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The formulation of a model for describing the interaction of current camers in copper oxide 
HTSC with displacements of the apex oxygen in a two-well potential is discussed in 
detail. The interaction is treated using the generalized anisotropic s-d exchange model in 
which it is shown that the interaction matrix is determined by five independent parameters. 
Corrections to the electronic energy spectrum in the weak coupling regime are calculated. 
The corresponding contribution to the density of states changes dramatically near the Fermi 
energy EF on small energy scales on the order of the characteristic collective mode 
frequency c i i  and, what is unusual, is asymmetric about EF, which can add substantially to 
the thermopower. The reaction of the conduction electrons on the lattice subsystem, 
in particular the suppression of the two-well feature by the pseudo-Kondo effect, is 
investigated. The renormalization group equations for the single-center problem are developed, 
and the "Kondo temperature" for the case of an anisotropic xyz model is found. 

1. INTRODUCTION 

At present it may be considered established that the 
apex oxygen atoms located at the apices of the elongated 
Cu06 octahedra in the crystal lattices of copper oxide 
HTSC are in a two-well potential. Apart from direct EX- 
AFS experiments1, this view is supported by x-ray,' 
~ossbauer ,~  and p am an^ data (the system YBa2C~307-6 
being most closely studied in this respect), as well as by 
first-principle total energy calculations for La2-xSrxCu04 
using the density functional method with inclusion of cor- 
relation  effect^.^ A number of workers (see, e.g., Refs. 1,2, 
6-9) have presented arguments showing the important role 
of apex oxygen in superconductivity mechanisms, such as 
temperature dependence anomalies in the relevant EXAFS 
parameters at T , ~  the correlation between the amount of 
apex oxygen in a unit cell and the exponent of the isotopic 
effect,' the correlation between the pressure variations of 
T, and the distance from the apex oxygen to the Cu02 
plane,7 etc. Strictly speaking all these arguments are indi- 
rect in nature (except perhaps EXAFS), but they are a 
sufficient motivation to raise the theoretical problem of the 
role of apex oxygen in determining the special properties of 
HTSC. Indeed this problem may be of more general inter- 
est from the viewpoint of strong correlation physics, as an 
opportunity to consider new multiparticle models with in- 
teresting types of behavior. 

There have recently been a large number of theoretical 
studies on the ~ubject. '~-'~ While the particular forms of 
the proposed models vary, all of them consider the inter- 
action of conduction electrons with atoms in a two-well 
potential, treated as two-level systems. The majority of 
these studies are concerned mainly with the superconduc- 

tivity mechanisms possible in such models; in Ref. 10 the 
properties of the normal phase are briefly discussed. In all 
cases the strong coupling regime is considered from the 
outset, when the electronic spectrum near EF is completely 
reshaped by the interaction with the two-level system. Be- 
cause reliable estimates of interaction parameters appear at 
present impossible and may in addition vary from one sys- 
tem to another, it appears necessary to perform a detailed 
analysis of the electronic spectra for different regimes, 
starting from the perturbation theory (weak coupling) ap- 
proach. It is the purpose of this study to present such an 
analysis. 

The question of the influence of an excited two-level 
system on the magnitude of T, has been investigated in a 
number of studies following Refs. 16 and 17 and will not be 
discussed here. 

Apart from the mere fact of existence of two-level sys- 
tems associated with apex oxygen, an essential factor in the 
formulation of our model is the strong evidence for the 
"ferroelectric" behavior of HTSC.18-21 Therefore, unlike 
Refs. 11-15, our primary concern will be with the effects of 
interaction between two-level systems, which may lead to 
ferroelectric ordering (at least in a short range sense) and 
"pseudospin" collective excitations." Even prior to any 
evidence for the importance of apex oxygen-and hence 
without the necessary specifics-a simple model for these 
effects was considered in Ref. 23. The problem we are dis- 
cussing formally resembles the problem of magnetic 
Kondo lattices, in which the key factor is the competition 
between the resonant scattering of conduction electrons by 
localized spins (in our case, by two-level systems treated as 
pseudospins) and the spin-spin exchange intera~tion.'~"' 
The point to note is that even in the weak coupling regime, 
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a small energy scale appears in the electronic spectrum 
near EF over which the density of states N(E) changes 
sharply. The role of this scale is played by the character- 
istic spin excitation frequency iLz4 The corresponding 
anomalous contributions to N(E) are incoherent (non- 
quasiparticle) in nature and have a number of unusual 
features, in particular, the electron-hole asymmetry.23 

