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A model-independent approach to the equations for the expectation values in the theory of 
gravity is considered. The action of the gravitational field in the in-vacuum state is 
expanded in a basis of nonlocal curvature invariants with arbitrary form factors. It is shown 
that for the solution of the effective equations to be asymptotically flat the form factors 
for small should behave as In(-O), which coincides with their one-loop behavior in field 
theory. The vacuum-radiation flux is calculated in lowest order in the curvature without 
any assumptions about the quantum dynamics of the model. The kernel of In(-0) with 
retarded boundary conditions is found. In the case of a spherically symmetric in-state, 
a simple expression for the radiated vacuum energy is obtained. 

1. INTRODUCTION the variation, retarded boundary conditions must be as- 
signed to them.2) As a result, the equations for the expec- 

In this paper we consider the model-independent ap- tation values have the form 
proach to the quantum-gravity equations that was formu- 
lated in Ref. 1. The observed gravitational field in problems RPv-; g # " ~  = gT( T P ~  + TP, vac source) 9 (4) 
with initial data, like the problem of gravitational collapse, 
is regarded as an average over a certain quantum state where 
defined in the remote past. To simplify the problem it is 
assumed that the initial state differs from the in-vacuum 2 W a c  

T : : ~ = ~  -1 state2 by the presence of a massive classical source, so that 6 g ~ ~  0-0 . 
ret the action for the observed gravitational field can be rep- 

resented in the form of a sum:') In lowest order in the curvature, 

where SsOuEe is the action of the classical source, and the 
sum of the first two terms is the action of the gravitational 
field in the in-vacuum state. The action Sva, is not calcu- 
lated on the basis of any quantum dynamical model. In- 
stead, we write the most general functional allowed by the 
quantum state. An important property of the in-vacuum 
state is the fact that the action Svac should be analytic in 
the curvature.' In this case it can be expanded in a basis of 
nonlocal invariants with arbitrary operator functions as the 
coefficients.' In first order in the curvature, the action can 
only be local and contain a single arbitrary constant, which 
is identified with the Newtonian constant. In second order, 
two arbitrary functions of one operator argument appear: 

in third order, ten functions of three commuting arguments 
appear, and so  on.'^^-^ In the Lorentz action, the argu- 
ments of the form factors must be regarded as formal op- 
erators, behaving under variation as finite matrices. After 

The functions y(-0) and the higher-order form fac- 
tors in the expression (2)  for SVac were initially defined for 
real, negative El. The basic assumption concerning them is 
that the form factors admit a spectral representation. This 
means that the functions y can be analytically continued 
into the complex plane, while all their singularities lie at 
real, non-negative 0. In order to restrict the choice of form 
factors as little as possible, we shall assume that they have 
an arbitrary power-law increase at large I I : 

Then, making use of the Cauchy integral formula, we find 
that the corresponding spectral representation for y has the 
form 
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2 w1,2(m =T;;;. [y1,2(-m pro)-yl,2(-m2+i0)l, 

(9)  

where p 2 > 0  is an arbitrary parameter on which y(-0) 
does not depend. For the form factors in the spectral form 
the replacement -Ore, reduces to the replacement of 
l/(m2-0) by the retarded massive Green function 
Get(m2). The restriction on the behavior of y(-0) at 
small I q I imposed by the representation (8),  

can be lifted, although it will be shown below that for the 
solution of the effective equations to be asymptotically flat, 
the restriction on the behavior of y(-0) at zero should be 
even more stringent. 

For the form factors in the spectral representation, the 
action of the operator functions y(-Ore,) on a tensor has 
the form 

y(-• ret )1p..."= ( 1 +pP2IJ)" dm2E(m2) Q ~ ' ( ~ ~ ) I ~ . . . v  

In lowest order in the curvature, 

where A is the observation point, the symbol j denotes an 
integral over the region lying in the past from 4, 
u = a ( A , x )  is a world function9 of the point A and the 
integration point x, J1 is the Bessel function of order, and <, is the bivector of geodesic parallel transport.9 An im- 
portant role is played by the order of the integration in 
( 11) and (14). The integral over space-time in ( 14) is 
taken first, and only then do we take the integral over the 
mass in (11). 

The aim of the approach proposed in Ref. 1 is to find 
the dependence of the properties of the space-time that is 
the solution of the effective equations on the form of the 
unknown form factors in the action S,,,. The results ob- 
tained in this way make it possible to establish important 
properties of the form factors that can then be used as 
requirements on models of the fundamental interactions. 

In this paper we consider the equations for the mean field 
in lowest order in the curvature and show that the require- 
ment of asymptotic flatness of the solution fixes the behav- 
ior of the functions y(-0)  for small q to within two un- 
known constants: 

Here, w,(O) and w2(0) are the m2=0 limits of the spectral 
densities (9) .  For the solution of the equations to be as- 
ymptotically flat it is necessary that these limits be finite. 
The combination w1 (0)  + 3w2(0) determines the asymp- 
totic behavior of the scalar curvature at light infinity, while 
the combination wl (0) +2w2(0) serves as a measure of the 
radiated vacuum energy. The vacuum-energy flux across 
the future light infinity is calculated below as a nonlocal 
functional of the curvature. Generally speaking, the 
energy-flux density at a given moment of retarded time 
depends on the curvature in the entire region inside the 
light cone of the past of the observation point, but below it 
will be shown that in reality only the surface of the cone 
contributes to the flux. 

