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A derivation of the hydrodynamic equations from the linearized relativistic kinetic equation 
is given, which differs from the method of expansion in a small parameter. No a priori 
assumptions are made regarding the smallness of the dissipative terms, spatial gradients, or 
collision integral. The resulting hydrodynamic equations are exact in the sense that 
any arbitrary solution of these equations can in principle be used to reproduce an exact solution 
of the linearized kinetic equation. The hydrodynamic model is nonlocal. Despite the 
presence of dissipation, the signal propagation velocity is finite. The present derivation is 
general, independent of the specific form of the collision integral. 

1. INTRODUCTION 

In the usual description of dissipative processes in a 
relativistic gas the ~ c k a r t '  and Landau-Lifshitz2 models 
are used. De Groot et showed that both these models 
can be derived from the relativistic kinetic equation using 
the Chapman-Enskog method as special cases of a more 
general class of models which differ in the definition of the 
local four-velocity of the medium. All these models share a 
certain property of a Navier-Stokes-Fourier nonrelativis- 
tic, viscous, thermally conducting gas,4 namely that a sig- 
nal propagates with infinite velocity in the comoving iner- 
tial coordinate system. 

The unsatisfactory nature of such models in a system- 
atic relativistic theory has been widely discussed in recent 
years in the ~ inar iev*  showed that in order to 
avoid the paradox of superluminal signal velocities, it suf- 
fices to include the dispersion of the transport coefficients, 
i.e., to use a model with a memory. Such models have long 
been used in nonrelativistic  mechanic^.^.'^ Nonlocal space- 
time behavior in the constitutive relations are also pre- 
dicted by statistical mechanics and kinetic theory."-'3 

Thus, there exist relativistic hydrodynamic models 
with dissipation and a finite signal velocity. Here the use of 
the Chapman-Enskog method in order to pass from the 
relativistic kinetic equation to the hydrodynamic 
description3 is inadequate, since the original equation 
yields a finite signal velocity (see Sec. 1 below), while the 
resulting Eckart or Landau-Lifshitz equations yield an in- 
finite velocity. 

In the present work a derivation of the hydrodynamic 
equations from the linearized kinetic equation is proposed 
which differs from the methods of Chapman-Enskog, 
Grad, and Hilbert. No a priori assumptions are made re- 
garding the smallness of the dissipative terms, spatial gra- 
dients, or collision integral. The resulting hydrodynamic 

ously by ~ i n a r i e v , ' ~  where restrictions on the correspond- 
ing kernels were derived from thermodynamics and time 
reversibility on the microscopic level (analogous to the 
Onsager relations). In the present work these limitations 
are derived as a direct consequence of the kinetic equation. 
All conclusions in the present work are general in nature, 
independent of the specific form of the collision integral. 

In the present work a system of units is employed in 
which the speed of light in vacuum c, the Planck constant 
fi, and the Boltzmann constant k are equal to unity. Greek 
subscripts run through the values 0, 1, 2, 3, corresponding 
to the coordinates xu of an inertial system. The Minkowski 
metric is used, (gu8) = diag ( 1, - 1, - 1, - 1 ) . The roman 
subscripts i, j, k run through the values 1,2, 3, correspond- 
ing to the spatial coordinates xi. The roman subscripts A, B 
run through the values 0, 1, 2, 3, 4. Summation is implied 
over repeated indices unless otherwise specified. 

In Sec. 1 we discuss the general properties of the rel- 
ativistic kinetic equation. In Sec. 2 we derive the hydrody- 
namic equations from the linearized kinetic equation and 
study their properties. In Sec. 3 we summarize the results 
of this work. 

2. PROPERTIES OF THE RELATIVISTIC KINETIC 
EQUATIONS 

In the formulation of relativistic kinetic theory we will 
generally follow the approach and notation of de Groot 
et al. 

