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The two-photon Bragg resonance appearing when a beam of atoms with angular momenta of 
the working levels j a = O  and jb= 1 is scattered in the field of a linearly polarized 
standing wave and the possibilities of using it in atom interferometry have been investigated. 
The specific role of spontaneous relaxation in shaping the spatial coherence in an 
initially incoherent atomic beam has been ascertained. The density modulation depth and the 
narrow resonance structure in the momentum distribution of particles scattered in 
separated light fields have been found. 

1. INTRODUCTION 

The interferometer scheme proposed several years ago 
in Ref. 1, which was based on forces of resonant light 
pressure and demonstrated the possibility of observing the 
interference of de Broglie waves associated with the quan- 
tum character of the translational motion of heavy neutral 
particles, has recently been realized experimentally in nu- 
merous  variation^.^'^ Atomic interference is now also of 
great interest as a fundamental physical phenomenon and 
as a new and extremely sensitive tool for precision physical 
 measurement^.^^ The characteristic energy scale of the 
quantum effects observed when resonant atoms interact 
with a light field is the recoil energy E,= k 2 / 2 ~  associated 
with the absorption or emission of a photon. The smallness 
of this quantity, which takes on a value of lo-'' eV for 
optical transitions in sodium-type atoms, is responsible for 
the high accuracy of interferometric measurements. 

Dubetskii et al . '~~ considered an atom interferometer, 
in which two-photon Bragg resonance served as the phys- 
ical mechanism for splitting and mixing coherent atomic 
waves.9 Such a primarily quantum situation is realized 
when atoms interact with the field of a weak standing wave 
for long times ( ~ ~ 7 %  1 ). One distinguishing feature of 
Bragg resonance is its high selectivity with respect to the 
transverse momenta of the particles, under which scatter- 
ing is effective only near certain (Bragg) angles of inci- 
dence of the atoms in the field. 

In ordinary atomic beams with appreciable angular di- 
vergence, the scattered atomic waves overlap, and interfer- 
ence is manifested as spatial density modulation with a 
period equal to half of the optical wavelength. The influ- 
ence of the large phase differences due to the Doppler shift 
and recoil, which rapidly destroys the interference pattern, 
can be eliminated in the case of scattering in two spatially 
separated light beams under echo  condition^""^ (see Fig. 
1) .  The first field splits the coherent atomic waves, and 
after diffraction in the field of the second beam, they mix 
again. The echo condition corresponds to compensation of 
the phase differences associated with the Doppler shift and 
recoil along the trajectories shown in Fig. 1. This is actu- 
ally an atomic analog of an optical interferometer. Inciden- 
tally, the echo effect and interference of particles was re- 

cently discussed in Ref. 10. As was mentioned in Refs. 7 
and 8, the realization of this scheme under the conditions 
of a coherent interaction runs into definite difficulties. 

Spontaneous relaxation plays a major role under the 
conditions of a prolonged interaction of atoms with a field. 
As was shown in Refs. 11 and 12, relaxation is manifested 
in two forms in Bragg scattering. The diffractive (coher- 
ent) scattering, which now occurs in an effective complex 
potential, varies due to the finite width of the upper work- 
ing level. This turned out to be the most significant factor 
for the appearance of spatial coherence in an initially in- 
coherent atomic beam with a symmetric distribution of 
transverse momenta as a result of an interaction with a 
standing wave. In addition, incoherent scattering appears 
due to the recoil effect. In the simplest two-level scheme 
this situation results in strong suppression of the density 
modulation. An hypothesis was advanced in Ref. 12 that 
the situation with Bragg resonance in a self-bleaching tran- 
sition is optimal. The present work focused on a detailed 
analysis of such a process in the case of an atom with a 
ground-state angular momentum ja= 1 and an excited- 
state angular momentum j b = O  in a linearly polarized 
standing wave, as well as its application in atom interfer- 
ometry. 

2. ORIGINAL EQUATIONS 

Let an atomic beam propagating in y be scattered by a 
linearly polarized (in z) standing light wave 

with a small detuning A from the frequency of the resonant 
atomic transition aab .  The function E ( y )  differs apprecia- 
bly from zero in a region with a characteristic width a and 
describes the distribution of the field in a cross section of 
the light beam. 