The expressions ( 15) and ( 16) coincide with the one- 
loop behavior of the form factors in field theory. The dif- 
ference is that the one-loop form factors have logarithmic 
behavior at other than small 0 ,  and at intermediate values 
of q they are undetermined because of ultraviolet diver- 
gences. However, the divergent terms are local and disap- 
pear at infinity. One of the conclusions of the present work 
is that in the space-time region near light infinity, the re- 
sults of the loop expansion in field theory can be believed. 
This is explained by the fact that the emission of real par- 
ticles from the vacuum, detected in this region, is simulta- 
neously a quantum effect and a long-range effect. The fact 
that the energy flux is proportional to w(0) implies that 
only massless vacuum particles are emitted across the light 
infinity of the future. If only massive particles were present 
in the spectrum, the cut in the complex plane due to the 
singularities of the form factors would start from a certain 
nonzero value m2, and we would have w(0) = O  in (9).  The 
constants w(0) contain definite information on the spec- 
trum of the massless particles, since in the field theory they 
are sums of contributions from different spins. For exam- 
ple, the spin-zero contribution is 

2. GENERAL EXPRESSION FOR THE ENERGY FLUX 
ACROSS THE FUTURE LIGHT INFINITY 

Assuming that the solution of the equations for the 
expectation values is asymptotically flat, we shall consider 
a congruence [u(x) =const, ( v u ) ~ = o ]  of light rays reach- 
ing the future light infinity (N'). Let r be the brightness 
distance along the rays, so that the area of the orthogonal 
section is 47~2,  and let M ( u )  be the Bondi mass on N+ 
(Ref. 10). Then it follows from the dynamical equations 
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(4) that the rate of emission of energy with respect to the 
retarded time u, with the latter normalized by the condi- 
tion 

is equal to 

where the integrals are taken over the unit 2-sphere Y 
formed by the intersection of the surfaces u=const and 
X + ;  aCl/au and aC2/au are the Bondi-Sachs information 
functions" that determine the energy of the gravitational 
radiation, and the last term in (19) is the vacuum-energy 
flux across X+. The finiteness of this flux is a necessary 
condition for asymptotic flatness. 

3. BEHAVIOR OF SPECTRAL INTEGRALS WITH THE 
RETARDED GREEN FUNCTION 

The calculation of the vacuum-energy flux density re- 
duces to consideration of the integral 

for a certain class of trial functions I and determination of 
its asymptotic behavior as the observation point A tends 
toward 3 ' :  r(&) - oo for a fixed u and a fixed point on 
the sphere y. It follows from Eqs. (4) and (6) that the 
trial functions under consideration should possess those 
properties of Tt,"U,e that will be inherited by the curvature 
of the solution. For us, the following properties of I that 
restrict the class of trial functions are the most important: 
1)  analyticity of I along timelike world lines, including 
timelike past infinity (i-); 2) decrease of I at spatial in- 
finity and light infinity as 0( I/?). 

To parametrize the space-time integral ( 14) we choose 
a timelike world line L: x = ~ ( T ) ,  passing through the ob- 
servation point A ,  where T is the proper time and the 
tangent vector d51d.r points into the future. We shall con- 
sider the equation 

which determines T as a function of x. This equation has 
two solutions. We choose one, T = ~ ( x ) ,  with 

Then 

where the derivative V: operates on the second argument 
of the world function. It follows from (22)-(24) that 
( v ~ ) ~ E o ,  and 9(x)=const is the family of past light 
cones with apices on L. On a cone 9 ( x )  =const we intro- 
duce the brightness distance p and parametrize the light 
rays by means of the points of a two-dimensional sphere: 
4 EY. We use the arbitrariness in the choice of 4 to im- 
pose the conditions (V4,V6) ~ 0 .  The functions 6 ( x ) ,  
p(x) ,  and $(x) form the Bondi-Sachs coordinates associ- 
ated with the observation point, and it is convenient to use 
them as the coordinates of the integration point x in the 
integral ( 14). 

Let the observation point d correspond to r = 0  on L. 
Then the light cone of the past of the point d is 6 (x)  = 0. 
We shall consider 

From the equation for the world function9 we find 

Since 

a , ~ I , = ~ = a ~ ~ l , , ~ = o ,  

by setting 9=0 in (26) we obtain 

where 

In addition, a,o(A;x) 1 ,=, coincides with the left-hand 
side of (23) at 6=0,  and therefore takes only positive 
values. It follows from (28) that a ,o (d ;x )  at 6 = 0  is the 
affine distance between .A and x. Therefore, when 
d -N+ and x remains in the compact region, this quan- 
tity increases linearly with the brightness distance r to the 
point d: 

In the coordinates 9 ,  p, 4 EY, the integral (14) takes 
the form 

0 

- I-, d6q 

(31) 

where o= a(,u;x) and 

i=g, (A;x) ...& (&;x)IP'..~'(x) . (32) 

3 JETP 79 (I),  July 1994 A. G. Mirzabekyan 3 



After integration by parts over 6 in (3  1 ) , the cone contri- 
bution cancels: 

Here, Jo is the Bessel function of order zero. 
We now investigate the behavior of the integral 

as p- CC. Here we make use of the above assumption that 
I is analytic. Letting z = and applying the relation 
between the values of the Hankel function H A ' )  of order 
zero as we go around the branch point, 

we find that 

dzz (36) 

The integration contour in (36) can be closed in the upper 
half-plane. In the case of a static source I ,  a contribution to 
(36) is given only by the singularities of the geometrical 
factors, which for large p lie at 1 z 1 - p. Therefore, the 
integral (34) behaves as exp(-pm) as p tends to infinity. 
If, however, the source I is nonstatic, then by virtue of the 
assumed analyticity on the real axis, including the infinity 
in time, it has singularities in the complex-time plane, and 
the corresponding values of 1 z 1 - I const I 6. In this case 
the integral (34) decreases as exp( - (const(m $1 as 
p- 00. 

We shall assume first that the source I at each time has 
compact spatial support. Since in this case the ranges of 
integration over Y and p in (33) are compact, for a non- 
static source we obtain 

and the dimensional constant in (37) depends on the po- 
sitions of the singularities of the function I in the complex- 
time plane. It then follows that only the neighborhood of 
m2=0 contributes to the leading term in the asymptotic 
form of the integral (21) as d - X + .  To be more precise, 
this neighborhood includes 0 < m < rC/ $, with 0 < E 

< 1/2. We put g = m $ and consider the limit 

f ( c ) =  lim r ( d ) G e t  - 
dl-x+ ( r & ) ) ~ ( d )  

r (d)  I d 2 Y  I: dpp2 = lim - 
"&-4+ 

4.n 

Since the presence of the factor (d,o)-' leads, as 
+X+, to the appearance of an additional inverse power 

of r ( d ) ,  while the Bessel function Jo is bounded, for finite 
values of c the limit (38) is a finite function of g. As 6- C C ,  
according to (37), this function falls off exponentially. Af- 
ter multiplication by 3 ( d  ) the integral (21 ), expressed in 
terms of f  (0, takes the form ( r = r ( d )  - cc ) 

For asymptotic flatness it is required that the limit of the 
integral (39) as r - +  cc be finite, which, for the class of trial 
functions I ,  is the case if and only if G(0) is finite. If 
zZ(m2) does not have a finite limit at m2=0, the limit (39), 
even if it exists for special values of 6 and I, is unstable 
against small variations of I induced by changes in TfJu,,, . 
The function f (6) is of alternating sign, but depends on I, 
while the vacuum form factors are universal. 