Consider a relativistic gas of structureless particles 
with mass m, whose state is described by the distribution 
function f = f (xa,f). Here the four-momentum pa be- 
longs to the mass surface 

equations are exact in the sense that any arbitrary solution 0, the mass surface the ~ ~ ~ ~ ~ ~ ~ - i ~ ~ ~ ~ i ~ ~ ~  measure 
of these equations can in principle be used to recover an 

dpm, -ldp1dp2dp3 is The distribution 
exact solution of the linearized kinetic equation. The hy- function satisfies the dynamical equation 
drodynamic model is found to be nonlocal. This model was 
considered on purely phenomenological grounds previ- p a a j = s t [ t ] .  (1.2) 
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Here St[t] is in general a nonlinear operator in function 
space on the mass surface ( 1.1 ), which satisfies a number 
of conditions: 

(conservation of particle number in collisions), 

(conservation of particle energy-momentum in collisions), 
and 

where f e  is the equilibrium distribution 

From the distribution function we can compute the 
four-vector flux of the gas particles 

and the energy-momentum tensor of the gas 

From Eqs. ( 1.2), ( 1.3), and (1.4) we find the particle 
and energy-momentum conservation laws 

a, ja=O, (1.7) 

apTaS=0. (1.8) 

Now we consider the evolution of linear perturbations 
about the equilibrium distribution 

where we assume that the perturbations are produced by 
weak external forces and particle and energy sources. We 
use the standard representation of the linearized distribu- 
tion function3 f = f o ( l + q ) .  

When we take the sources into account, Eq. (1.2) can 
be transformed to 

where s=s (xa , f )  is the source function and L is a linear 
operator defined by a derivative of the collision integral: 
L ~ J  = f & ' DSt[ f o] ( f ~ ) .  In terms of their dependence on 
the arguments pa the functions g, belong to a Hilbert space 
H ,  with the scalar product 

In the space Hm we define the operation I correspond- 
ing to sign reversal of the spatial components of the mo- 
mentum: (IF)  (pi) =rp( -Pi). 

Without specifying a particular form of the collision 
integral we can assert that the operator L satisfies a num- 
ber of conditions: 

(resulting from reversibility at the microscopic level), 

(reality), and 

(the presence of dissipation). 
In a large number of cases the operator L commutes 

with the operator I, so in place of (1.10) we have the 
stronger condition L+ = L. Furthermore, from ( 1.3 ), 
( 1.4), ( 1.10) or by differentiating ( 1.5) with respect to the 
three parameters we derive the relations 

L&=o, (1.13) 
4 where e = 1, ea=pa. 

For an arbitrary function g of the space-time coordi- 
nates we will denote by gF the Fourier transform 

Applying the Fourier transformation to Eq. ( 1.9) we 
find the linear operator equation 

Equation ( 1.14) allows the velocity of signal propaga- 
tion from a source in the relativistic kinetic theory to be 
investigated. For this purpose we consider Eq. ( 1.14) for 
complex quantities k,, where the imaginary parts of the 
wave four-vector Ka= Im ka satisfy the conditions 

M=KaKa>O, P < o .  (1.15) 

From (1.1), (1.12), and (1.15) it follows that 

This inequality implies that the operator G is invertible 
in the complex tube ( 1.15) and says that the inverse oper- 
ator G-' is an analytic function of the wave vector com- 
ponents. It follows from Ref. 15 that the latter implies that 
infinitesimal perturbations cannot exceed the speed of 
light. 

Thus, the kinetic equation ( 1.2) is consistent with the 
causality principle of special relativity. Since the applica- 
tion to Eq. (1.2) of analogs of the Chapman-Enskog 
method3 yields models with superluminal signals, this 
method is evidently inadequate in rigorous relativistic 
theory. In the following section we obtain equations for the 
hydrodynamic variables which follow exactly from Eqs. 
( 1.9) in the sense that any arbitrary solution of the hydro- 
dynamic equations can be used to recover a solution of Eq. 
( 1.9). 

3. DERIVATION OF THE LINEAR HYDRODYNAMIC 
EQUATIONS FOR A RELATIVISTIC GAS 

It is convenient to introduce some new notation in 
what follows. Let Hh be a subspace of the Hilbert space Hm 
spanned by the set of vectors 8, and let Ha be the ortho- 
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gonal complement to Hh : Hm=Hh CB Ha.  We define Ph : 
H,,, + Hh , and Pa : Hm - Ha to be the corresponding pro- 
jection operators and Zh : Hh + Hm , and Za : Ha + Hm to be 
the corresponding injections. In the space Hh we define the 
metric tensor ?lAB= (d',eB) (see Appendix), by means of 
which we can raise and lower the upper-case roman sub- 
scripts. In particular, a set of vectors eA is defined for 
which (eA ,eB) =s; holds. Note that ( 1.10) and ( 1.13) 
imply LHh = 0, LHa Ha.  