In the stationary formulation of the scattering problem 
the behavior of an atom is described by the density matrix 

in which "a" refers to the lower (ground) state with an 
angular momentum ja= 1 and projections p =0, f 1, and 
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FIG. 1. Atom interferometer. Two-photon Bragg scattering of an atomic 
beam in spatially separated light fields. Complete cancellation of the 
phase shifts associated with the Doppler effect and recoil occurs along the 
trajectories shown. 

"b" denotes the upper working level with an angular mo- 
mentum j b = O  and a projection m=O (Fig. 2). The 
Wigner representation was used for the variables associ- 
ated with longitudinal motion. The characteristic longitu- 
dinal momenta of ordinary hot beams significantly exceed 
the momentum of the resonant photon k, so that their 
variation during the interaction may be neglected, and it 
may be assumed that the longitudinal trajectory of the 
particles is linear and that F(py) coincides with the distri- 
bution in the incident atomic beam. Thus, the density ma- 
trix p(  12) = p(x,x2t) describes the one-dimensional trans- 
verse (parallel to the x axis) scattering of the particles 
caused by the recoil effect in induced and spontaneous 
transitions and satisfies the following system of equations 
(see, for example, Ref. 9): 

FIG. 2. Scheme of levels. 

Here the derivative with respect to time is taken along the 
longitudinal trajectory of the particle (a/&= v@/ay), 
v=A+iy/2, y is the total width of the upper level associ- 
ated with spontaneous decay to the ground state, and 

( -  1 / 2 ~ ) a ~ / a x : , ~  are the operators of the trans- 
verse kinetic energy of the inversion center of an atom with 
a mass M. The interaction with a standing wave was writ- 
ten in the resonance approximation and has the form 

where d;, = ( j b = O  1 ai 1 ja= 1;p) is the matrix element of 
the longitudinal transition. 

The relaxation matrix y,,, ( 1 - 2) E y,,~ (x, -x2) de- 
scribes the transverse recoil of an atom upon spontaneous 
transitions to sublevels of the ground state. Its Fourier 
components are clearly nonzero only in the interval I q I <k: 

The tensor ~ ~ ~ ( 9 )  is proportional to the photon polariza- 
tion density matrix tiij - ninj (where n is the direction of 
the momentum of the quantum) after averaging over all 
directions of emission in the (y,z) plane, which is equiva- 
lent to taking into account recoil only parallel to the x axis. 
Therefore, K~~ is a diagonal matrix 

with axial symmetry. 
As in Refs. 7, 8, and 12, we consider a primarily quan- 

tum regime for the scattering of atoms by the field of a 
weak standing wave acting for a long time r=a/vy 

under which the conditions of two-photon Bragg resonance 
are realized. 

The transition ja= 1 - j b = O  is self-bleaching. In a lin- 
early polarized wave spontaneous relaxation results in op- 
tical pumping of the ground-state sublevels with p= * 1, 
which clearly do not interact with the external field. There- 
fore, the number of spontaneous transitions N: during the 
interaction must not be great: 

Here w- I V/v 1 g 1 is the population of the upper level, 
and y, and y-, are, respectively, partial widths associated 
with radiative decays to the sublevels with p= .t 1. The 
partial width associated with the spontaneous transition to 
the p=O sublevel is denoted by yo, so that the total width 
of the upper level is y = y, + y- , +yo. Although 
y, = y- =yo= y/3 in the specific situation under consid- 
eration, to keep the picture clear we shall retain the indi- 
vidual notations for the respective partial widths below. 

