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General expressions are obtained for the spectral and angular distributions of the energy of 
transverse electromagnetic waves radiated or scattered by arbitrary sources in a 
transparent dispersive medium in terms of the Fourier transformof a quantity which 
describes the sources (currents, variable or nonlinear polarization of the medium, etc.). It is 
shown with the help of the relations so introduced that the contribution to the energy 
of the waves due to interference of the wave incident on an arbitrary system of currents and 
the scattered (reradiated) wave adequately describes the attenuation (or amplification) 
of the wave. In particular, attenuation of radiation in the medium can be explained by 
interference of the incident wave and waves reradiated by the oscillators of the medium. 
It is found that for scattering of a beam of electromagnetic waves with arbitrary divergence by 
a point oscillator, the interference term should alter the angular intensity distribution. 
The angular intensity distribution of a transmitted wave is calculated for a Gaussian beam with 
arbitrary aperture, taking interference into account. 

1. INTRODUCTION 

Processes of radiation, propagation, and scattering of 
electromagnetic waves are an important object of study in 
classical electrodynamics. In this regard, in different prob- 
lems in plasma physics, nonlinear optics, the theory of 
accelerators and elementary particle detectors, and in other 
branches of physics, a variety of methods, sometimes dif- 
fering widely in form, are used to calculate the character- 
istics of radiated or scattered waves (see, for example, 
Refs. 1-3). 

One of the methods that are suitable in the case of a 
medium with arbitrary dispersion is the Green's function 
method based on the solution of the Maxwell equations for 
the Fourier transforms of the fields (see, for example, Ref. 
3, p. 205). The main drawback of such operational meth- 
ods is the necessity to return to ordinary (r,t)-space (per- 
form the inverse Fourier transform) to compare the theo- 
retical results with observed experimental quantities. 
However, in the case of wave problems the Fourier trans- 
forms of the fields have a physical meaning of their own. 
Thus it is possible to obtain interesting spectral and angu- 
lar distributions of the radiation intensity in dispersive 
transparent media in such problems directly from the Fou- 
rier transforms of the fields. Such an approach is used, for 
example, in the theory of transient radiation in a nonsta- 
tionary, nondispersive 

In the present paper a general method is proposed 
which allows one to reduce the problem of calculating the 
characteristics of electromagnetic waves in a transparent 

By way of an illustration of the use of the method, we 
present an analysis of the influence of interference of the 
incident wave and the scattered wave on scattering by an 
oscillator. It will be shown that the attenuation of radiation 
in an absorbing and scattering medium consisting of inde- 
pendent oscillators can be considered a manifestation of 
this interference. If a beam of electromagnetic radiation 
with finite aperture is scattered by an isolated oscillator or 
a localized group ("cluster") of oscillators, then interfer- 
ence of the incident wave and the reradiated wave leads to 
the formation of a minimum in the angular total energy 
distribution and to a narrowing of the beam as a result of 
scattering. 

We write the system of Maxwell's equations in a non- 
magnetic medium for the total Fourier transforms of the 
fields, which are given by 

We denote by E and H the electric and magnetic field 
vectors. We write the constitutive relations in the form 
Dk,,=2(k,w)Ek,,+ P'k,,, where the frequency- and 
spatially-dispersive "matrix" is described by the tensor 
i.(k,w), and the "additional" polarization P' can be due, 
for example, to nonuniformities, nonstationarity, or non- 
linearity of the medium. The latter can serve as a source of 
electromagnetic waves along with charged particles and 
currents. 

Maxwell's equations take the form 
- 

dispersive medium to the calculation of the Fourier trans- (k,z(k,m) Ek,,) = -4 r (  kp'k,,) - 4 ~ i p k , ~ ,  (1 
form of a quantity characterizing the source of the waves 
that amounts to a generalized polarization. The novelty of kHk,, =O, (2 )  
the expressions obtained below lies in the lack of any re- 
strictions on the type of sources and the character of the w 

dispersion of the medium. [kEk,,] =; Hk,o r 
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Here pk,, and jk," are the Fourier transforms of the charge 
density and the current density of the external charges, 
respectively. 