4. ASYMPTOTIC BEHAVIOR OF THE FORM FACTORS 

If the function G(m2) and a few of its first derivatives 
have finite limits at m2=0, the asymptotic expansion of 
(21 ) can be obtained by using in (33) the formula 

and integrating by parts over 6 and m2. The integration by 
parts with the aid of (40) can be repeated the necessary 
number of times. At each stage there arises an extra factor 
of l/a,o at 8=0,  which, according to (30), is propor- 
tional to r- ' ( d )  for d -X+. The leading contribution 
to (21) behaves as r P 2 ( d ) :  

and lies entirely on the past light cone of the point A. 
Rewriting this integral in covariant form, we finally obtain 
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where 6' is the derivative of the delta function, and the 
symbol S denotes, as before, an integral over the region 
lying in the past of the observation point. 

We now take into account that w(0) =w(O), and the 
local terms in ( 1 l ) ,  just like the action of local operators 
on (42), do not give contributions to the leading term of 
the asymptotic form of y(-Oret)I(&). Then 

On the other hand, w(0) determines the behavior of y(-0) 
as a function of when - -0. In fact, it follows from ( 8 ) 
that 

if w(0) is finite, and 

if w(0) is infinite. Thus, with the assumptions that we have 
made about the trial function I ,  the behavior that the con- 
traction (43) must have for asymptotic flatness is ensured 
by the asymptotic behavior (44) of the form factor. The 
condition that the spatial support of I be compact will be 
lifted below. 

5. KERNEL OF THE OPERATOR l n ( - ~ , , / ~ * )  IN LOWEST 
ORDER IN THE CURVATURE 

The exact (not asymptotic) form of the kernel for 
l n ( - ~ ~ , , / ~ ~ )  can be obtained as follows. We consider the 
contraction 

where p is a constant and the source I falls off at infinity as 
O( 1/21. In lowest order in the curvature, separating out 
the contribution from the neighborhood of the apex of the 
cone, we have from (33) 

where 7 is defined in (32) and po is a small parameter. 
The integrals over m2 and 6 in (47) are not commu- 

tative. To calculate them we need the following auxiliary 
assertion. We consider the integral 

where aO<O is an arbitrary constant, and the function 
F(6) /a90  is regular in the region of integration. We shall 
make use of the fact that the world function 
o=o(&;6,p,#) is monotonic in 6 :  (a,o > 0,s  9 0  ) and 
vanishes at 6=0.  Then, integrating by parts over 6 and 
m2, we obtain 

According to (49), the regions of integration in (47) 
that do not have a common boundary with the surface of 
the past cone do not contribute to the integral, and there- 
fore, 

We cannot apply the lemma (49) to the last integral in 
(50), since at the apex of the cone we have a,o=O. How- 
ever, we can use this lemma to replace the region of space- 
time integration in the last term of (50) with any small 
neighborhood of the apex whose boundary intersects the 
cone at p=po.  It is convenient to choose this neighbor- 
hood in the form of a region 9 bounded by the past cone 
of the point & and a future cone of a point lying in the 
past of A. We then find 
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6. LOWEST-ORDER FORM FACTORS IN THE EFFECTIVE 
EQUATIONS 

in which, for regularity of the curvature at the point d,  it 
is necessary that 

Integration of the expression ( 5  1 ) over m2 leads to a log- 
arithmic divergence that is cancelled in ( 5 0 ) .  As a whole, 
the integral over m2 in ( 5 0 )  is finite. Thus, we find 

where C is the Euler constant. Rewriting ( 5 3 )  in covariant 
form, we finally find 

where, in the integral 1 over the past light cone, a neigh- 
borhood of the apex, specified by the inequality p  < po, is 
excised. The limit po-0 is finite. 

The above assumption that the spatial support of the 
source I  is compact ensures the convergence of the inte- 
grals (41) - (43)  at the apex of the cone, since as the ob- 
servation point tends to N + ,  the apex d moves outside 
the support of I. The expression ( 5 4 ) ,  which is valid in the 
general case, permits us to replace the assumption of com- 
pactness of the support with the condition that I  falls off at 
infinity as 0 ( 1 / ? ) .  Since the contribution of the apex of 
the cone, calculated in ( 5 4 ) ,  is local and falls off as 
0 ( 1 / ? ) ,  the leading term in the asymptotic form factor is 
determined by a cone integral with a small neighborhood 
of the apex excised: 

Here, po is a small parameter. The leading contribution to 
the asymptotic form of y ( - O r e t ) I ( d )  does not depend on 
the quantity po. 

We now apply the results obtained above to the form 
factors of lowest order in the effective equations. Consider 
the trace of the field equation ( 4 ) .  According to ( 6 ) ,  

Since by virtue of the asymptotic flatness the scalar curva- 
ture R of the solution should fall off as O (  1/12) on N f ,  we 
obtain 

Then, as proved above, 

We now consider the energy flux density in ( 19) .  Be- 
cause of the presence of the local operator in the term 
with the Ricci tensor in ( 6 ) ,  the contribution to the radi- 
ation is due entirely to the terms with the scalar curvature 
R : 

where 8 -0  on Nf . Since the expression ( 5 9 )  should 
behave as 0( I / ? )  on X+, we have 

From ( 5 8 )  and ( 6 0 )  we obtain the results ( 1 5 )  and ( 1 6 ) .  
The expressions ( 5 9 )  and ( 5 5 )  lead to the following 

result for the vacuum-energy flux across Y f :  

x%% d 2 Y ( y )  lim ? ( Y )  J r ( y )  - m 

where we have omitted other contributions to the deriva- 
tive ( 1 9 )  of the Bondi mass.3) In (61)'  u is the retarded 
time, normalized by the condition ( 18),  and it is indicated 
explicitly that the differentiation with respect to u and the 
integration over the coordinates on the sphere pertain to 
the observation point y-3' .  
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7. VACUUM RADIATION IN A SPHERICALLY SYMMETRIC 
STATE 

The kernel (54) takes an especially simple form in the 
case of spherical symmetry. A general spherically symmet- 
ric metric has the form 

where fl is the unit 2-sphere: 

is a certain two-dimensional Lorentz space, and r is a 
function on r. In light coordinates 

the metric of the space I' has the form 

and T is a space conformal to r. To denote points in r we 
shall use the letters A, B, C, and for points in fl we shall 
use the letters a, 6, c. Four-dimensional points are combi- 
nations of these: JY = (A,a), x = (A,;). 

