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We obtain a simple analytical expression, which is exact in the external field strength, for 
variations in the induced-charge density 6pfs(r) caused by the finiteness of the size 
R of the nucleus at distances much greater than R. We show that in calculating Spfs(r) in 
heavy atoms via a perturbation-theory expansion in powers of the deviation of the 
potential from the Coulomb potential it is impossible to restrict oneself to the few first terms 
in the perturbation series; the entire series must be summed. We also examine the effect 
of Spfs(r) on the charge-density distribution inside the nucleus. This is done by using the exact 
Green's function of an electron in a Coulomb field. The results are in good agreement 
with the known numerical results of other treatments. 

1. INTRODUCTION 

Measuring radiative level shifts of charged particles 
(electrons and muons) in high-Z hydrogenlike atoms is 
one of the chief methods of verifying the predictions of 
quantum electrodynamics (see recent papers by Stohlker 
et al. ' and Pross et aI. 2). The constantly growing accuracy 
of spectroscopic measurements requires consideration of 
ever more subtle effects in theoretical calculations. The 
main contributions to a radiative level shift are the self- 
energy of the charged particle and vacuum polarization. In 
calculating these effects in high-Z atoms the electric poten- 
tial of the nucleus must be taken into account exactly in the 
parameter Za, where Zl e 1 is the electric charge of the 
nucleus, a = e2= 1/137 the fine-structure constant, e the 
electron charge, and fi=c= 1. 

Much effort has gone into studying the effect of vac- 
uum polarization on energy shifts in atoms. This effect 
plays special role in mu&ic atoms (see Ref. 3 and the 
literature cited there). In the pioneering work of Wich- 
mann and   roll^ the Laplace transform of the product 
p(r)? was calculated exactly in Za for the case of a Cou- 
lomb potential. The density p(r) itself was first analyti- 
cally deduced in Ref. 5, while in Refs. 6 and 7 the behavior 
of the induced-charge density at small distances was stud- 
ied by operator methods. There is also a vast literature on 
numerical studies of the induced-charge density and the 
respective potential (see, e.g., Refs. 3 and 8-13). The line 
shifts of atoms can be calculated from the induced-charge 
potential. These papers take into account only the spheri- 
cally symmetric part of the induced-charge distribution, 
but there are high-Z nuclei with large multipole moments. 
The fields of such nuclei induce respective moments in the 
vacuum. The induced vacuum magnetic dipole and electric 
quadrupole moments were studied in Ref. 14. 

In high-Z atoms the deviation of the nuclear potential 
from the Coulomb potential at small distances becomes 
important. Analytically, the effect of a finite nucleus on the 

induced-charge density was studied by Brown, Cahn, and 
~ c ~ e r r a n '  at distances r much larger than R but much 
smaller than A,-, where R is the radius of the nucleus, 
Ac= l/m the electron Compton wavelength, and m the 
electron mass. For some nuclei and arbitrary distances this 
problem was studied numerically in the papers cited above. 
The effect of a finite nucleus on the contribution of the 
self-energy diagram was studied recently by Mohr and 
soff. 15. 

In this paper we analyze for Za < 1 the effect of finite 
nuclear size on the induced-charge density at distances 
large compared to the radius of the nucleus. We derive a 
simple formula describing the addition to the induced- 
charge density caused by the fact that the potential differs 
from the Coulomb form. Our treatment uses the conve- 
nient integral representation for the Green's function of an 
electron in a Coulomb field. 

2. THE GREEN'S FUNCTION AND THE INDUCED-CHARGE 
DENSITY 

In conformity with the ordinary rules of the diagram- 
matic technique, the induced-charge density is given by the 
following formula: 

where G(r,rt I E) is the electron Green's function, which we 
write as 

Here the y, are the Dirac matrices, and V(r) the electron 
potential energy. In accordance with the Feynman rules, 
for Za < 1 the path of integration with respect to energy E 

passes from - oo to CXJ below the real axis in the left half- 
plane of the complex variable E and above the axis in the 
right half-plane. The Green's function G has cuts along the 
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real axis from - UJ to -m and from m to + co corre- 
sponding to the continuous spectrum. It also has poles 
lying in the (0,m) interval and corresponding to the dis- 
crete spectrum. The analytic properties of the Green's 
function make it possible to rotate the path of integration 
with respect to energy E in ( 1 ) by ~ / 2 ,  so that it coincides 
with the imaginary axis. 