When conditions (9) are satisfied, Eqs. (4)  and (5) 
are easily solved, as was done in Ref. 12. First, thanks to 
the inequality yr, 1 ,  the quasistationary approximation 
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can be used in Eqs. ( 4 )  and ( 5 ) ,  and the derivative with 
respect to time may be neglected. Second, the only particles 
which are effectively scattered in such weak fields have a 
transverse kinetic energy of the order of the recoil energy: 
~ ( p , )  = p : / 2 ~ - ~ r 4  y. The latter inequality is adequately 
satisfied for atoms with strong transitions. This permits the 
omission of fl,, in Eqs. ( 4 )  and ( 5 ) .  Finally, taking into 
account the population of the upper level from perturba- 
tion theory, we obtain 

Substituting these expressions into ( 3 ) ,  we obtain an equa- 
tion for the atomic density matrix p;, ( 12) - p,,, ( 12) in 
the ground state 

With no loss of generality, the field V ( t )  was assumed to be 
real in expressions ( 1 1 ) and ( 12).  

The term with the transverse kinetic energy plays a 
significant role in Eq. ( 12) .  If px=p z k,  ~ u , T -  E , T ~  1 ,  i.e., 
during the interaction the atom traverses a distance along 
the standing wave greater than the spatial period of the 
field. Just this circumstance ensures the narrowness of the 
Bragg resonance and the high selectivity of the scattering 
with respect to the transverse momenta of the atoms. The 
second and third terms on the right-hand side of Eq. ( 12) 
describes the interaction of an atom in the ground state 
with the effective complex potential11 

v 2 ( t )  
U ( x t )  =- 

A + i y /2  
cos2 kx, 

which appears as a result of induced transitions between 
the ground-state p = 0 sublevel and the excited state under 
the action of the external field. In a weak field the upper 
level acts as an intermediate state with a finite lifetime. 

To complete the discussion we briefly recall the prop- 
erties of a two-photon Bragg re~onance.~ A diffraction 
(Bragg) pattern appears in the scattering due to the fact 
that coherent mixing of states with momenta differing by 
2k occurs in periodic potential ( 13) .  In a weak field satis- 
fying condition ( 9 )  there is effective mixing only of states 
with the momenta p = k +  Sp and similar kinetic energies 

so that the width Sp of the two-photon Bragg resonance 

becomes smaller than the momentum of the photon when 
the interaction time is long. We note that Bragg scattering 
results in the appearance of coherence between states with 
momenta equal to &k+Sp in an initially incoherent 
atomic beam. 

The last term on the right-hand side of Eq. ( 1 2 )  is 
associated with a process involving an induced transition of 
the atom to the excited state followed by spontaneous de- 
cay to one of the ground-state sublevels. Therefore, only 
the diagonal element poo( 12) of the density matrix appears 
in this term. Recoil due to spontaneous emission results in 
incoherent mixing of states with momenta in a range of 
width 2k. 

It can be seen from ( 12) that an independent equation 
is observed for poo( 12) and that poo( 12) appears as a 
source in the equations for the remaining elements of the 
density matrix. 

In the usual situation it may be assumed that the inci- 
dent atomic beam lacks coherence (both for the internal 
states and for states of translational motion), that the sub- 
levels are equally populated, and that the density of the 
particles is constant. Then the initial condition for Eq. 
( 12) has the form 

The Fourier component F o ( p )  describes the initial distri- 
bution with respect to the transverse momenta and has, for 
example, a Gaussian form with a characteristic width po, 
which is smaller than p,,, but significantly greater than the 
momentum of the photon in an ordinary atomic beam 
(k(<po(<p,) .  

Equation ( 1 2 )  is invariant with respect to the transla- 
tional transformation 

which likewise does not alter initial condition ( 16) .  There- 
fore, the solution may be represented in the form of a 
mixed expansion in a series and a Fourier integral:I2 

We also have a useful relation between the harmonic am- 
plitudes p , ( ~ )  and the Fourier components p ( p l , p 2 ) :  

EQUATIONS FOR HARMONICS 

To describe the lowest-order Bragg resonance, it is suf- 
ficient to retain the harmonics with s=O, 1 in expansion 
( 1 8 ) .  Then, for the harmonic ~ : ( ~ t )  =n , (p t )  we have the 
following system of equations: 
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3. TWO-PHOTON BRAGG RESONANCE 

