
Current-voltage characteristic of an inhomogeneous tunnelingjunction in the above- 
threshold region eV>A, +A, 

Yu. N. Ovchinnikov 

Centre de Recherches sur les tres Basses Temperatures, CNRS, 38042 Grenoble, France 

A. Yu. Ovchinnikov 

Institute of Solid State Physics, Russian Academy of Sciences 
(Submitted 16 March 1994) 
Zh. Eksp. Teor. Fiz. 105, 1814-1820 (June 1994) 

We show that a region of negative differential resistance can appear on the current-voltage 
characteristic of a tunneling junction manufactured from inhomogeneous 
superconductors. What is important is that with such a hysteresis mechanism the right end 
of the region of negative differential resistance always proves to be displaced to the 
right of the threshold by a distance considerably greater than the "step" on the current-voltage 
characteristic. 

1. INTRODUCTION 

At low temperatures the current-voltage characteristic 
of a tunneling j~nct ion"~ can differ considerably from that 
given by an idealized model based on the tunneling Hamil- 
tonian in the second-order perturbation theory in the bar- 
rier penetrability and on the BCS model.3 Describing the 
experimental data requires allowing both for higher-order 
terms in the perturbation-theory expansion in powers of 
barrier penetrability and for the various depairing mecha- 
nisms, which smear out the square-root singularity in the 
density of states of single-particle excitations. Moreover, 
inhomogeneities, always present in superconductors, must 
be taken into ac~ount .~  

Two-particle tunneling causes steps to appear on the 
current-voltage characteristic of the junction at voltages V 
that obey the condition eV = A1,2, where A1 and A2 are 
the order parameters in the first and second superconduct- 
ors, Allowing for the depairing mechanisms 
in the self-consistent field approximation makes the width 

of the gap in the single-particle excitation spectrum 
less than A1,2 and smears out all singularities on the 
current-voltage characteristic. Allowing for inhomogene- 
ities also reduces the density of states at energies less 
than El,2 and changes the form of the density of states in 
the energy range E ~ , ~  > El,2 (see Ref. 4). Although these 
corrections are small, they nevertheless lead to new phe- 
nomena and are therefore considered below. 

2. THE CURRENT-VOLTAGE CHARACTERISTIC IN THE 
REGION ABOVE THE BARRIER 

At low temperatures ( T  4 AlP2), the current-voltage 
characteristic of a tunneling junction is specified by the 
following formula: 

where RN is the junction resistance in the normal state, and 
are the retarded Green's functions integrated with re- 

spect to the energy ~ariable.~ In the self-consistent field 

approximation and in inhomogeneous superconductors, a 
near the single-particle excitation threshold satisfies a cubic 
equation.4 To study the above-barrier region we must re- 
fine this equation so that it contains correction terms qua- 
dratic in the inhomogeneities, terms emerging from the 
low-momentum region.4 

Following Ref. 4, we arrive at the following system of 
equations for the Green's functions a and fl averaged over 
the inhomogeneity distribution: 

2 M ~ A ~ ~ ~  a -fl2=1-- 
87r exp (E )  4 (d) vlt, 'I2 ( o a  - ~ f l )  - I", 

(2) 

Here A is the average value of the order parameter in the 
superconductor, v is the electron velocity on the Fermi 
surface, and It, is the electron transit length (free path 
length). 

For a weakly inhomogeneous superconductor we can 
write the order parameter A(r) as 

with (Al ( r )  ) =O. 
The correlation function of the random quantity 

Al(r) can be written as 

The function Mk depends on the type of inhomogeneities 
and their di~tribution.~ According to Ref. 4, the parame- 
ters Mo and I' in Eq. (2) are 
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In deriving Eq. (2) we have assumed that the electron 
mean free path in a superconductor is short: 

Let us find the current-voltage characteristic of the junc- 
tion in the above-barrier region, 

As shown below, it is in this region that inhomogeneities 
can give rise to an essentially new phenomenon, a region of 
negative differential resistance. To obtain the current- 
voltage characteristic in the region defined in (7) we need 
only to solve the system of equations (2) using 
perturbation-theory techniques. As a result of simple cal- 
culations we get 

Combining ( 1 ) and (8), we get 

Here and A1 and A2 are the average values of the order 
parameters in the first and second superconductors, respec- 
tively. The integral is evaluated along a contour that starts 
at the point w = eV - A2 - is and bypasses the singu- 
larities of the function a in the neighborhood of the point 
w = A1. The symbol ( l e 2 )  indicates that we must add to 
the integral written explicitly the same integral with the 
indices 1 and 2 interchanged. Evaluating the integral in 
(91, we get 

where B(x,y) is the Euler function. From Eqs. (9) and 
( 10) we can easily derive the condition for the appearance 
of a region of negative differential resistance on the 
current-voltage characteristic of a tunneling junction. To 
do this, we introduce the dimensionless parameters K],Z, 
which characterize the distribution of inhomogeneities in a 
superconductor: 