Let Ip' ... v' be a spherically symmetric tensor. By vir- 
tue of the spherical symmetry, the world function and the 
parallel-transported tensor 

depend on the angles only in the combination 

a=cos 8 cos 8+sin 8 sin 8 c 0 s ( ~ - @ )  =cos 6, 
(68) 

where a, is the world function on the sphere 0. 
To realize the 6-function in (54) it is necessary to solve 

the equation of the past light cone in the metric (62). The 
equation 

is equivalent to 

Here, u ~ ( A J )  is the world function in T. We shall fix the 
observation point and solve the equation of the cone for the 
point ( 2 , ~ ) .  The region P1 U P2 in Fig. 1 is the interior of 
the past cone of the point A in the two-dimensional space 
r :  

Here, a, is the world function in T. 1f 2 € P 2 ,  then for all 
values of ii the points ( 2 , ~ )  lie inside the four-dimensional 
past cone of the observation point. Now let 2 €PI. The 
lines 2 and 3 in Fig. 1 depict radial light rays arriving at the 
observation point and are specified by the equations 

Line 1 depicts the continuation of one of these rays into the 
past through r=O. Its equation has the form 

FIG. 1. Penrose diagram for a spherically symmetric asymptotically flat 
space-time. Light coordinates u, v are used; N and N+ are light infin- 
ities. The solid timelike line is r=O. The dashed line depicts the lightlike 
(or almost lightlike) part of the visibility horizon. The lines 1 U2 and 3 
are the world lines of two radial light rays arriving at the observation 
point d. 

If the point 2 lies in the region P I ,  then 

For each such point one can find values of ii for which the 
point ( 2 , ~ )  lies inside the four-dimensional past cone of 
the observation point, on this cone, or outside it. The sur- 
face of the past cone of the point d is 

We shall choose the angular coordinates 8, q so that 
the value 8=0 corresponds to the observation point JY. 
Then 6 = 8 and a = cos 8, and the expression (54) for 
the kernel takes the form 

Here and below, a bar on a symbol signifies that the given 
quantity is taken at the integration point. Solving the equa- 
tion u=O for a and integrating by parts over a ,  we find 
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where we have taken into account that aaa < 0. 
In (77) the terms with S(u)  at a= f 1 are integrals 

over the radial light geodesics shown in Fig. 1. We have 

where (vN,u) are the coordinates of the point N in the 
space r (see Fig. 1 ). We note that 

These inequalities and the expression (80) given below 
make it possible to transform the measure in the integrals 
over the light geodesics by expressing it entirely in terms of 
the function r on the rays. 

In lowest order in the curvature we have 

As a result, we obtain the following expression for the 
kernel ln(-CIret/p2) : 

-; J d F r Z  d i r  Z 
r + r  Ia=-l+;  Jo r-r l a = l  

ray l ray2 

which contains integrals over the region PI and over the 
light rays 1, 2, and 3 in the space r (see Fig. 1).  As po-0 
in the integrals over the rays a logarithmic divergence ap- 
pears, which is cancelled exactly by the local contribution 
proportional to Z ( A ) .  The terms containing In po can be 
separated out by integration by parts, after which the limit 
po-0 can be calculated explicitly. Finally, we obtain 

1 
- 

dF- Z -> JI r l F - l a = - ~  ray 1 

With the function 7 defined in (67), the expression 
(82) is valid for any tensor Zp-"'(x). But if Z is a spherically 
symmetric scalar, this expression is further simplified, since 
I=I does not depend on a. In (82) there then remain only 
integrals over radial light rays and a local contribution. In 
the expression (59) for the vacuum-energy flux density the 
role of the source Z is played by the curvature scalar. 

As can be seen from the expression (81), in the limit 
r =  r(  A ) + a, A +4+, under the condition that the sca- 
lar source I behave as O( 1/21, the local contribution and 
the contribution of ray 3 vanish. As a result, the leading 
term of the asymptotic form of the kernel ln(-CI,,/p2) is 
determined entirely by the contribution of ray 1 U2. We 
obtain 

where the integral is taken along the entire world line of a 
radial light ray emerging from N-  and arriving at a given 
point of 4+. The final expression for the vacuum- 
radiation flux in the spherically symmetrical in-state has 
the form 

and, in lowest order, contains only the curvature scalar. 
Here the retarded time u is normalized by the condition 
(18). 

The expression (84) is fully analogous to the contri- 
bution linear in the curvature to the vacuum-radiation flux 
in two dimensions.I2 As in the case of two dimensions, the 
first-order radiation attenuates as the horizon is 
approached.4) In fact, in the reference frame comoving 
with the source, the derivatives of the curvature are finite 
on the horizon. As a consequence of the normalization 
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(18), the retarded time u in (84) and the time u- in the 
frame comoving with the source are related by the condi- 
tion 

51 =o. 
du horizon 

Therefore, in those expressions in which the derivative 
d/du acts on the curvature as in (84), the result vanishes 
on the horizon. As in the two-dimensional case,12 the stable 
component, i.e., the Hawking radiation, is contained in the 
terms o[R~]. To find them it is necessary to take into ac- 
count the third-order form factors in the action S,,, . 

The vacuum radiation in first order in the curvature 
possesses a number of general properties that are discussed 
in the following section. To illustrate these we shall con- 
sider the concrete example of gravitational collapse and 
calculate the energy of the radiation accompanying it in 
lowest order in the Planck constant, when in the right- 
hand side of the expression (84) we can substitute the 
curvature of the corresponding classical solution. 