These equations coincide with the equations which were 
presented in Ref. 12. The functions n ,  , ( p t )  differ appre- 
ciably from zero only in a small neighborhood of the Bragg 
resonance p  = 6p < k, where the energy difference R  
= ~ ( p  + k )  - ~ ( p  - k )  is small. The function no(pt) varies 
significantly over a broad range of momenta. Therefore, 
only the zeroth harmonic was retained in the integral terms 
in ( 2 0 )  and (21 ), and the contribution from n, ( p t )  is 
small owing to Sp/k. The initial conditions for the harmon- 
ics have the form 

We also need equations for the harmonics of other 
elements of the density matrix. For p; " ( p t )  - m,(pt)  [and 
similarly for p, ' - I  ( p t ) ]  we obtain 

We note that Im U ( t )  < 0 ,  and Eq. ( 2 3 )  simply describes 
the effect of the optical pumping of the sublevels with 
p = f  1. 

Finally, the equations for p; = r, differ from ( 2 3 ) -  
( 2 4 )  only in that q2 is replaced by q3= ( 3 / 8 k )  ( K ~ ~ - K , , )  

in the integral terms. 
The initial conditions for these equations are 

mo(p,t= - cc ) = F o ( p ) ,  and all the other quantities are 
equal to zero. 

The problem reduces to the solution of system ( 2 0 ) -  
(21 ) for the harmonics of density matrix element poo( 12),  
which are then employed as the source in the equations like 
( 2 3 ) - ( 2 4 )  for the remaining elements. We follow Ref. 12, 
in which equations similar to (20) - (21)  were analyzed in 
detail. 

The harmonic n,(pt) ,  which is clearly the momentum 
distribution of the atoms in the p=O sublevel [see ( 1 9 ) ] ,  is 
written in the form of a sum of two terms: 

The first term is the "background" on which the Bragg 
resonance is traced. The behavior of Co(pt) is determined 
by two factors: damping due to spontaneous decays to 
other sublevels and diffusion in momentum space due to 
processes involving incoherent mixing of the states with 
momenta p  and p  k+q,  where 1 q  1 < k  is the recoil mo- 
mentum for a spontaneous transition to the p  = O  sublevel. 
We assume that the number of such transitions during the 
interaction is small [in analogy to condition ( l o ) ]  

In this case the weak-field diffusional variation of the mo- 
mentum is of the order of k  and scarcely alters the broad 
initial distribution F o ( p ) ,  causing only small corrections of 
order ( k / p o )  '< 1. Therefore, for &(pt)  it is sufficient to use 
the expressionI2 

The second term Sno(pt) in ( 2 5 )  describes the contri- 
bution from the Bragg resonance caused by the coherent 
variation of the momentum by a definite amount 2k (or 
- 2k)  and is appreciably nonzero only near p= f k. After 
if,, has been separated out, the set of remaining functions in 
Eqs. ( 2 0 ) - ( 2 1 )  6no(*k+Sp, t )  and n, l (6p , t ) ,  which re- 
fer to the process of diffractive Bragg scattering per se, may 
be represented in the form of the matrix 

Then from ( 2 0 ) - ( 2 1 )  for R we obtain the inhomogeneous 
equation 

with the non-Hermitian Hamiltonian 

where U ( t )  = v 2 ( t ) / 4 v  is the complex potential, 
R=2kSp/M, and al and a, are Pauli matrices, and with 
the inhomogeneous term 
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Here it was assumed that Fo(p) is a fairly broad distribu- 
tion and that it can be replaced by the constant Fo with 
accuracy to small corrections of order (k/po)2 in the vi- 
cinity of p - k. 

We introduce the evolution operator $(t), which obeys 
the equation 

Then the general solution of Eq. (29) can be written in the 
form 

x [$+(tl)] -I$+ ( t ) ,  (33 

where the first term contains the arbitrary constant matrix 
k o ,  and the second term is a particular integral of inho- 
mogeneous equatiop (29). 

We represent S ( t )  in the form 

where the exponential function describes free evolution, 
and the matrix ~ ( t )  for the Bragg scattering per seI2 

is built up from the spinor u ( t )  = (~((i,) ), which obeys the 
equation 

The equation for the "conjugate" functions E( t )  and p ( t )  
are obtained from (36) by means of the replacement 

-a, i.e., 

After the interaction with a field ends as t- W ,  the func- 
tions a ( t )  and P(  t)  take the constant values a ( w ) =a and 
B( w ) -p, which ,. specify the complete Bragg scattering 
matrix B( w ) - B. 