However, as compared with magnetics24'25 and with 
the specialized model of Ref. 23, the interaction between 
conduction electrons and a two-level system has a much 
more complicated structure (because of the nonconserva- 
tion of the total "spin," for example). It is a detailed the- 
oretical discussion of the effects of this interaction which is 
the objective of the present work. 

In Sec. 2, the form of the initial Hamiltonian is dis- 
cussed, and in particular the minimal necessary set of in- 
teraction parameters is determined and the physical mean- 
ing of the parameters is indicated. For simplicity, the 
lattice subsystem is described by a pseudospin formalism, 
corresponding to an order-disorder transition 
This model presumably describes the required qualitative 
properties of the apex oxygen subsystem (the two-well fea- 
ture, "ferroelectric" aspects, etc). Sections 3 and 4 employ 
second-order perturbation theory in the above parameters 
to evaluate the electron and lattice properties of the model 
respectively. In Sec. 5, the Kondo temperature TK for the 
case of a single two-level center is predicted using the 
present model. In this case it is known2 that the condition 
6 > TK determines the range of applicability of the results 
obtained in Secs. 3 and 4. 

2. FORMULATION OF A PSEUDO-KONDO LATTICE MODEL 

We are interested in a particular vibration mode of the 
apex oxygen, one in the normal direction to the CuOz 
plane. Denoting the corresponding coordinate of an ion in 
the ith cell by qi, and its canonically conjugate momentum 
by pi, we write the part of the lattice Hamiltonian associ- 
ated with these displacements as 

r i 
H lat - Z  - Hi+; C W(qi,qj), Hi=-+V(qi), 

i i # ~  2M 
(1) 

where M is the mass of the ion, V(q) is the potential for 
the apex oxygen ion produced by all the ions of the other 
type, and W(qi,qj) is the interaction potential between the 
above displacements in different cells. In a quantum me- 
chanical description of vibrations in a highly anharmonic 
potential, it is convenient to introduce the representation in 
terms of the exact eigenfunctions of the Hamiltonian Hi, 
and to define the corresponding projection operators,24 

Hiliv)=Ev1iv), cp=l iv)( ip1.  (2) 

With the picture of a two-well potential V(q) for an apex 
oxygen in mind let us assume, as customary in two-level 
analyses,27 that the first excited state is close in energy to 
the ground state 10 > : 

El-Eo<Ev-Eo, V >  1. (3) 

According to Ref. 1, the condition (3) holds well for apex 
oxygen displacements in YBaZCu3O7 (El -EO- 10' K, and 
for the remaining differences Ep- E,,- lo3 K). Since in the 
electronic spectrum analysis which follows we are only 
interested in the vicinity I AEl < lo3 K of the Fermi level, 
we may limit ourselves to only two states, 10 > and I 1 > , 
and change from the complete set of X operators of the 
form (2) to the pseudospin operators: 

X'"=s+, x"'=s-, P = f + s z ,  

Then the ion interaction Hamiltonian in Eq. ( 1 ) will take 
the form a pseudospin operator. As a result, it has been 
shown by the standard theory of ferroelectric order- 
disorder transitionsz2 that, for a symmetric two-well poten- 
tial and to leading order in the overlap of the ion wave 
functions, HI,, reduces to the transverse-field Ising model, 

where R = El - Eo, and Jij is a certain combination of the 
matrix elements W(qi,qj). Here 10) and I 1) are the even- 
parity (bonding) and odd-parity (antibonding) states, R is 
the tunneling frequency, and the dipole moment determin- 
ing the difference in population numbers of the right-hand 
and left-hand wells is proportional to (SX). The important 
point is that even in the absence of the ion-ion interaction 
the quantity (SZ) is nonzero due to tunneling: 

If the wells are asymmetric, the interaction Hamil- 
tonian in Eq. (5) will also contain the terms S;S; and 
SfS?. However, except in discussing the effect of conduc- 
tion electrons on the pseudospin system (Sec. 4), this com- 
plication will not produce any qualitative effects. For sim- 
plicity in what follows we will therefore use the expression 
(5). 