We assume that the source term in ( 1.9) as a function 
of the four-momenta takes values in the space Hh. From 
the hydrodynamic standpoint this source term creates par- 
ticle sources ( 1,s)  = Y,  energy sources ( p O , ~ )  =p,  and ex- 
ternal forces   pi,^) =Fi. The hydrodynamic equations 
( 1.7) and ( 1.8) are transformed into equations with the 
sources 

It is easy to find a formal solution of Eq. ( 1.14). Spe- 
cifically, we introduce the notation 

The "hydrodynamic" part of the distribution function 
is found in an obvious fashion from the system of linear 
equations 

and the "nonhydrodynamic" part is found from 

We follow ~ c k a r t '  in defining the material four-vector 
ua. In this approach the four-velocity and the particle den- 
sity n are determined from the relation 

according to 

n = jaua, 

Ua=n- l ja  

Then the energy-momentum tensor can be represented 
in the form 

T ~ ~ ~ = E u ~ u B + ~ ~ u ~ ~ +  ua@+ raB, (2.7) 

where the thermal flux vector qa and stress tensor rraB are 
subject to the restrictions 

Relation (2.7) together with (2.8) can be regarded as 
the definition of the internal energy E, as well as qa and raB: 

The stress tensor is used to define the viscous stress 
tensor 

where we have written haB=uauB--gaB, and p is the hy- 
drostatic pressure given, e.g., by a function p = p ( n , ~ ) ,  
which can be evaluated for the class of equilibrium distri- 
butions ( 1.6) (see Appendix). 

To obtain a closed hydrodynamic model we must ex- 
press the energy-momentum tensor in terms of the hydro- 
dynamic variables, which we take to be the perturbed den- 
sity, internal energy, and velocity. This has already been 
done for the particle flux four-vector. 

Let us consider the physical interpretation of the hA 
components found by expanding h in the eA basis. For this 
we assume that any physical quantity A  in the problem can 

0 1 0 
be expanded in powers of A  = A  + A ,  where A  is the equi- 

1 
librium value of the variable and A  is the linear perturba- 
tion. In particular, 

Assume that p, is a solution of Eq. ( 1.13) and relations 
(2.3) hold. It is easy to show that 

Hence from Eqs. (2.5) and (2.6) we find using (2.13) that 

The physical interpretation of the quantity h4 presents 
certain difficulties. Specifically, we find using ( 1.1 ), (2.7), 
(2.9), and (2.12) that 

Consequently, in order to develop a physical interpretation 
of the quantity h4 (i.e., to express it in terms of the hydro- 

1 1 1 .  
dynamic variables n, E, u') we must make the concept of 
the viscous stress tensor more precise. This will be done 
below. 

To construct a closed hydrodynamic model we must 
1 

find expressions for the internal energy E, the heat flow 
1 .  1 

vector q', and the viscous stress tensor raB in terms of the 
variables hA. 

From (2.9), (2.13), and (2.4), 

I 
EF= (pop0, ( l - ~ Z ~ a h ) h F ) .  

Using relations (2.10) and (2.4) we find 
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0 0 0  
where K = E + p  is the equilibrium enthalpy. Note that we 
have 

since a relation of this type is satisfied for the class of 
equilibrium distributions ( 1.6) .  By virtue of this we find 
from (2 .17)  the expression 

1 .  
&= - (p'pO,~,-,' GahhF). 

Here we have written 

Using relations ( 2 . 4 ) ,  (2.1 l ) ,  and (2 .12)  we find 

1 1 1 
P F = P ~ ~ F + P ~ E F .  

We introduce the auxiliary variables 

zaBA = (pa#,& ) , 

A ~ B ~  = A ~ B ~  ( k y  ) = ( p a f ,  ~ , - , 1  G , ~ &  ) . 

Then Eqs. (2 .16)  and (2 .19)  can be rewritten in the 
compact form 

Note that 
I 

z iJAhAF= ( ~ ~ n ~ + ~ ~ p ~ h ~ ~ ) ~ ~ ~  

holds identically, since both sides of the equation contain 
perturbations of the pressure field in the class of equilib- 
rium distributions. Hence after substituting (2 .20)  into 
(2 .21)  and using (2 .18)  we find the constitutive relations 
of the hydrodynamic model 

1 .  1 .. 
&= -AaAhAF, T; = (AijA- P2AmASij) hAF. (2 .22)  

Let us study the properties of the coefficients AaBA 
which follow from the concepts of symmetry and the re- 
strictions ( 1.10)-(1.13) on the operator L. We note first 
that since Gahe4 = Paikga =o, holds we have 

A,@= 0 .  