We take the potential V(r) in the form 

The function U(r) is the difference between the potential 
energy of an electron in the field of a nucleus of finite 
radius and that of an electron in a Coulomb field. Hence it 
is finite at distances smaller than the radius of the nucleus, 
but rapidly decreases on the scale on which the nuclear 
charge density p( r )  decreases. 

We introduce the notation P = ? ( E + z ~ / ~ )  -yp. By a 
direct expansion in U(r) we can easily verify that 

We represent 6p(r)  in the form 

where Spc(r) is the induced charge density in the Cou- 
lomb field. Substituting (4)  into (2) and the result into 
( 1 ) , we arrive at the following representation for the ad- 
dition Spf,(r) caused by the finite nucleus: 

where Gc(r,rl I i ~ )  is the Green's function of an electron in 
the Coulomb field. It can easily be seen that at least one of 
the arguments of the Green's functions in (6) is small 
because of the presence of the functions U(r).  Clearly, the 
angular momentum j =; provides the main contribution to 

the angular - momentum expansion of the Green's func- 
tions. In Ref. 16 a convenient integral representation was 
obtained for the Green's function of an electron in the 
Coulomb field, Gc, valid in the entire complex E plane. 
Using Eqs. (19) and (20) of Ref. 16, we find the contri- 
bution of the angular momentum j=i to the Coulomb 

Green's function of an imaginary energy variable (for the 
sake of convenience in what follows we retain the notation 
Gc for this contribution) : 
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i I' [2iZkaa 
GC(r,r1 1 i ~ )  = -- ds exp - 

4 ~ r r ' k  

Here 12,(y) 12,(y) is the modified Bessel function of the 
first kind, n = r/r, n = r y = 2k Jrr'/sinb, 
v= d m ,  and k= d m .  If Ac-r%rl, the do- 
main of integration with respect to E providing the main 
contribution to 6pfs(r) is E- l/r. Then in Eq. (7) the pa- 
rameter s is of order unity and the argument of the Bessel 
function, y-rl/r, is much less than unity, and we can use 
the following asymptotic formula: 

But if r%Ac)r1 holds, we have E- m r ,  kk--m, 
e2S- (r/Ac) , and y- Jr'/ilc is much less than unity, with 
the result that we can again use the asymptotic formula for 
the Bessel function. Also in Eq. (7) it is convenient to 
perform the integration with respect to s in the term pro- 
portional to r-r'. 

For further calculations the following method is expe- 
dient. We consider the case of a spherically symmetric 
distribution for the charge of the nucleus. Obviously, the 
induced charge density is also a spherically symmetric 
function of r. Hence we can multiply both sides of (6) by 
d n / 4 ~  and integrate over the angles of the unit vector n. 
After performing these transformations we arrive at the 
following formula for 6pfs ( r) : 

m dslds2(sinh 

(sinh slsinh s212, 

+coth s2) 1 I coth slcoth 

where 
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F= Jom dr' ( r ' ) 2 v ~ ( r ' )  

In Eq. (10) we allowed for the fact that the values of E 

providing the main contribution to the integrals in (9)  are 
much smaller than 1/R, with R the radius of the nucleus. 
The arguments of the Green's function G in (10) satisfy 
the inequalities rl,r" < R  <Ac. Hence we can set the energy 
E of the electron equal to zero in G in ( 10). At distances on 
the order of the nuclear radius the function G is also inde- 
pendent of the electron mass m. Thus, we see that the 
factor F in (9) is independent of distance rand the param- 
eter of integration E. On the other hand, the entire depen- 
dence on the charge distribution in the nucleus is contained 
in F. That is, the contributions to 6pfs(r) of large and 
small distances factorize. All the integrals in (9) have fi- 
nite values and the expression obtained does not require 
renormalization. 

3. CALCULATING FACTOR F 

Let us now calculate the factor F. As in the case of 
Eq. (4), we can easily show that 

We must find the asymptotic behavior of the Coulomb 
Green's function in the limit kr- kr' < 1. At such distances 
the main contribution to the integral in (7) is provided by 
small s- kr. Replacing l/sinhs and coths by l/s in (7) and 
using relations from Ref. 17, p. 303 

1 
Jom dx Ia (x) e-Px = 

&=(p+ -la' 

we arrive at an asymptotic formula for the Coulomb 
Green's function at small distances: 

where @(x)  is the Heaviside unit function. We see that this 
asymptotic behavior is independent of E and the electron 
mass m. Equation (12) shows that this is also true of the 
asymptotic behavior of the Green's function. 

