ratio of effec- 
tive mean free paths is close to the known result for the 
ratio of scattering cross-sections of electrons with different 
spin on chromium impurities in a matrix of bulk iron. 

If, however, we assume that the change in diffusion 
coefficient of interfaces is the main GMR mechanism, then 
analysis of the results using Eqs. (23)-(25) yields 

As+/sO+ 2: -0.75, As_/sO- = -0.04, and y=s+/s- 
=5.34. The result for y is extremely close to that obtained 
above for the "mixing" mechanism. A choice in favor of 
one or the other mechanism can be made if there are values 
of the transmission coefficient t or absolute values of the 
mean free path I, from independent measurements. It is 
important to stress that both forms of analysis of the ex- 
perimental results give essentially identical results for the 
ratio y without using any unsubstantiated assumptions 
about the relation between the coefficients of coherent 
transmission t and the scattering s, . 

7. CONCLUSIONS 

Analysis of the giant magnetorestance effect by the 
scheme described above, using a simple model of a mag- 
netic superlattice, shows that a study of the correlation 
properties of magnetoresistance and magnetization can be 
an effective method for obtaining information about the 
parameters that determine the magnitude of GMR effects. 
In particular, its application to describing experimental 
measurement of the GMR effect in regular superlattice 
structures enables the changes observed to be interpreted in 
terms of the corresponding microscopic parameters. In 
view of its relative simplicity, the proposed scheme can be 
used to analyze features of other transport properties of 
giant magnetoresistance superlattices. The description, in a 
single model, of the behavior of different transport proper- 
ties enables the contribution of different GMR mechanisms 
to be uniquely determined, and the corresponding micro- 
scopic parameters to be obtained. 
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