The Ising interaction J can yield a "ferroelectric" (or 
"antiferroelectric") transition at a certain temperature 
T =  T,. For T < T,, both (Sz) and (SX) are nonzero. In 
the system described by the Hamiltonian (5) there exist 
collective pseudospin excitations of two types, the dissipa- 
tive mode and the "pseudospin waves." The frequency of 
these latter, in the simplest approximation, is22 

with (SZ) = R/Jo=const for T < T,. In the following we 
consider the interaction between the conduction electrons 
and these collective excitations while neglecting the inter- 
action with the usual phonons. 

The scattering of the conduction electrons of a metal 
by centers with internal degrees of freedom may give rise to 
special quantum-mechanical multiparticle "Kondo" reso- 
nances. In perturbation theory they are described by con- 
tributions to the scattering matrix which depend logarith- 
mically on the electron energy measured from EF (see 
Refs. 28-3 1). It is necessary to distinguish between two 
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cases, in which, as a result of the scattering event (with a 
change in the state of the localized center involved), the 
conduction electron changes only its quasimomentum, and 
in which it also changes either its spin or band (pseudos- 
pin) index. While Kondo type divergences exist for either 
situation, the formal description of the above cases differs 
substantially (cf. the corresponding results for electron 
scattering by magnetic impurities,8 by two-level systems in 
metal glasses,29930 and by local excitons and phonons29). 
Thus, the effects of interaction between the conduction 
electrons and pseudospins are dependent on the presence of 
electron band degeneracy near EF (because of the weak 
spin-orbit interaction, the spin degree of freedom is of no 
importance, so in what follows we will merely omit the 
spin index). In general, the Fermi level passes through 
several energy bands, so that scattering processes both with 
and without changing the band index occur. Restricting 
ourselves to the two band case, the Hamiltonian of the 
model is written in the form 

where Hlat is of the form (5), ck+, is the creation operator 
for an electron of quasimomentum k and band index 
r= f , and the energy ek7 is measured from EF. For sim- 
plicity the interaction is assumed to be described by a con- 
tact Hamiltonian, 

where u are the Pauli matrices, S S ~ = S ~ -  (sf) ,  and I; is 
the matrix of the interaction parameters. Here and in what 
follows summation over repeated cartesian indices a ,  fl is 
understood. The effects of the mean field $(sf) may be 
absorbed into the definition of E~,-. 

The model (8), (9) is an analog of the anisotropic s-d 
exchange model2', the major difference being that the ma- 
trix $ is in general nondiagonal because, unlike spin sys- 
tems, there is no reason for requiring the conservation of 
either the total "spin" or its z projection. The only restric- 
tion is that all the $ must be imaginary, as implied by the 
time-reversal invariance (for pseudospin systems with no 
spin-orbit interaction this simply reduces to complex con- 
jugation). Since the operators uY and SY contain a factor of 
the square root of - 1, we have 

Let us explain the meaning of some of the matrix elements 
$ The a = z  terms in Eq. (9) correspond to the change in 
the splitting of the degenerate electron spectrum due to the 
interaction with the two-level system. In particular, if 
E ~ +  =k- initially, we have a static (for /3=x) or dynam- 
ical (for /3=z) Jahn-Teller band effect (recall that the 
dipole polarization is directed along the x axis). The 
a=x,y terms describe the interband scattering of the con- 
duction electrons. The physical meaning of the parameter 

I: will be discussed below in Sec. 4. As we shall see in the 
next section, the terms in I; are qualitatively important 
because they are the only ones capable of producing an 
asymmetric contribution to the density of states. We note 
therefore that even if I;=0 holds initially, an effective in- 
teraction of this form appears anyway in higher orders in 
perturbation theory (Sec. 5). 