As the classical source (Tfzu,,,) we shall take a dust 
sphere with uniform energy density, collapsing from a state 
of rest at infinity. The corresponding classical solution is a 
Friedmann metric of zero spatial curvature, joined to a 
Schwarzschild metric. The joining occurs over a shell of 
radial timelike geodesics with zero velocities at infinity. 
The classical solution is characterized by a single 
parameter-the ADM mass Mo. It can be shown that this 
coincides with the ADM mass of the self-consistent solu- 
tion of the equations for the mean field. 

The classical solution is singular. Let r be the proper 
time on the line r=O, reckoned so that -a < r < 0 and the 
singularity is encountered at r=0.  The radial light rays in 
this geometry can be labeled by the parameter u- , which 
is defined by the condition that a ray with given u- inter- 
sect the line r=O at r= U- . It is convenient to introduce 

The shell of radial rays with u- =-9Md2 forms the event 
horizon. Light rays emerging on to 4+ have - co < a < -3. 
The relationship of u- to the external retarded time u, 
normalized by the condition ( 18), is determined by the 
equation 

which enables us to verify that Eq. (85) is fulfilled. The 
limit a +- co corresponds to u -+ -W , while the limit a +-3 
corresponds to u -+ + co . 

Calculation of the integral in (84) for this model leads 
to the following result: 

3.2'  (3+a)  
drrR = - 

MO ( 1-a13( 1 7 

and the solution of the equation for the Bondi mass with 
the initial condition 

has the form 

From this it can be seen that the radiation attenuates as 
u+-co and u -+ + co. The contribution (84) to the energy 
flux can be either positive or negative, and the total energy 
of the radiation from this contribution is equal to zero (see 
Sec. 8). In the given example the function (90) executes 
one oscillation. It is positive in the past, negative in the 
future, and has one zero at a = -(3 + $?)/2, and the 
integral of it is equal to zero: 

We note also that the contribution linear in the curva- 
ture to the radiation energy depends in an essential way on 
the model of the collapsing source. For example, for col- 
lapse of a luminal fluid this contribution is entirely absent, 
since in this case the Ricci scalar is equal to zero. 

8. COMPARISON WITH TRADITIONAL METHODS 

The expansion of the effective action in powers of the 
curvature in (2) is a covariant perturbation-theory form, 
in which the metric can be written as 

where &, is a flat metric and the perturbation h,, is as- 
sumed to be uniformly small. In comparison with quantum 
field theory, this approach1 makes it possible to move away 
from the loop expansion, but not from the expansion 
(92).5) In (92), however, the perturbation h,, is still not 
fully defined and cannot be expressed directly in terms of 
the curvature, since two metrics on one manifold are de- 
fined to within a relative diffeomorphism. Here, two routes 
are possible. One is to fix only this relative diffeomorphism 
by a suitable gauge condition and to leave the coordinates 
of both metrics arbitrary. Then the perturbation can be 
expressed uniquely in terms of the curvature, and the con- 
ditions for integrability are the Bianchi identities.* When 
an invariant functional (e.g., the effective action in field 
theory) is expanded, the auxiliary metric F,, is "banished" 
in each order in the curvature by means of the relation 
(92), after which the result is invariant and does not de- 
pend on the choice of gauge condition. This is covariant 
perturbation 

The more traditional route is to fix the coordinate sys- 
tem of the metric &,. (When solving the dynamical equa- 
tions one must fix the coordinate system of the metric g,, 
as well.) In this approach the restoration of a covariant 
form for the answer requires summation of an infinite se- 
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ries in powers of h,,, since the curvature is represented by 
such a series. The technical difficulties that arise here al- 
ready begin to dominate in third order in the c~ rva tu re .~ )  
In addition, with this method of calculation in field theory, 
ultraviolet divergences are present in all orders in h,,, 
while in terms of the curvature they do not extend beyond 
the second ~ r d e r . ~ ' ~  For the coordinates of a flat metric one 
usually takes the Minkowski coordinates, but this is not 
always convenient (spherical coordinates, for example, 
could be more convenient), and, in one case, when we are 
speaking of light infinity,'0"' is incorrect. The reason is 
that on 3+ the Minkowski time t tends to .t oo simulta- 
neously with the spatial coordinate. With these provisos, 
our results should, of course, be obtained in the framework 
of traditional perturbation theory as well. 

As an example we shall consider the following model 
of the action SVac : 

where a and A are constants and 0 <A < 1. To within terms 
0[R3] the expression (93) is the particular case of the 
action (2) with 

Y I ( - ~ >  =4a(-O)FL, y2(-0) = --a(-n)-A. (94) 

We have 

sin(.nA) dm2 (-a ret )p~=----- 
7~ Jom p c e t ( m 2 ) ~ .  (96) 

The classical source TrlU,, will be taken to be non- 
static and to have compact spatial support and a nonzero 
trace. We shall show that the solution of the effective equa- 
tions in this model is asymptotically flat at spatial infinity 
(f'), but is not asymptotically flat on light infinity ( 3 ' ) .  
This means that the solution is not asymptotically flat,'' 
not only because of the different behavior of an asymptot- 
ically flat metric at I' and on 3+ (nonconservation of the 
mass on 3 ' )  but also because of the different behavior of 
the retarded solution of d'Alembert's equation with a non- 
static source. In the limit f' (r-. for fixed t) this solution 
can be represented by the series 

the first term of which is the static Yukawa potential. (The 
coefficients c are time-dependent only in the third and 
higher terms of the expansion.) If the source I is static, the 
solution behaves in the same way on 3+ as well (r-. oo for 
fixed u=t-r),  but if the source is nonstatic, then, as 
shown in Sec. 3, 

As a result, from (96) we find 

We shall seek the solution of the effective equations by 
perturbation theory, by representing the perturbation of 
the metric in the form 

where h:,, is the perturbation of the classical solution and 
Sh,, is the quantum correction. For Sh,, we obtain the 
equation 

where 

and the operators with a tilde pertain to the flat metric &, . 
For simplicity we shall confine ourselves to the case of 
spherical symmetry. 