Taking the cross product of Eq. (3) with k and taking 
Eqs. (2)  and (4) into account, we obtain 

Below we consider the case in which the medium matrix is 
isotropic: t(k,w) =E^(k,w) (the perturbation of the prop- 
erties of the medium can, however, be anisotropic). The 
generalization to the case of an anisotropic medium does 
not introduce any fundamental difficulties. 

2.1. Energy of transverse electromagnetic waves in an 
isotropic transparent medium. 

As is well-known, in an isotropic medium possessing 
spatial dispersion, the dielectric constant is a tensor: 

where ~ ~ ( k , w )  and &,(k,w) are, respectively, the longitudi- 
nal and transverse'permittivities of the medium, which in 
the case of an isotropic medium do not depend on the 
direction k. Expanding the field vector into its longitudinal 
and transverse components, 

we obtain equations for EL,, and EL,, from Eq. (5) with 
the help of Eq. (6): 

where the indices I and t denote, respectively, the longitu- 
dinal and transverse components of the vector inside pa- 
rentheses on the right-hand side. 

Taking the polarization P' and currents j as given, we 
write the solution of equations (7) in the form of a sum of 
the particular solution and the general solution of the ho- 
mogeneous equation: 

w2 [Pk,+ (i/o)jk,,l, 
EL,, = - 4- 

c w2~,(k,w)/c2-k2 

19 Eqs. (8)  the amplitudes of the harmonics g1(k,o)  and 
iF,(k,w), which describe the electromagnetic radiation 
from the sources external to the system under consider- 
ation, are determined by the initial and boundary condi- 
tions. The corresponding terms differ from zero only if w 
and k satisfy the dispersion relations for the longitudinal 
(8a) or transverse (8b) waves (only in this case do the 
arguments of the 6-function vanish). 

The assumption that the sources on the right-hand side 
of Eq. (8) are given assumes the lack of any back effect of 
the radiation field on the sources. The corresponding ap- 
proximation for the radiation of moving charges is tanta- 
mount to neglecting the radiative reaction force; in nonlin- 
ear optics it corresponds to the so-called prescribed field 
approximation. 

In what follows we assume that the medium does not 
absorb, thus: 

In order to separate out the wave field in Eqs. (8),  we 
perform the inverse Fourier transformation with respect to 
frequency: 

We obtain 

I," w2 [PL,,+ (i/w>jk,,l, 
E:(t)=-4r doe-'"' 7 w2q( k,o)/c2 - k2 

In Eqs. (9) the frequencies of the longitudinal wl and 
transverse w, waves are roots of the corresponding disper- 
sion equations and depend on k. The expression 
(wl,r+-wl,t) means that a term differs from the previous 
one only by a change of sign before wlTt. Such structure in 
the expression in Eqs. (9)  describing the field incident 
from outside is due to the evenness of the real part of 
E , ( ~ , w )  in w, and also to the assumption made in Eq. (9a) 
of the absence of gyration [the presence of only even pow- 
ers in the expansion of wl(k)]. If the dispersion equation 
has more than one pair of roots =tw,(k), then instead of 
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one term describing the external field in Eqs. (9),  there 
now enters a sum of terms corresponding to all these fre- 
quencies. 

In what follows we will restrict the analysis to trans- 
verse waves described by Eq. (9b). Using Eq. (9a), it is 
possible to develop an analogous technique for determining 
the characteristics of longitudinal waves. 

In the integral in Eq. (9b) we replace the variable w by 
q = d m .  The limits of integration do not 
change since E + 1 as w + .t a, i.e., w + qc, and in the trans- 
parency regions aq/aw > 0 and the absorption regions they 
are assumed to be wide enough to ensure that q(w) is 
single-valued. The assumption of transparency of the me- 
dium does not lead to substantial inaccuracies if the fre- 
quencies w,(k) of the waves radiated by the sources do not 
fall in the absorption regions. 