We write Eq. ( 12) in the form 

where A{, A,, A3, and A4 are certain functions. Substitut- 
ing representation ( 15) into ( 12) and equating the coeffi- 
cients of the respective matrix structures, we arrive at a 
system of linear integral equations for the functions Al, 
A,, A3, and A4. From (15) and (10) it follows that the 
factor F can be expressed in terms of the coefficient func- 
tions as follows: 

+4a  Jom dr  dr' ( r r ' ) v + l ~ ( r )  ~ ( r ' )  [A, (r,rt) 

This expression shows that for our purposes it is sufficient 
to find the functions 

the equations for which can be set up by multiplying the 
left- and right-hand sides of the system of equations for the 
functions Ai(r,rl) by 47r(rr1)"+'~(r ' )  and integrating 
with respect to dr'. The system of equations for the aj(r)  
can be conveniently written in the following form: 

where 8, =@(r-x), and 8- = - ( r / ~ ) ~ " @ ( x - r ) .  Com- 
bining Eqs. ( 18) and Eq. ( 16), we arrive at the following 
relations: 
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Actually, since the integrals rapidly converge at the upper 
limit, the "infinity" in (18) and (19) means a distance 
greater than the size of the nucleus. Let us consider the 
functions 

L( r )  =val(r) +a2(r) + (zaI2a4(r) ,  

M ( r )  =Za[a2(r) +va3(r) +a4(r)] ,  (20) 

for which simple differentiation of (18) yields 

Employing (19), we find that M (  w ) =F and L (  w ) =O. 
Hence to calculate F we need only find the function f ( r ) :  

since F= f ( w ). The function f ( r )  satisfies a closed equa- 
tion obtainable directly from (2 l ) : 

d [ 2zaf( r )  f2( r )  
- f (r )  = U(r) rZ"- 
dr +-I 23" . 

It is convenient to solve this equation by substituting 
v ? " ~ ( r )  for f ( r ) .  It remains to establish the boundary 
condition imposed on the function H ( r )  at r=O. For this 
we must go back to Eqs. (21 ) and establish the asymptotic 
behavior of the functions M ( r )  and L( r )  as r-0. To find 
this behavior, we must leave in U(r) the part that is sin- 
gular as r-0, that is, Za/r. Then the solution of Eqs. (21 ) 
can be found in the form M(r)=brY and 
L ( r )  =cry- Y?", where b and c are constants. Substituting 
this representation into (21 ), we find that y = Y +  1. How- 
ever, the solution with y = Y- l does not satisfy the system 
of equations for M( r )  and L(r )  written in integral form 
because it makes the integral with respect to r divergent at 
the lower limit. The final result is y=v+ 1 and H(0)  =b/ 
c = Z a / ( l + ~ ) .  

If with Za 4 1 we solve Eq. (23) by iterations in U(r), 
we obtain the function 

which for small r is approximately f '(r) -- ~ a ? "  and is 
consistent with the asymptotic behavior of 
f ( r )  z ~ a v ? " / (  1 + v) ; the latter follows from the bound- 
ary condition on H(O), but only when Za -+ 0. 

For different charge-density distributions p ( r )  Fig. 1 
depicts the Z-dependence of F/(?)", where 
( 3 )  = ( Z  1 e 1 ) - ' ( r )  3dr  is the mean-square charge ra- 
dius of the nucleus. (The charge-density distributions are 
that of a uniformly charged ball and a uniformly charged 

FIG. 1 .  Dependence of F (curve I )  and factor F' calculated to first order 
in U ( r )  (curve 2) on nuclear charge Z. 

sphere and the one used in Ref. 7, which is in good agree- 
ment with the distribution determined from electron- 
scattering experiments.) The parameters were chosen in 
such a way that in addition to the total charge Z being the 
same for all distributions, the mean-square radius (r)  was 
also the same. It is clear that in all cases considered the 
functions F ( Z a )  are extremely close. To within a few per- 
cent they are described by the formula 

For comparison, Fig. 1 also shows the Z-dependence of 
F'/(?)", with F'= f '( w ) [see Eq. (24)l. Clearly, for 
Za- 1 the function F differs considerably from F' calcu- 
lated to first order in U(r). 