We shall consider first the behavior of the solution at 
spatial infinity. We fix the coordinates of the metric g,, by 
the expression 

and the coordinates of the metric g,, by the values gtt= - 1 
and grr= 1 in ( 104). In these coordinates the conditions for 
asymptotic flatness at f' have the form ( 8  -0 at f') 

where Mo is the conserved ADM mass. Since the pertur- 
bation of the classical solution has the form ( 105), the 
quantum correction Sh,, should also have the form (105), 
with a certain value of 6M0. Substituting Sh,, into (103), 
we obtain 

for all projections onto the Lorentzian subspace r, t. For 
compatibility of Eqs. ( 102) the projections 85-Tt;a,C should 
also behave in the same way, and it can be proved that this 
condition is necessary and sufficient for asymptotic flatness 
of the solution at 1'. From (99), with allowance for the 
local differential operators in (95), we find 
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which, for A < 1, satisfies the required condition. More pre- 
cisely, 

The latter implies that not only is the solution asymptoti- 
cally flat at P, but the quantum correction SMo to the 
ADM mass is equal to zero as well. This result also holds 
with the correct form factors ( 15), ( 16), and is an impor- 
tant property of the in-state.4 

We now consider the behavior of the solution at light 
infinity. The coordinates of the metric g,, that cover X+ 
(in the asymptotic sense) are determined by the 
e ~ ~ r e s s i o n ' ~ ' ~  ' 

while the coordinates of the metric G, are fixed by the 
values guu= - 1, gur= - 1 in ( 109). The conditions for as- 
ymptotic flatness on X+ have the form" 

where M ( u )  is the Bondi mass. Since TflUrce has compact 
spatial support, the perturbation of the classical solution 
has the form ( 1 10) with M (  u) replaced by Mo, while the 
quantum correction Sh,, should have the form ( 110) with 
a certain function SM(u). It will be sufficient to consider 
the uu component of Eq. ( 102). Calculating the left-hand 
side, we find 

In the right-hand side of the uu component of the expres- 
sion ( 9 5 ) ,  the leading term is that with two derivatives 
with respect to u: 

whence, according to ( loo), 

As a result, for A > 0 Eqs. ( 102) are incompatible, i.e., the 
solution is not asymptotically flat on N+, in full agreement 
with the principal result of this paper. If instead of (95) we 
take the general expression (6) for Ttzc, the uu component 
of Eq. (102) will have the form 

But this is the equation obtained above for the radiative 
energy in the spherically symmetric case. For this to be 
compatible it is necessary that the form factor have the 
asymptotic form (60). 

The situation when the solution is asymptotically flat 
at ? and is not asymptotically flat on X is exotic in clas- 
sical theory, in which the perturbation of the metric be- 
haves in a power-law manner both at P and on 3, but in 
quantum theory it is entirely natural. The point is that at 10 
the quantum correction in the self-consistent solution 
should fall off e ~ ~ o n e n t i a l l ~ , ~ ~ ~ ' ~  as is the case in a wide 
class of form factors, but on X the decrease should be a 
power-law decrease because of the presence of radiation. 
Here, the selection of the necessary power leads to a strin- 
gent restriction on the asymptotic form of the form factors. 

As already noted, the behavior of the form factors 
( 15) and ( 16) coincides with the one-loop behavior in field 
theory, and, therefore, in this theory our result for the 
energy of the radiation should be obtainable by direct cal- 
culation. Below, we shall perform this calculation, using 
traditional methods of quantum field theory, and answer a 
number of questions that arise in connection with the re- 
sult obtained. In particular, an explanation is needed for 
the fact that vacuum radiation of first order in the curva- 
ture is present at all, since it is clear that the probability of 
creation of particles by the external field, and the number 
of particles created, cannot be lower than second-order in 
the perturbation of the external field (see, e.g., Ref. 14). 
The answer, as we shall show, is that we are calculating the 
energy radiated up to a given moment of retarded time u, 
and it does indeed contain a contribution linear in the 
curvature, whereas the total energy radiated over all his- 
tory is proportional to the number of particles created and 
is of second (and higher) order. This situation is possible 
because we are concerned not with classical observables 
but with averages over a quantum state. 

Since in the one-loop approximation T(!& is the sum of 
the contributions of the individual kinds of particles, we 
shall consider one such contribution-the contribution of 
spin-zero particles described by a real (Hermitian) scalar 
field with action 

where @ is a scalar massless field and f is a numerical 
parameter. The energy-momentum tensor of this field has 
the form 

and depends on 6 even in flat space. Here, C=O corre- 
sponds to the canonical energy-momentum tensor, and 
6= 1/6 to the so-called metric energy-momentum tensor.15 
The advantages of the latter have been noted repeatedly in 
the l i terat~re, '~-~ '  and are related to the fact that for 

1 1  JETP 79 (I), July 1994 A. G. Mirzabekyan 1 1  



f = 1/6 the action ( 1 15) possesses conformal invariance, 
and the trace of Tpv is equal to zero in the equations of 
motion 

of the field a. Conformal invariance is an important prop- 
erty of massless fields, and, therefore, the massless spin- 
zero field is described by the action ( 11 5) with f =  1/6 
(Ref. 17), and the values given in (17) for the spectral 
weights pertain to this case. Below, all the calculations are 
-performed for arbitrary f. 

Regarding the field Q as the source of the gravitational 
field, we shall calculate its energy-flux density across N+. 
Near Y+ we use the coordinates x =  (r,u,O,q) (109). 
Since in asymptotically flat space, 

we find, in the notation of Eq. ( 19), 

After averaging of the equations of gravitation over the 
in-vacuum state, the energy balance (19) takes the form 

- %= Jd2Y'l im2[(in vacl (aU0)'lin vac) 
du r- m 

- fa;,(in vac 1 a2 1 in vac) 1, (120) 

where we have taken into account only the vacuum of the 
field a ,  and the left-hand side is the expectation value of 
the corresponding observable. We note that even for a clas- 
sical field the expression (120) contains, for f#O, a term 
of nonfixed sign in the form of a total derivative. Here, as 
a consequence of the condition that the energy be finite, the 
quantity r@, taken on N + ,  decreases sufficiently rapidly as 
U-  & oc, for this term not to contribute to the total radi- 
ated energy 

= duJd2Y'lim?(in v a ~ l ( a , 0 ) ~ 1 i n  vac). 
r- m 

(121) 

In the case of the expectation values, however, on account 
of the first average in (120), as we shall show, additional 
terms similar to &,(a2) appear, and these are now non- 
zero for any f ,  although they also do not contribute to the 
total radiated energy. The reason is that the energy density 
of the classical field is positive, at least for f =0, whereas 
the energy density of the vacuum is of nonfixed sign (even 
on N' ) for any f .  