The new integrand has poles corresponding to electro- 
magnqtic waves only at q= & k since aq/aw=O only near 
the resonance frequencies--outside the transparency re- 
gions, but as E,+ 0, obviously q2 cc E,+ 0 and q2/&,-+ const. 
The detour around the poles in the calculation can be cho- 
sen, for example, by introducing a small decay: 

the signs are different for w > 0 and w < 0 since the imagi- 
nary part of the dielectric constant is odd in the fre- 
quency). This substitution corresponds to shifting the 
poles q= =t k into the lower half-plane. Closing the inte- 
gration contour by an arc of infinite radius in the lower 
half-plane, we obtain after substituting the results ex- 
pressed by Eq. (9b) 

where 

+ 

a,' = 4 2 i  
kYL,*w(k) 

(ak/aw)*o(k)~t[ *o(k) ,kl  ' 

In the calculations it was taken into account that the lack 
of absorption (E, even in w and k)  means that o ( k )  =- 

w (-k), sin+ce the frequency w (k )  satisfies Eq. ( 11 ) . The 
quantity Yk,,, in expression ( 12 ) is a generalized polariza- 
tion. It is specifically this quantity, as can be seen from 
formulas ( 10) and ( 12), that determines the total wave 
field radiated and scattered by an arbitrary source. In ex- 
pression (13) the variable and nonlinear components of 
the polarization of the medium, the currents, and the elec- 
tromagnetic waves incident on the system give additive 
contributions. Consequently, expressions (10)-(13) sub- 
sume the solution of any problem on the radiation or scat- 
tering of transverse electromagnetic waves by prescribed 
sources in a transparent medium. 

El(t)exp( -ikr) is the contribution to the plane wave 
expansion of E corresponding to the wave vector k [and 
frequency o(k) ] .  In order to find Et(r,t), it is necessary to 
perform the inverse Fourier transformation in k. However, 
it turns out to be possible to obtain a general formula for 
the spectral and angular distributions of the energy of the 
radiated (scattered) waves directly from Eqs. ( lo)-( 13). 

The classical results pertaining to the energy of elec- 
tromagnetic waves in dispersive media apply quasimono- 
chromatic fields (see, for example, Refs. 3 and 4).  In the 
general case under consideration here, the field is not 
monochromatic. However, for the expression obtained be- 
low for the energy of the waves concentrated in a small 
region of the spectrum dk, the results of taking account of 
dispersion turn out to be the same as usual (see in this 
regard also Ref. 3). In the Appendix it is shown that the 
energy contained in the interval dk for the field described 
by Eq. ( 10) has the form 

Taking into account that 

substituting ( 13) into ( 12) and ( 12) into ( lo),  we have 
from Eq. ( 14) 

The corresponding expression in a nondispersive medium 
has the form 

It may be more convenient to consider the field distribution 
not in k, but in o and solid angle. The corresponding for- 
mula follows from Eq. ( 15 ) : 

where it is necessary to consider k as a function of w ( 1 1 ) , 
and do is the element of solid angle. Comparing Eq. ( 17) 
with the corresponding formula obtained in the absence of 
frequency dispersion leads to a result analogous to that 
obtained in Ref. (3):  it is possible to take account of dis- 
persion already in the final expression for W(w,k/k) by 
making the substitution E + E ( ~ , w ) .  

To determine the intensity of the waves with polariza- 
tion characterjzed by t_he unit vector e, it is sufficient to 
substitute e . Y;, for Yi, on the right-hand side of ( 15) 
or (17). 
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Equations ( 15) and ( 17) reduce any problem on radi- 
ation or scattering by prescribed sources of transverse elec- 
tromagnetic waves in an isotropic transparent medium to 
the calculation of the Fourier transforms of the generalized 
polarization ( 13 ) . 