Equations (28) and (33)-(35) solve the problem of 
Bragg scattering in general form, expressing 
Sno(&k+Sp,t) and n,,(Sp,t) in terms of the solutions 
a ( t )  and P(t)  of Eq. (36) and the initial matrix Ro. Of 
course, the functions a ( t )  and P( t )  for a field with a 
smooth envelope v2 ( t )  of arbitrary form can be found only 
to some approximation, for example by perturbation the- 
ory. The explicit forms of a (  t)  and P (  t)  for the envelope 
v2(t) = v ~ c o s ~ ( ~ / T ) ,  which allows a known exact solu- 
tion of Eq. (36), were written down in Ref. 12. 

The main features of Bragg scattering can, however, be 
analyzed on the basis of the properties of Eq. (36) without 
using the explicit !arm, of the solution. Initial condition 
(22) means that Ro = R ( - w ) = 0, and R is determined 
only by the inhomogeneous solution [the second term on 
the right-hand side of Eq. (33)l. The integration of the 
equations like (23)-(24) for other elements of the density 
matrix is elementary. Here it is sufficient to leave only - 
no(pt) as defined in Eq. (27) in the integral terms in Eqs. 
(23)-(24). 

4. SPATIAL DENSITY MODULATION AND MOMENTUM 
DISTRIBUTION 

The density of atoms (in the ground state in the ,u = O  
sublevel) at the point ( x ,  y=v$) is specified by the diag- 
onal element poo(xxt). The zeroth harmonic [see (18)] 
clearly gives a contribution which is not dependent on x, 
and the n, , harmonics produce spatial oscillations of the 
density with a period r /k.  These oscillations are the result 
of the interference of coherent atomic waves appearing as a 
result of diffraction of the particles in the standing light 
wave. 

Using expressions (28) and (33)-(35) and initial con- 
dition (22), we obtain the harmonic n,(Sp,y) after an in- 
teraction with a field (when t ) ~ ,  i.e., y )a)  

Here N, is the total number of spontaneous transitions; a ,  
8 ,  and the "conjugates" are specified by the constant Bragg 
scattering matrix; 

It can be seen from expression (38) that n, vanishes and 
there is no spatial density modulation in the absence of 
spontaneous relaxation. 

As was noted in Refs. 11 and 12, a major role is played 
by the finite width of the excited state in effective complex 
potential (13), which specifies Bragg scattering matrix 
(35). It  follows from Eq. (36) for the real potential U(t) 
that the replacement fl- - is equivalent to the opera- 
tion of complex conjugation. Therefore, bearing the initial 
conditions in mind, from relations (37) we obtain 

and B(t)  becomes a unitary matrix. In this case the ex- 
pression in square brackets in Eq. (38) vanishes, since 
C=C, the first two terms simply cancel one another, and 
D=O. 

The fact that n, as defined in (38) turned out to be 
proportional to the partial width y, is due to expression 
(3 1) for the inhomogeneous term, which does not take into 
account the difference between Fo(p) and the constant at 
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small momenta. It can be shown that if these corrections 
are taken into account, n, does not vanish when yl =O. In 
this sense it may be stated that the density modulation is 
caused by violation of the unitary character of the Bragg 
scattering matrix. 

If we formally set yo =0, we have dg/dt =0  and C= D 
=O. In this sense Eq. (38) is simplified significantly and 
coincides with the expression obtained in Ref. 12, i.e., 

This result has a visualizable physical interpretation. The 
first term a p  is the contribution to the density modulation 
from the particles with an initial transverse momentum 
k+Sp, and the second term pi?* is the contribution from 
the particles with a momentum - k+6p. There are no 
other contributions, since there are no spontaneous transi- 
tions to the p = O  sublevel (the partial width yo=O). In a 
real potential, these contributions exactly cancel. 

It may be stated that the two spatial lattices have a 
phase shift of a. The loss of the unitary character due to 
the finite lifetime of the excited state alters the phase shift, 
and density modulation appears. 