For the calculation of the averages in (120) we shall 
expand the field operator in the basis of the solutions of the 
wave equation ( 117). We can then choose a basis of solu- 
tions that have positive frequency on N - :  

or a basis of solutions that have positive frequency on N': 

Here, A is a set of quantum numbers, ff, and ftut are the 
corresponding basis functions, and 4 and a&, are the an- 
nihilation operators that define the vacuum of the particles 
that can be detected on and N + ,  respectively:21 

The basis functions f in  and f,,, are related by the 
Bogolyubov t r a n ~ f o r m a t i o n ' ~ , ~ ~ , ~ ~  

in which the matrices a and P are combinations of the 
particle-creation and particle-scattering amflitudes. In the 
perturbation-theory calculation, the basis fA(x )  of solu- 
tions of the free wave equation (with a flat metric) is also 
involved, and is positive-frequency both on N- and on 
Y + .  We have 

Henceforth, all quantities with a tilde pertain to the flat 
metric in (92). 

If for the calculation of ( 120), where @(x)  is taken on 
N', we use the expansion ( 122), the problem reduces to 
the determination of the basis functions ff,(x) on N + .  But 
if we use the expansion ( 123), the basis functions are triv- 
ial and the problem reduces to the determination of the 
coefficients a and 0. For our purposes the second route is 
more convenient. We obtain 

(in vacl [a,@(y)12(in vac) ly-x-t 

x (in vac 1 u&,ai, 1 in vac) 

x (in vac 1 a&:a&, 1 in vac) (127) 

and an analogous expression for ( a 2 ) .  Then 

(in vac 1 u&,ai, 1 in vac) = - 1 a*(A,C)P*( B,C), 
C 

(128) 

(in vac 1 aza:, 1 in vac) = C P(A,C)P* ( B,C) . 
C 

(129) 

In the expansion in the perturbation of the external 
field in the expression (127), there is already a term of 
zeroth power in the curvature. This is the energy of vac- 
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uum fluctuations of the field in flat space-the first term in 
(127). It gives rise to a nonzero Tt:c even on N - ,  and so 
should be subtracted. Otherwise it would turn out that we 
would be considering a problem in which there is an inci- 
dent flux of energy across N - ,  so that the presence of the 
emergent flux across J+ would not be due just to the 
creation of particles from the vacuum. It is well known 
that in the theory of massless fields there is an internal 
mechanism of cancellation of terms of zeroth power in the 
curvature in Tt,", .') In each formalism (in the method of 
functional integration,23'24 in the Green-function 
formali~m,~ and in the canonical it can be 
shown that by dealing with the divergences in a certain 
way, these terms cancel. In dimensional regularization26'27 
this cancellation occurs trivially. In the present context, to 
cancel the first term in ( 127) it is sufficient to separate the 
angular arguments of the operators @ on N+ and to re- 
gard the operation of bringing them together as the last 
operation. Henceforth, this term will be discarded. We 
note that after it has been discarded we lose the formal 
positive definiteness of the expression ( 127). 

The remaining two terms in (127) depend on the ex- 
ternal field. From ( 125) it can be seen that upon expansion 
in the curvature we have 

Therefore, the third term in ( 127), which is quadratic in 8, 
is 0[R2], but the second term contains a contribution linear 
in the curvature, since 

(in vac 1 u&,a&, 1 in vac) = -P* ( B J )  + 0[R2]  . 
(131) 

It is this which gives rise to the presence of vacuum radi- 
ation of first order in the curvature. The local terms in Tt& 
that are linear in the curvature either fall off on N+ or 
renormalize the gravitational constant, but the matrix P is 
nonlocal in the external field. Therefore, the phenomenon 
of first-order radiation remains after the renormalization as 

We now show that the entire second term in (127), 
and hence the part of it linear in the curvature, gives no 
contribution to the total radiated energy. For this we shall 
write an explicit expression for the basis function p ( x )  on 
N + ,  taking it, as in the form of a positive- 
frequency outgoing spherical wave: 

where 

Y is a spherical harmonic, and r -  co for fixed u, 8, and p. 
Adapting in an obvious manner the notation in (127), we 
find 

d 2 Y  lim ?(in vac 1 1 in vac) = I 7-m 

x (E '  ) 1 in vac) 

x C (in vac la$fm(~)aL:,(&') 1 in vac). (134) 
I,  m 

Here, the term with (a'a) is manifestly positive, since it 
can be written in the form of the norm 

and this positivity is no longer formal but real, since the 
matrix 8 in ( 129) and contractions with this matrix do not 
contain ultraviolet divergences.21 The term with (aa) does 
not have a fixed sign, and upon integration over u from 
- co to w the delta function 6 ( ~  + E') appears in it and 
makes it vanish. As a result, from ( 121) and ( 134) we 
obtain 

~ E E  (in vac 1 ~$f~(~)aL:~(.e)  1 in vac) . (136) 
= I," I,, 

The average that appears here is the number of out- 
particles with the given quantum numbers in the in- 
vacuum, and the inequality (136) states that the total ra- 
diated energy is equal to the total energy of the particles 
created. According to ( 129) and ( 130), this quantity is 
O[R 21. 

Returning to the energy radiated up to a finite time, we 
shall calculate its component linear in the curvature by 
perturbation theory. For this we introduce the S-matrix 

where T is the time-ordering operator and, to the given 
accuracy, we can replace by the complete metric f". 
Using the relation 

we find, by direct calculation, 

(in vacl aZa,B,, 1 in vac) = o [ R ~ ] ,  (140) 
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(in vac 1 u&~,B,,  1 in vac) =i d x  f i [ h a P ( b p p  

The matrix in (131) has thereby been calculated to order 
0 [ R 2 ] .  For the average ( 127) we obtain the following re- 
sult: 

(in vacl [d,@(y) l 2  1 in vat) Iy-x+ 

where 

=i(vac I @(y)@(x) 1 vac) I,=,- (143) 

is a positive-frequency function of the free wave equation.29 
We obtain an analogous expression for ( F ~ ) .  The imagi- 
nary part of the product o_f two functions G+ contains the 
real part of the function G+. Therefore, in the expression 
( 142) the point x lies on the light cone of the pointy. Since 
the pointy is on 3 + ,  in the expressjon (142) x always lies 
in the past of y, and the function G+ is then equal to the 
Feynman Green function GF. Therefore, in the expression 
(142) we can replace G+ by G ~ .  