Brown, Cahn, and ~ c ~ e r r a n '  obtained an analytical 
expression for 6pfs(r) at a distance r much greater than R 
but much smaller than Ac. The method that they used 
differs considerably from the one developed by us. For 
such distances we can deduce the asymptotic behavior of 
(9) and compare it with the results of Ref. 7. With allow- 
ance for factorization of large and small distances, the 
function F must coincide with the respective factor in Ref. 
7. Anticipating what follows, we can say that these results 
coincide if in the right-hand side of Eq. (30) of Ref. 7, 
written for H( r ) ,  we allow for an obviously omitted factor 
3 "  (the factor is present in Eq. (31) of Ref. 7 written for 
the asymptotic part H'). 

4. ASYMPTOTIC BEHAVIOR 

Let us study the behavior of the function 6pfs(r) at 
large and small distances (compared to the electron Comp- 
ton wavelength). For r%Ac and Za- 1 the main contri- 
bution to the integrals in (9) is provided by the following 
range of variables: ~ ~ , ~ - l n ( m r )  1 and 

( E 1 /m - (mr)  - 'I2 1. Performing the necessary expan- 
sions and evaluating the elementary integrals, for mr, 1 
we find 
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For d% l/mr the integral in (26) is equal to 1/d,  and for 
$4 l/mr the integral is equal to 2mr. 

At small distances R 4 r 4 i l c  the main contribution to 
the integral with respect to E is provided by the domain of 
integration I E ~  - l/r%m. Replacing k with 1 ~ 1  in (9),  
evaluating the elementary integral with respect to E, and 
shifting to the variables T=sl  +s2 and 7=s1 -s2, we ob- 
tain 

It is convenient to evaluate the integrals in (27) as follows. 
First we go from the variable 7 to a new variable x via the 
substitution sinhxsinh~= sinhT/(cothx + cothT). Then 
we evaluate the integral with respect to T. The integral is 
expressed in terms of the Legendre polynomial of the first 
kind p - 2 ~ -  1/2 ,,- ,,,(cothz) and its derivative (see Eq. 
(8.7 13 (3) ) in Ref. 18), and then evaluated with respect to 
x via Eq. (7.132 (2) ) of Ref. 18. We arrive at the following 
asymptotic behavior of Spfs(r) at small distances: 

This result agrees with that of Ref. 7. 
Now let us examine the limit of Za -0. Setting Za = 0 

in (9), we first evaluate the integrals with respect to sl and 
s2 and then with respect to E. Simple calculations lead us to 

FIG. 2. (a) The r-dependence of 
? + 2 " S p f s ( r ) / e ~ ( ~ a ) ,  and (b) the 
r-dependence of r' +2"S4fs(r)/eF(Za) 
at various Z. 

where (x)  are modified Bessel functions of the second 
kind (modified Hankel functions), and 
F(')= J ,"?~(r )dr .  This coincides with the result obtained 
from the ordinary relation in the momentum representa- 
tion between the induced-charge density 6p(k) ,  calculated 
in the lowest order, and the renormalized polarization op- 
erator P( - k2) (see Sec. 114 of Ref. 19): 

where V(k) is the potential of the nucleus in the momen- 
tum representation. In ( 3 )  we replace 6p(k)  and V(k) 
with 6pfs(k) and U(k),  respectively, and perform the in- 
verse Fourier transformation. Since U(r) is nonzero only 
at small distances of the order of the size of the nucleus, we 
can replace U(k) with U(k=O) in the integral with re- 
spect to k. After simple computations we arrive at (29). 

5. CONCLUSION 

We have obtained a simple analytical expression (9) 
that describes the induced-charge density at distances 
greater than the size of the nucleus and is exact in param- 
eter Za. The expression is extremely convenient for tabu- 
lating. Comparison of our results with those of 
~ ~ i l a s s ~ ~  shows that Eq. (9)  is meaningful starting from 
distances r- 8R. Fig. 2a depicts the r-dependence of the 
induced-charge density 6pfs(r) for different values of Z. 
Clearly, the dependence on Z is highly essential. If we 
allow for the fact that the net induced charge is zero, we 
can write the following expression linking the polarization 
potential &hfs(r) with Spfs(r) : 

Figure 2b depicts S#fs(r) as a function of Z. Note once 
more that the entire dependence on the charge density of 
the nucleus is contained in the factor F [Eq. ( lo)], and for 
realistic densities p ( r )  this factor is determined by the 
magnitude of the mean-square radius ( 2 )  [see Eq. (25)]. 
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