It is worthy of note that the proposed method allows 
one without effort to analyze the interference of waves 
emitted by several sources of various types, simultaneously. 
Further, in the semiclassical 5reatment one can include in 
the generalized polarization 9 the quantum-mechanically 
defined polariz~tion. Note also that it is not hard to allow 
for terms in 9 corresponding to quadrupole, magnetic- 
dipole, and other types of radiation. 

In a certain sense, expressions ( 15 ) and ( 17) corre- 
spond to the formal solution of Maxwell's equations for 
wave fields if the action of radiation fields is taken into 
account in 9 ( 13). The assumption of the absence of such 
action ("prescribed sources") allows one to use these for- 
mulas for specific calculations. In this sense the assumption 
amounts to solution of the problem in first-order perturba- 
tion theory. The specific physical meaning of the parameter 
in which the perturbation theory is constructed depends on 
the situation under consideration. The formal criterion of 
validity of the approximation of prescribed sources for cal- 
cuiating the energy of the waves+with wave vector k is 
I 9:tLck, 1 9 1 9k,olk) 1 where is an additional 
term in the generalized polarization due to the radiation 
field. 

Note, finally, that the formulas for the spectral and 
angular field distributions are usually derived for the field 
in the far zone. No such assumption was made above. Nev- 
ertheless, the expressions obtained with the help of formu- 
las ( 15) and ( 17) coincide with the well-known expres- 
sions obtained in this way (see Sec. 2.2 below), because 
going out to the far zone means, in a certain sense, high- 
lighting just one of a set of radiated harmonics 
E,,, exp[i(kr - o t ) ]  (or, more accurately, a group with 
wave vector from k to k+dk) ). Formulas ( 15) and ( 17) 
describe the energy of just such a set of harmonics. They 
are valid in the near zone as well as the far zone, which is 
the reason for the coincidence with the results of Sec. 2.2. 

2.2. Special cases. Comparison with known results. 

Radiation of moving charges. Let the generalized po- 
larization be due only to the field of a moving point charge 
of magnitude q: 

where r,(t) and v(t)  =drddt  are respectively the trajec- 
tory and velocity of the charge. Substituting the corre- 
sponding Fourier transform in (13) and employing Eq. 
( 17), we obtain the generalization of the well-known for- 
mula for the intensity of the radiation field of a point 
charge to the case of dispersive media: 

q2w2 6 
=%77 I I:, dtv( t)  

where E = E ~ ( ~ , W ) .  In particular, for r,=vt where u 
= const > c/ &, Eq. ( 18) reduces to the expression for 
Cerenkov radiation. In addition, Eq. ( 18) makes it possi- 
ble, in principle, to calculate synchrotron radiation and 
undulator radiation in a dispersive medium. 

Rsdiation in media with variable dielectric constant. 
For 9 (r,t) =Pf (r,t) =~,(r , t )E,(r , t ) ,  not taking spatial 
dispersion into account, expression (15) transforms into 
the basic formula of the perturbation theory proposed in 
Ref. 5 for analyzing radiation arising in a quasistationary 
field of fixed sources Eo(r,t) if the variation of the proper- 
ties of the medium is described by the functional depen- 
dence ~ , ( r , t ) .  This method has made it possible to solve a 
significant number of radiation problems in nonuniform, 
nonstationary, and movi2g media.6 

Nonlinear optics. If 9 =Pf describes the nonlinear po- 
larization of the medium produced by an electromagnetic 
wave, then ( 15) and ( 17) give the energy of the harmonics 
in the nonlinear medium in the prescribed field approxi- 
mation. In this case one can easily convince oneself that the 
results obtained for plane monochromatic waves coincide 
with the well-known results of Refs. 7 and 8. It is signifi- 
cant that ( 15) and ( 17) are also valid in cases in which the 
approximation of slowly varying amplitudes, on which the 
widely accepted theory of nonlinear optical phenomena is 
based, is not applicable. Therefore, the application of the 
proposed method to the analysis of the propagation of ul- 
trashort pulses, which cannot be correctly described with 
the help of simplified equations, is of great interest. 