The function GF depends only on the world function: 

GF(x,y) =GF[a(x,y)1, (144) 

and, as a generalized function, satisfies the equation 

[see ( 162) below]. When y tends to 3 + ,  while x remains in 
the compact region, we have 

whence 

%v ;G(~,Y) 1 ,-x+ = o (  1 1, 

v,a(x,y I ,+x+ = o (  1 ). (150) 

We also take into account that 
- - 
v ;v ;a(x,y) -&,(x). (151) 

Using ( 144)-( 15 I) ,  it is not difficult to convince oneself 
that the following relations are valid: 

The relation (154) makes it possible to "flip" (via 
integration by parts) the derivatives V ;1V ': in the expres- 
sion ( 142) to the perturbation h. The resulting contraction 

must be compared with the following expansion of the 
Ricci scalar: 

The coefficients of the trace terms are not equal, but these 
terms can be omitted altogether, since, according to ( 155 ) , 
they do not contribute to the leading term of the asymp- 
totic form on N f .  

As a result, the averages of interest take the form 

(in vacl [a,@(y)121in vac) 

(in vac 1 @2(y) 1 in vat) 1 ,-x+= --26 (: ) 

+ O ( ~ - ~ ( Y ) ) + O [ R ~ I .  (159) 

It remains to calculate the loop in ( 158) and ( 159). For 
this we make use of the following integral representation 
for the Feynman propagator: 

-F 
1 

G (x,y) =s JOm dt exp [i(&+iO)r], (160) 
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1 =m Iom dM exp[i(d+iO)l] 

1 a -  
- 8di d z  GF (X,Y ) (161 

Since 

-F 1 i 1 
G (x,Y) =- s ( a )  +- - 

8~ 8 2  a '  (162) 

we find 

1 
~ m [ Z ~ ( x , y ) Z ~ ( x , ~ )  ] = -= ia6.(5). (163) 

We finally obtain 

1 1  1 
(in vacl [ a U ~ ( y ) l 2 l i n  vat) ly-/+=m (;6-%) 

x a : a : J d x ~ g ~ ( x ) s ' ( ~ ( x , Y ) )  

+ ~ [ r - ~ ( y ) I  +0[R21, (164) 

(in vacl o ~ ( ~ )  /in vac) / , J + = ~  6-; ( l )  

x J d ' x , & ~ ( x ) ~ ' [ ~ ( x , y ) l  +0l rp3(y)1  

+0[R21. (165) 

If the Hilbert spaces constructed on the in- and out- 
vacua are unitarily equivalent, i.e., M ( u )  does not go to 
infinity, the entire first-order contribution to ( 166) is in the 
form of oscillations of alternating sign, which sum to zero 
over the entire history. This result can serve as an illustra- 
tion of the arbitrary character of the separation of virtual 
vacuum effects from real ones (see, e.g., Ref. 15). It is clear 
that departure of the matrix P from zero leads both to the 
creation of real particles and to nonlocal polarization of the 
vacuum. The only fact that may be unexpected is that the 
energy density of the vacuum turns out to be of nonfixed 
sign not only in the inner regions of the space but also in 
the asymptotically flat region in which real particles are 
observed. In this region observations of two types are pos- 
sible. First, it is possible to set up a particle detector that 
will certainly detect only real particles with positive en- 
ergy. Second, it is possible to measure a classical observable 
(in the present case, the free-fall acceleration). With suf- 
ficiently high precision, its increase can actually be ob- 
served. However, there is no contradiction between these 
two types of measurement, since the dispersion of the clas- 
sical observable should show that radiation of negative en- 
ergy is statistically uncertain. In the example in Sec. 7 the 
quantity dM/du is suppressed by the factor (mJM,), 
where mp is the Planck mass. The dispersion of this quan- 
tity has the same order of magnitude, but exceeds it nu- 
merically by a factor of d. 

The author is grateful to G. A. Vilkovisky for scientific 
guidance. 

The work was performed with the financial support of 

Substitution of these expressions into (120) gives the de- the Russian Fund for Fundamental Research ( ~ i n t  No. 

sired result: 93-02-15594). 

')1n the paper we adopt a Riemann tensor R$vS=avT$B-..., RaS=R$,,S, 
R =gaS~,o, and the metric signature ( -, +, +, + ). 

  or the expectation values there does not exist an action functional in 
the usual but the equations for the expectation values in the 
in-vacuum state can be obtained by means of a definite procedure from 
the Euclidean action.' We write the Lorentzian action by changing the 
common sign in front of the Euclidean action and formally applying this 
procedure. 

3 ) ~  classical source Tt:u,,, may not contribute to the energy flux across 
.Y+ and may not generate gravitational waves, and the information 

+ 0 [ ~ 2 1 ,  ( 166) functions generated by Tt,', are equal to zero in the O[R'] approxima- 
tion. 

which it is necessary to compare with the result (61 ) ob- 4)~ecause  of the presence of vacuum radiation, the solution of the equa- 
tions for the mean field does not have a light-like horizon (event hori- tained above' The weights wl(o)  and w2(o) for the zon), but if the mass of the collapsing source is much greater than the 

contribution of the scalar field to the effective action (2)  plan& mass the visibility horizon has a part that is almost light-like,12.13 
are known for all values of f (Refs. 2, 3, 21, 28): 5 )~sua l ly ,  by perturbation theory one means the simultaneous application 

of these two expansions. 
1 6 ) ~ h e  one-loop effective action in third order in the curvature has been 

~ ~ ( 0 )  =%, ~ ~ ( 0 )  = ( 167) calculated only recently by means of covariant perturbation theory.5 
' ) ~ n  the case of massive fields this mechanism is not sufficient, and a 

As a result, cosmological term appears in the equations for the expectation 
 value^.^.^^ 

1 1   he calculations performed below are in agreement with dimensional . . 
w1(0) +2w2(0) =--- f +c2, 30 3 ( 168) regularization, in which there is no renormalization of the gravitational 

constant. 
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