To illustrate this point we consider expression (41 ) for 
the special case 6p=O, in which Eq. (36) is easily inter- 
preted for an arbitrary field envelope and gives 

- 
a=E=cos ly, P=fl= -i sin ly, y=  J:m U(t)dt. 

(42) 

Then, for nl and the phase difference q, between the atomic 
lattices corresponding to the two terms in Eq. (41), we 
obtain 

Ns q, sinh(NS/2) 
n, -ePNssinh - , cot -= 

2 2 lsinNil ' 

where N, and Ns are the numbers of induced and sponta- 
neous transitions during the interaction. When N,=O, we 
see that the phase difference equals a and nl=O. When 
N,) 1, the value decreases exponentially. This is perfectly 
natural, since spontaneous relaxation strongly disrupts the 
coherence. 

In the general case atoms with initial momenta from a 
range of width 2k, rather than just the particles with mo- 
menta equal to +k+Sp, also make a contribution to den- 
sity modulation (38) due to spontaneous transitions to the 
p = 0 sublevel when yO#O. 

The first harmonic ml (Sp,t) =pi ' = p~ I - '  of the diag- 
onal elements of the density matrix for other sublevels is 
obtained by elementary integration of Eq. (24) with con- 
sideration of (27), and after an interaction with a field it 
has the form 

V2(t) 
m I (6p,y) = yl FO exp ( - iay/vy) dt - I:.. 41~1 '  

To obtain observable quantities, averaging with the ini- 
tial momentum distribution F(py)Fo(p) must be per- 
formed. We use angle brackets to denote this operation. 
Then the oscillating part of the particle density has the 
form 

+ const. (45) 

Due to the large phase difference fly/vy-y/a associated 
with the Doppler effect and recoil, which, incidentally, are 
of the same order of magnitude when p- k(ku-E,), the 
averaged quantities (n,) and (ml)  become vanishingly 
small as soon as the atoms leave the interaction region 
( y > a ) ,  and there is no density modulation. Dephasing 
caused by reversible relaxation is known to be eliminable 
under echo conditions when scattering takes place in two 
light fields.' We shall examine this equation in the next 
section. Attention should still be focused on the relation- 
ship between the contributions (n l )  and (m,) of atoms in 
different sublevels to the resultant modulation depth (45). 
These quantities can be calculated analytically only by per- 
turbation theory for weak fields ( rv2 /  1 Y 1 & 1 ), in which 
the number of induced and spontaneous transitions is 
small. Restricting ourselves to the lowest order of pertur- 
bation theory in solving (36) for a field with a Gaussian 
envelope [v2( t )  = V; exp( - ?/2)],  from (38) and (39) 
we obtain 

We see that in a weak field the contributions to the mod- 
ulation depth from atoms in different sublevels cancel (in 
the linear approximation with respect to N:). If the field 
parameter is of order unity, then, as the results of the 
numerical calculation presented in Fig. 3 show, complete 
cancellation does not occur, and (n,) and (m,)  have pos- 
itive signs. 

Momentum distribution 

Bragg resonance is also manifested in the distribution 
function with respect to the transverse momentum no(p) 
for atoms in the p = O  sublevel. Against the background of 
the smooth distribution (27), near momenta equal to & k  
there is a narrow resonance structure (with a width 
6p & k), which is described by the functions Sno( += k+ Sp). 
After an interaction with a field, the value of, for example, 
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FIG. 3. Numerical calculation (for N,= I ,  A / y =  1 ) of spatial modula- 
tion of the atomic density: a )  in the immediate vicinity of the zone of 
interaction ( t = O )  with a standing light wave in different states with p=O 
(I) and p = f 1 (2); b) under echo conditions ( t= 207, L = lOa) . 

is specified by the matrix element R l l  of the second sum- 
mand in matrix (33) and has a fairly cumbersome form in 
the general case. 