Thus, the expressions for the dissipative fluxes do not de- 
pend on the function h4. 

From the invariance under the three-dimensional or- 
thogonal group S O ( 3 )  we find the representation 

Am= xo, Am'= x l i k i ,  Aon= x2iki ,  

where Xa , a = 0,1,..  .9 are functions of the components k ,  , 
which are invariant under the action of the group S O ( 3 ) .  
From ( 1 . 1  1 ) it follows that 

which enables us to interpret the functions X ,  as Fourier 
transforms of some real kernels Y ,  = Y ,  ( x a )  : X,= YaF . 
As follows from the results of Sec. 1 ,  the functions X ,  are 
analytic in the tube ( 1.15).  From the theory of Ref. 15 this 
implies that the functions Y ,  vanish outside the cone 
gaPaxP>0, xO>O (causality). 

By virtue of conditions ( 1 . 1  ) we have 

from which two identities follow: 

Returning now to expression (2 .15)  we see that the 
quantity h4 can be expressed in terms of the hydrodynamic 
variables in a nonlocal fashion by means of the kernels Y , .  
In more detail, we have using relations (2 .23)  and (2 .24)  

Recall that 

Substituting expressions (2 .28)  and (2 .29)  in (2 .27)  
we finally obtain the representation of h; in terms of hy- 
drodynamic variables: 

Next we define the temperature by means of the func- 
tion T =  T ( n , & ) ,  found in the class of equilibrium states 
[e.g., from Eq. ( A 1  )]. Now, substituting expression (2 .30)  
in (2 .28)  and using Eq. ( A 2 )  we find 

Thus, we have shown that the dissipative fluxes (2 .22)  
can be determined from the temperature and velocity 
fields. 

Let us continue the study of the functions X , .  Con- 
sider rB= -ik,,AaYB. AS can easily be seen, we can write 

from which, using ( 1 .  l o ) ,  we find the Onsager symmetry 
relations: 
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where eO= 1, E;= - 1. 
Substituting Eq. (2.23) in (2.31) for the case in which 

a=O, p= 1, we find a single nontrivial relation: 

Now let us find the restrictions that follow from the 
dissipation condition ( 1.12). We can write (no summation 
over a is assumed here!) 

This implies the inequality 

Substituting expressions (2.23) in this inequality for the 
cases a=O, i, we find the inequalities 

where no summation over i is assumed in the last inequal- 
ity. 

Since the dissipative fluxes must vanish for the as- 
sumed motion of a uniform medium, we must have the 
relations 

This completes the derivation of the hydrodynamic model. 
1 1 1 .  

The hydrodynamic variables n, E, u' satisfy Eqs. (2.1 ) 
and (2.2). The dissipative fluxes are defined by expressions 
(2.22) using the set of scalar functions (2.23). These func- 
tions are related by the identities (2.25), (2.26), (2.32) 
and satisfy the inequality (2.33) implied by the dissipation 
of the system. 

4. CONCLUSIONS 

In Sec. 2 of the present work we have derived the 
defining relations and evolution equations for the hydro- 
dynamic model that follows from the linearized relativistic 
kinetic equation. An arbitrary solution of the hydrody- 
namic equations together with relations (2.14) and (2.30) 
and (2.4) can be used to recover the solution of the orig- 
inal kinetic equation. 

Since the original kinetic equation does not admit of 
superluminal velocities, the hydrodynamic model also has 
this property. This and the fact that the model is an exact 
consequence of a general kinetic equation are responsible 
for the superiority of this model to the classical Eckart and 
Landau-Lifshitz models. On the other hand, the appropri- 
ateness of the nonlocal model depends sensitively on how 
well the structure functions X, have been chosen. In order 

that no superluminal signals occur it is necessary and suf- 
ficient that the determinant of the linear system of Eqs. 
(2.1 ), (2.2) be nonzero in the complex tube ( 1.15) (Ref. 
14). On the other hand, it is sufficient that the functions 
X,, X,, X,, X1 = 3X8+2X9 be nonzero and frequency- 
dependent [see Eq. (2.26) of Ref. 81. 