If we combine this with Eq. (10) for I, we arrive at a 
simpler equation for the current: 

The region of negative differential resistance exists if 

where eVo is the extremal point of (aI/deV), that is, the 
point at which 

Combining (12) and (14), we find the position of the ex- 
tremal point e Yo: 

Substituting this into Eq. ( 13), we arrive at an inequality 
that is the condition for the appearance of a region of 
negative differential resistance: 

3. THE GAP IN THE SINGLE-PARTICLE EXCITATION 
SPECTRUM 

The Green's functions a and /3 in the self-consistent 
field approximation are given by Eqs. (2). In this approx- 
imation the single-particle excitation spectrum contains a 
gap of width E. When 0 < o < E holds, both a and /3 are 
purely imaginary and we can assume 

a=-ix, /3= - '  ly, ma-~p=i&.  (17) 

Suppose that the parameters A/r  and K are large, that is, 

{A/~,K}% 1. (18) 

In this case, near the threshold the functions X and Y 
satisfy the inequality 

CX,Y}% 1. (19) 

Using this inequality and Eqs. (2), we arrive at the follow- 
ing system of equations for the functions x and y at the 
threshold: 
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where the dimensionless parameter y is given by the for- 
mula 

Equations ( 17), (20), and (21 ) determine the values of 
the Green's functions a and B at the threshold point E, and 
also the location of this point. 

Let us examine the most interesting region of small 
values of parameter y, 

If this condition is met, we can employ perturbation theory 
to solve the system of equations (20). Also, the values of 
parameter K happen to lie inside the range of values for 
which condition (16) for the appearance of a hysteresis 
loop on the current-voltage characteristic is satisfied. 
By means of simple calculations we find 

4. THE RANGE OF VOLTAGES BELOW THE THRESHOLD 

Fluctuations in the inhomogeneity distribution also 
lead to the appearance of a density of states in the energy 
region4 

The density of states here is determined by the same pa- 
rameters r/A and K as in the above-barrier region. We 
write it in the form7 

with 0 < E-w. Here the dimensionless parameter A is of 
order unity and must be considered an adjustable param- 
eter, so that Eq. (25) can give the best approximation for 
the density of states in the entire energy range 
O<E-IW~A.  

Equations (2) and (25) make it possible to derive a 
good interpolation formula for the density of states, suit- 
able for all values of o and exact for energies far from the 
thresh~ld:~ 

where fl(o) is an even function of the argument E-w, 
and for 6-w>0 is given by Eq. (25). The function 
f2(w) is the real part of the function a ( o )  defined in Eqs. 
(2). 

Comparison of the experimental data with the current- 
voltage characteristic determined via Eqs. ( 1 ), (2), (25), 
and (26) allows an accurate determination of the param- 
eters r/A, K, and A of a supercond~ctor.~ 

Below we give an expression for the current, valid for 
voltages obeying the inequality 

Combining Eqs. ( 1 ) and (25), for a symmetric junction we 
get 

Comparison of the experimental data with the formula 
(28) allows an accurate determination of the parameter K. 

5. CONCLUSION 

For inhomogeneous superconductors the density of 
states is determined with good accuracy by the self- 
consistent field approximation. The single-particle excita- 
tion spectrum acquires a gap of width E in this approxi- 
mation, with E smaller than the order parameter A. In 
weakly inhomogeneous superconductors the shift 
61,2=A1,2-E1,2 of the edge of the spectrum is small. 

Fluctuations in the distribution of inhomogeneities 
also result in the appearance of a finite density of states for 
energies lower than E. 

The current-voltage characteristic of a tunneling junc- 
tion near the threshold e V z E I  + E2 makes it possible to 
determine the parameters r/A and K characterizing the 
magnitude and distribution of inhomogeneities. The den- 
sity of states and the current-voltage characteristic of the 
tunneling junction depend on various combinations of r /A 
and K. As a result the current-voltage characteristic of the 
junction in the above-barrier region eV- El - E2 > 6, +a2 
can be found via perturbation-theory techniques. This suf- 
fices to clarify the question of the appearance of a section 
with negative differential resistance and of its size. If the 
appearance of a section with negative differential resistance 
is due to inhomogeneities in the superconductors, the right 
edge of this section is shifted to the right by an amount 
exceeding the shift 61.2 of the edge of the spectrum by a 
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factor on the order of the large parameter. When the sec- 
tion with negative differential resistance appears this pa- 
rameter is of the order of K"'~'. 
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Translated by Eugene Yankovsky 

This article was translated in Russia. It is reproduced here the way it was 
submitted by the translator, except for stylistic changes by the Translation 
Editor. 
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