Interference of radiative processes. Expressions ( 15) 
and ( 17) are in general squares of sums of terms propor- 
tional to the fields of waves generated by currents, nonsta- 
tionarity of the medium, etc., and waves incident on the 
system. The use of these formulas allows one without dif- 
ficulty to analyze the possible interference of radiative pro- 
cesses corresponding to th: cross-products that arise when 
one takes the square of 9. Note that the interference of 
transition radiation and transition scattering with other 
radiative processes is treated in detail in Ref. 3. 

3. INFLUENCE OF INTERFERENCE ON THE SCATTERING 
OF ELECTROMAGNETIC WAVES BY A CLASSICAL 
OSCILLATOR 

Let us consider the classical problem of scattering of 
electromagnetic waves by a bound point particle. The usual 
statement of the problem reduces to a calculation of the 
reradiated field arising from the oscillations of the charge 
in the field of the incident wave. Here no account is taken 
of the possible interference between the scattered (reradi- 
ated) and incident wave. 
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If an electromagnetic wave is incident upon a system of 
moving charges, then the interference of radiation fields is 
described in formula ( 15) by the cross+term containing the 
current j and the wave "amplitude" $,: 

It is not hard to show that $ Wlt& is equal to the total 
work of the electric field, given by the superposition of 
harmonics 

[cf. Eq. (9b)], on the current j taken with the opposite 
sign. Thus, the interference term ( 19) describes the atten- 
uation (or amplification if the expression in brackets in Eq. 
(19) is negative) of the radiation scattered or absorbed 
(pumped) by the system of currents. 

In what follows we limit ourselves to the case E =  1 and 
consider only linearly polarized waves. 

3.1. Scattering of a plane electromagnetic wave by an 
oscillator with damping. 

In the given case, the field of an incident wave of fre- 
quency f l  with wave vector K ( K = ~ / c )  is described by 

where A is the real wave amplitude (the wave is assumed 
to be linearly polarized). Here [cf. Eq. (8b)] 

The current j is created by the steady-state motion of 
an oscillator with charge q, mass m, natural frequency wo, 
and damping coefficient y in the field of the incident wave 
(20) : 

where 

In Eq. (22) the wave field is assumed to be weak enough 
that the oscillator can be taken to be nonrelativistic: 
a</2<27r/~; a is a real-valued vector. 

The Fourier transform of the current corresponding to 
(22) has the form 

Substituting (23) in Eqs. (21) and (19) and noting that 
KI a, we obtain Wk a s ( k - ~ ) S ( w  - 0 ) .  Integrating over 
k, we arrive at an expression describing the interference 
contribution to the energy radiated per unit time: 

- - 
q2 - -- I ~ I ~ s i n ~  I), 

where, in accordance with (22), 

sin I)=2fly/ J ( w : - - ~ ~ ) ~ + 4 f l ~ f l > 0 .  

The interference contribution (24) to the radiated en- 
ergy is negative. In the absence of damping, the phase shift 
between the incident wave and the motion of the oscillator 
I)=0 and the interference term disappears (the phase shift 
between the incident and reradiated waves is equal to 
I)+?r/2=7r/2). 

In the plane-wave case under consideration, the energy 
Wk a S (k - K )  and interference influences only the forward 
scattering. This is explained by the fact that only in that 
direction do the spatial periods of the incident and reradi- 
ated waves coincide. 

According to the above, W t / T  in (24) is precisely 
equal to the work of the incident wave on the oscillator per 
unit time. Since the energy of motion of the oscillator does 
not vary in the case of a monochromatic wave, the inter- 
ference term (24) determines the energy losses of the orig- 
inal wave to scattering and other processes. 

In the classical theory of dispersion, the medium in 
which the wave propagates is considered to be a set of 
oscillators (22) distributed with some volume density N. If 
the wave propagates along the z axis and is characterized 
by an energy flux density Z(z)= w(O)(z)/TS, where 
S- co is the area of the wavefront, then (24) can be writ- 
ten in the form 

rq2  
Wnt(z) = -aZ(z), a=- sin2 I). 