To conclude this work it is appropriate to discuss the 
relation between this method of transforming to the hydro- 
dynamic limit and the classical methods (those of Hilbert, 
Chapman-Enskog, and Grad). We emphasize that the hy- 
drodynamic equations obtained in the present work are 
exact and are related to the power-series expansion in some 
small parameter that characterizes the interaction of the 
gas particles. Hence we can apply any of the classical ex- 
pansion methods using a small parameter to the exact non- 
local hydrodynamic equations and obtain approximate 
equations. Thus, in the Chapman-Enskog method it is nec- 
essary to substitute L-E-'L and look for the hydrody- 
namic variables in the form of series 

which gives rise to a polynomial in k, for any finite ap- 
proximation with respect to E. This is what is responsible 
for the nonlocal behavior of the model. It is obvious that 
this approach yields an incorrect description of the prop- 
agation of short waves, which, in particular, leads to an 
infinite signal velocity in the second approximation. 

APPENDIX 

In this appendix we give some of the formulas used in 
the text of the paper. Using the equilibrium distribution 
( 1.6) we can calculate the thermodynamic functions in the 
usual way:3 

where z= m/T and Ka are modified Bessel functions of the 
second kind. From these equations we can find the func- 
tion p=p(n,e) by eliminating the temperature T. 

Using the definition of the thermodynamic variables in 
an equilibrium state at rest we can readily calculate the 
components of the metric 77AB: 

,,OO=E, r104=r140=n, r144=m-2(~-3p), 

,,;J = #iP, .,,a= ,,i4= ,,4;=0. 

Inverting the matrix rlAB we find the covariant compo- 
nents of the metric: 

r l o o = m - 2 ( ~ - 3 ~ ) ~ ,  r/04=1140=-A, Y ~ ~ = F A ,  

,,..=s'jp-', ,,a=,,i4=,,o;=q4i=o, 
IJ 

where 

A = ~ - ' ( ~ - ~ ( F + ~ T ) F -  I)- ' .  
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Using these expressions and Eq. ( A l )  we can readily 
demonstrate the relation 

'c. Eckart, Phys. Rev. 58, No. 10, 919-924 (1940). 
'L. D. Landau and E. M. Lifshitz, Fluid Mechanics (2nd ed.), Perga- 
mon, Oxford (1987). 

's. R. de Groot, V. van Leewen, and G. van Weert, Relativistic Kinetic 
Theory: Principles and Applications, Prentice-Hall, Englewood Cliffs, 
New Jersey ( 1990). 

4 ~ .  I. Sedov, A Course in Continuum Mechanics, Wolters-Noordhoff, 
Groningen ( 197 1 ) . 

'w. A. Hiscock and L. Lindblom, Phys. Rev. D 31, No. 4, 725-733 
(1984). 

'B. Carter, Lecture Notes in Mathematics 1385, 1-64 (1989). 
' W. Israel, Lecture Notes in Mathematics 1385, 152-210 ( 1989). 
' 0 .  Yu. Dinariev, Prikl. Mat. Mekh. 56, No. 1, 250-259 (1992). 

W. A. Day, Thermodynamics of Simple Materials with Fading Memory, 
Springer, New York (1972). 

lac .  A. Truesdell, A First Course of Rational Continuum Mechanics, Ac- 
ademic, New York (1977). 

I'D. N. Zubarev, Nonlinear Statistical Thermodynamics, Consultants Bu- 
reau, New York ( 1974). 

I2D. N. Zubarev and M. V. Sergeev, Nonequilibrium Statistical Thermo- 
dynamics of Simple Media with Memory, W. A. Day, Ref. 9, pp. 167- 
186. 

"v. Ya. Rudyak, Statistical Theory of Dissipative Processes in Gases and 
Liquids [in Russian], Nauka, Novosibirsk (1987). 

140. Yu. Dinariev, Dokl. Akad. Nauk SSSR 319, No. 2, 356359 (1991) 
[Sov. Phys. Dokl. 36, 541 (1991)l. 

I5v. S. Vladimirov and A. G. Segreev, Progress in Science and Technol- 
ogy, Ser. Current Problems in Mathematics, Fundamental Directions 
(Vol. 8) [in Russian], VINITI, Moscow (1985). 

Translated by David L. Book 

93 JETP 79 (I), July 1994 0. Yu. Dinariev 93 