In the case of weak fields, if we restrict ourselves to the 
terms quadratic in U, for R ,  we obtain 

Using a field with a model envelope of the form 
v2(t)  = V; exp( - I t 1 /T) for simplicity, after all the inte- 
grations we arrive at the following expression for 
Sno(k+Sp): 

where g = n ~  and N,= V ; ~ T ~ I J ~ ~ < ~ .  
Distribution (49) describes a curve that is asymmetric 

with respect to the point (=0 and has an area equal to 
zero. The characteristic width 6- 1, i.e., Sp/k - l / ~ , r  < 1. 
The amplitude of the resonance increases with increasing 
A/y, and the asymmetry depends on the sign of the detun- 
ing. As the numerical calculations presented in Fig. 4 
show, the characteristic features of the resonance curve 
just mentioned are also maintained in stronger fields. Av- 
eraging over the longitudinal velocity (i.e., over the time of 
flight r=a/uY) with the distribution function F(py) does 
not qualitatively alter the form of resonance curve (49). 
The resonant momentum structure in the vicinity of 
p =  -k is obtained by means of the replacement 6- -C. 

5. ATOMIC INTERFERENCE IN SEPARATED LIGHT FIELDS 

The first harmonics of the diagonal elements of the 
density matrix describe the spatial coherence in an initially 
incoherent atomic beam as a result of two-photon Bragg 
scattering in the field of a standing wave. This coherence 
essentially exists only in the region where the light field 
acts, and it rapidly breaks down at y > a due to the phase 
differences associated with the Doppler frequency and the 
recoil energy. The coherence destroyed by reversible relax- 
ation processes can be restored under echo conditions via 

FIG. 4. Momentum distribution of particles forming a spatial lattice in 
the vicinity of the momentum p= k [numerical calculations for A / y =  1 
(I) and A/y=O (2)]. 

successive perturbations, which create a time-reversal ef- 
fect. Therefore, we consider the successive two-photon 
Bragg scattering of an atomic beam in two standing light 
waves separated in space by a distance L. 

As we have already noted, the diagonal element 
poo( 12) of the density matrix obeys an independent equa- 
tion [see ( 12)]. Therefore, we describe a general solution 
scheme for this element, assuming, of course, that the light 
fields have identical linear polarization. 

After scattering in the first wave, which is located in 
the vicinity of y=O, poo(12), which corresponds to the 
exponential factor in operator (34), evolves freely in the 
interval a 4 y  4 L -a, and its constant value as t - CQ can be 
taken for the Bragg scattering matrix. 

The action of the second field is specified by the general 
solution of (33), in which both terms, i.e., the homoge- 
neous and inhomogeneous solutions, must now be taken 
into account. We recall that the initial atomic beam, which 
is incident upon the first wave, was assumed to be incoher- 
ent, that R,=o, and that only the inhomogeneous solution 
corresponded to the interaction with the first field. The 
matrix R obtained as a result of the effects of the first wave 
and free evolution in the interval L should be taken as the 
initial matrix kyI for the interaction with the second field: 

n T  ,,, 
exp( -i y 03) BIPIB: exp 

(50) 

Here the subscript "I" denotes quantities referring to the 
first field. 

Under echo conditions at a distance L + 1 (14 L )  from 
the second wave (y=2L+I)  we obtain 
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The subscript "II" refers to the second wave. The term 
associated with the inhomogeneous solution ( - PII) pro- 
duces coherent effects and density modulation similar to 
those occurring in the first wave. Therefore, after averaging 
over velocity, they exist only in the immediate vicinity of 
the second field and vanish at distances y -  L )  a. 

From expressions (50) and (51) we obtain the first 
harmonic of the density-matrix element p, at a distance 
L + I from the second wave 

Here N, is the total number of spontaneous transitions 
during the interaction with the two fields, and the matrix 
u=u l  -iu2 plays role of a projection operator. Bearing in 
mind the subsequent averaging over velocity, in calculating 
Tr { . - . } we should retain only the terms not containing 
the large phase i l T  = il L/uy. These terms correspond to 
the phase trajectories of an atom presented in Fig. 1. As a 
result, the density modulation depth has the form 

df exp ( - ilf/a 

Here r=a/vy, integration with respect to transverse mo- 
mentum has been written in explicit form (f = il T ) ,  aver- 
aging over longitudinal momentum is denoted by angle 
brackets, and subscripts "I" and 'Z" refer to the first and 
second fields. 