Ymc 

Note that the interference contributions from the different 
oscillators are additive, since the phase of the reradiated 
wave is in synchrony (shifted by I)+?r/2) with the phase 
of the incident radiation. Therefore, for the dependence of 
the intensity of the main wave on the distance it has ad- 
vanced in the medium, we obtain, with the help of Eq. 
(25 ) , the Bouguer-Lambert-Beer law: 

Here the attenuation coefficient aN,  as can easily be shown 
with the help of relations (25) and (22), coincides with the 
value calculated in the classical theory of dispersion (see, 
e.g., Ref. 9). 

Thus, any attenuation of radiation in a medium is due 
to interference between the incident wave and waves that 
have been reradiated by the oscillators of the medium. This 
conclusion in a certain sense complements the Ewald- 
Oseen absorption theorem (see Ref. 10, §2.4), which ex- 
plains in an analogous way the variation of the velocity of 
an electromagnetic wave in a medium (the phenomenon of 
refraction). 
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3.2. Scattering of a beam with finite aperture. 

Let us now consider the situation in which a group of 
No independent oscillators is located along the axis of an 
axially symmetric beam of electromagnetic waves. We as- 
sume that the oscillators are distributed so compactly (as a 
"cluster") that the characteristic dimension of the region 
that they occupy is d%A, R, where /2=2n-/~ is the wave- 
length of the radiation and R is the beam aperture. Here 
(22), as before, describes the motion of each oscillator, and 
we take A to be the amplitude of the field oscillations in the 
main wave at the location of the oscillator. Therefore, the 
reradiated wave remains invariant in shape-it is deter- 
mined by the current (23) multiplied by No. 

The electric field of the wave of an axially symmetric 
beam propagating along the z axis which has the intensity 
distribution 

where 

F(kp;R) = ( 2 ~ ) - ~  dxdy exp(-ikg-ik,y)F(p;R), S 
In the limit of a plane wave (R - oo ) we have 

Substituting (26) and (23) in Eq. (19) and multiply- 
ing by No, we obtain, by analogy with Eq. (24), 

h 

where 9 = (n,z), and a is defined by Eq. (22). The deriva- 
tion of Eq. (27) assumes that the oscillators are nonrela- 
tivistic: kazO and the scattering takes place without 
change of frequency. The contributions of all oscillators 
are additive. 

It follows from Eq. (27) that the width of the angular 
distribution P t ( 6 )  m F(kp;R)  is greater than that of the 
angular distribution for the initial beam 
w(O)(9) cc F ~ ( ~ , ; R ) .  This means that in addition to a de- 
crease in the amplitude of the initial wave, interference 
leads to a change in the angular distribution of the total 
radiation. Let us illustrate this effect for a Gaussian beam. 

For a Gaussian beam with the amplitude distribution 

in the entrance plane, we have 

Adding the expressions for the intensity of the initial 
beam w('), the intensity of Thomson scattering (which in 
the given case is coherent (dgA) ) ,  and P t ( 6 ) ,  obtained 
by substituting (28) into Eq. (27), we obtain the total 
intensity W'Ot(6) of the electromagnetic radiation in the 
direcfin n. Taking the angles 6 z 0  and 9' 
= (A,n) z77/2, and retaining the dependence on 6 only in 
the arguments of the exponents, we have 

where Y r y ( 3 r n ~ ~ / 2 ~ ~ f l ~ )  =y/y'ad> 1. 
Taking account of interference leads to nonmonotonic- 

ity of the dependence of (29) on angle. The minimum of 
this dependence is determined by the condition 

For weak scattering, Pt/ w(O) 4 1, the exponential in Eq. 
(30) determines the relative intensity level at which the 
minimum of W'"'(6) is located. For 6=amin ,  the interfer- 
ence term in Wt"'(6) is twice the initial intensity 
w(O) (amin), but the main contribution comes from the Th- 
omson scattering wT, which in our model is coherent, and 
for the small angles 9 considered here does not depend on 
angle. From Eq. (30) we have 

From Eq. (3  1 ) it can be seen that in the given case, the 
depth of the minimum does not exceed wT/4d .  A plot of 
the behavior of (29) is shown in Fig. 1. 

4. CONCLUSION 

The proposed technique for calculating the spectral 
and angular energy distributions of electromagnetic waves 
allows one to describe all possible processes of radiation 
and scattering in a transparent dispersive medium on the 
basis of the general formulas ( 15 ) and ( 17 ) . 

The use in these formulas of the Fourier transforms of 
quantities characterizing sources that cannot be described 
in ordinary space extends the class of objects that can be 
considered. Thus, for example, the beam of electromag- 
netic waves considered in Sec. 3 can be described analyti- 
cally in (r,t)-space only in the paraxial approximation (in 
general there is no simple analytic expression for the orig- 
inal function of which expression (26) is the Fourier trans- 
form). Using Fourier transforms allows for arbitrary tem- 
poral and spatial dispersion of the medium. The use of the 
method in nonlinear optics makes it possible to go beyond 
the framework of the approximation of slowly varying am- 
plitudes and weakly divergent beams. 
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w"'~IT, arb. units 
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FIG. 1 .  Angular intensity distribution of a beam of electromagnetic 
waves scattered by a cluster of oscillators, with interference taken into 
account (solid line) and without (dashed line), N=300, R = 5A. 

Note that within the framework of the proposed 
method it is easy to take account of the back influence of 
the radiation field on the sources in second- and higher- 
order perturbation theory. 

The efficacy of this technique in analyzing interference 
processes attendant upon radiation and scattering has been 
demonstrated. With its help it has been shown that the 
attenuation of electromagnetic radiation in a medium can 
be considered to result from interference between second- 
ary waves reradiated by the molecules of the medium and 
the incident radiation. The change in the angular distribu- 
tion of a wave beam scattered by a classical oscillator due 
to interference between the incident and reradiated waves 
has been analyzed. 

APPENDIX 

To obtain an expression for the energy of the trans- 
verse waves Wkdk imparted to the waves with wave vec- 
tors in the interval from k to k+dk, note first that 

where Wk is the electric field energy in a medium with 
dispersion, and the magnetic field energy WF is equal to 
the electric field energy calculated without account of dis- 
persion. This can be verified directly by calculation, but it 
is clear from the fact that Wk describes the energy of a 
quasi-plane wave in an isotropic medium, where div Et=O. 

To derive a formula describing the energy of the waves, 
it is necessary to start with the expression for its rate of 
change: 

(A2) 

Invoking relation ( 1 1 ) and the relation Dt=&,(k,w)Et, we 
obtain from Eq. (A2) 

If in Eq. (A2) we take the integration limits over V to be 
infinite, then substituting (A3) in Eq. (A2) gives zero in a 
nonabsorbing medium. This is to be expected since the 
energy of the superposition of strictly monochromatic 
waves is constant in time. If we take the region occupied by 
the field to be large but finite (which indirectly assumes a 
field that is not monochromatic), then after, integrating 
over V there remain only harmonics (E',aD'/at)k,, with 
kzO. Here 

where do = okPkt - W - ~ ,  . Assuming, as before, that the 
medium is nongyrotropic and transparent, and noting that 
a+ (k )  = [a- ( - k)]*, after substituting Eq. (A3) into Eq. 
(A2) we obtain 

Integrating over time and taking the limits V -  co, 
d o  -0, we have 

In the absence of dispersion, (A4) becomes 

which agrees, for example, with known results used in the 
theory of transition radiation in a nonstationary m e d i ~ m . ~  
From Eqs. (A4) and (A5), taking account of Eq. (Al) ,  
we obtain the total energy of the radiation field [cf. Eq. 
(14)l: 
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Note that taking frequency dispersion into account leads to 
the appearance of the usual factor in such cases374 in the 
square brackets. 
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