It follows from Eq. (36) that in fields with a smooth 
envelope, the waves f l  and p decrease exponentially as a 
function of the parameter ilr= f at f )  1. Therefore, values 
f - 1 contribute to the integral over f in Eq. (53). This 
means that the atomic lattice has a dimension of the order 
of the width of the light beam (I-a) in space. If the field 
parameter v2r/ 1 v 1 - 1 for each of the waves, the integral 
in (53) is of order unity, and the modulation depth is equal 
in order of magnitude simply to the relative number of 
particles which effectively participate in two-photon Bragg 
scattering 

In an atomic beam with hot velocities vy and angular 
divergence 8 -pdMvy - 10-~-10-~, the modulation depth 
may reach a value of the order of 10-~-10-~ of the mean 
particle density in the beam. 

An exact analytical calculation of (nl)  can be per- 
formed for weak fields. For two identical fields with a 
Gaussian envelope, after all the integrations in lower-order 
perturbation theory we obtain 

.rr yl  N, exp ( - N,) V ~ T  
(n l )  = -- - fi Y k ~ 0 ~  (qq) exp(-~/3u'),  (55 

Although the number of spontaneous decays N, is small, to 
visualize the situation we retain the exponential factor 
exp( -Ns). 

The other sublevels (with p= * 1 ) do not contribute 
to the resultant modulation depth, since they do not dis- 
play the echo effect. In fact, "time reversal" requires a 
repeated coherent perturbation. In Eq. (24) there is only 
an incoherent source, and there are no induced transitions 
here to bring about cancellation of large phases upon re- 
peated perturbation. Thus, the echo effect for spatial co- 
herence presents itself in the following manner. The signal 
appearing immediately after the first perturbation, i.e., the 
spatial density modulation, is given by the first harmonics 
for all three sublevels [see (45)l. At this point the contri- 
butions (nl ) and 2(ml) partially cancel [and in weak fields 
the cancellation is essentially complete, see (46)l. After the 
second perturbation, only the signal associated with (n,) is 
reproduced under echo conditions. Since no cancellation 
occurs here, the resultant density modulation signal may 
be greater than the original signal, in principle. Such am- 
plification of the signal is especially evident in weak fields. 
The narrow Bragg resonance structure in the momentum 
distribution of the atoms, which is shown in Fig. 4, is also 
reproduced under echo conditions. 

6. CONCLUSIONS 

We considered two-photon Bragg resonance and the 
possibility of its utilization as a mechanism for splitting 
and mixing coherent atomic waves in atom interferometry. 
The 1-0 transition, which is self-bleaching in a linearly 
polarized field, was employed as the working atomic tran- 
sition. The characteristic features of the Bragg scattering 
process, primarily the special role played by spontaneous 
relaxation in the formation of coherence in an initially in- 
coherent atomic beam and the resultant echo signal, were 
ascertained in this concrete example. 

The results obtained may be generalized to other an- 
gular momenta, such as those of the levels in transitions of 
the 1/2-1/2 type, which are encountered in alkali-metal 
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atoms. A situation similar to the one considered can be 
realized when a standing wave with circular polarization 
acts on atoms. 

We stress that departure from the simplest two-level 
scheme, i.e., consideration of the degeneracy of the levels 
and spontaneous relaxation, expands the possibilities for 
controlling interference effects. For example, the depth of 
the spatial density modulation under echo conditions can 
be manipulated by varying the angle between the directions 
of the polarizations of the separated light waves. This is 
due to the fact that atoms in states representing the super- 
position of states with different projections of the angular 
momentum are subjected to the coherent influences in the 
second wave and that disappearance of the echo signal can 
be achieved at a definite angle. 

Finally, we note the Bragg resonance structure in the 
momentum distribution (Fig. 4). The width of the reso- 
nance is determined by the magnitude of the momentum, 
which corresponds to an energy far smaller than the recoil 
energy. The possibility of obtaining such an ultranarrow 
distribution was pointed out in Refs. 7, 8, 11, and 12. The 
form of this narrow Bragg resonance was obtained in the 
present work. 
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