Other theoretical treatments of the interaction of cur- 
rent carriers with apex oxygenH-l5 are usually based on 
modifications of the Yu-Anderson for A15 com- 
pounds. These modified models relate to the pseudospin 
model in the same way as Anderson's relates to the s-d 
exchange model in the Kondo problem. The pseudospin 
operator formulation is much more convenient for a per- 
turbative analysis because the singularities of interest to us 
appear in this case in lower orders. 

3. ELECTRONIC SPECTRUM IN THE WEAK COUPLING 
REGIME 

We now turn to consideration of the electronic spec- 
trum in the model (8) using perturbation theory in Hint. 
To this end we introduce the spinor operators 
1C,; = (cL,ci-) and the retarded matrix Green's function 

The calculation of &(k,E) to second order in Hint and with 
the formally exact inclusion of HI,, (pseudospin dynamics) 
may be camed out either directly by the equation-of- 
motion method (cf. the discussion of the s-d exchange 
model in Ref. 24) or by using a diagram technique for the 
Matsubara Green's functions, with a subsequent analytical 
continuation (cf. Ref. 33). As a result we find 

where 2k=diag(~k+,~k-)  is a diagonal 2 x 2 matrix, 

Xda 
fk -q ,T+N~(d  
E - E ~ - ~ , ~ + w  

+da( 1 

where fk7= f ( E ~ ? )  and NB(o) are the Fermi and Bose 
distribution functions, and 

is the spectral density of the components of the effective 
field through which acts the pseudospin system acts on the 
electron, 

hp" = $6~", (14) 
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If the pseudospin dynamics is neglected (HI,, -* O), the 
Fermi function terms in ( 12) yield Kondo logarithmic di- 
vergences; these are substantially modified by the dynam- 
ics. 

As seen from Eq. ( 12), the electronic density of states 

contains incoherent ("nonquasiparticle") contributions 
due to the cuts of the Green' function 

It is these contributions which produce the sharp energy 
dependence of N(E) ( E  being measured from EF) that has 
been discussed in Ref. 23 for the ordered phase of an an- 
isotropic s-d model. 

At T=O, the first term in brackets in Eq. (12) has a 
nonzero imaginary part for E < 0, and the second for E > 0. 
Let us now separate the self-energy into contributions 
which are symmetric and asymmetric about EF: 

where is the antisymmetric unit tensor. In the sym- 
metric part of SN(E) due to the contribution (18), only 
terms in Pa survive the trace in ( 16). The antisymmetric 
part of 6N(E) arises from the terms proportional to 
i(KxY-KYx) =KP+-K+-. In view of the identity 

one argues that the antisymmetric part is a priori nonzero 
even in the "paraelectric" phase provided I;#O,lz#O. 

The incoherent contribution SN(E) changes near the 
Fermi level dramatically in the energy interval ( E ( - G, 
where G is the characteristic pseudospin excitation fre- 
quency. From Eqs. (16), (17)-(19) it follows that 
6N(E+ 0) -+ 0 for T = 0 (Ref. 23 ), in a manner determined 

by the specific form of @(w) (pseudospin dynamics). 
Thus, the total density of states can be represented in the 
form 

where p(E)  is the bare density of states and 
a, - I ~ ~ ~ ( o )  (@+#@- if I$#O). 

The asymmetry in N(E) yields a substantial contribu- 
tion to the thermopower S ( T ) .  According to the Mott- 
Jones formula,23 for elastic scattering we have 

1 
S ( T )  =- 

af (El 
eTo(T)  JYm d ~ ( - ~ )  E d E ) ,  (22) 

where e is the electron charge, o ( T )  is the conductivity, 
and u(E) is the contribution to this latter from the layer 
with the given energy. Setting Ga(E) -SN(E), we find 
that for T > G 

(the last estimate applies to the para phase). We see that 
the thermopower does not contain the usual small factor 
T/EF. An alternative means for detecting the antisymmet- 
ric part of 6N(E) may be provided by tunneling experi- 
ments. 

In order to find the temperature dependence of the 
nonquasiparticle contributions to o (  T )  and S (  T)  for 
T <G, it is necessary to specify the form of the spectral 
density ( 13 ) . At low temperatures short-wavevector pseu- 
dospin excitations dominate, so for the frequency of the 
pseudospin waves (7) we have 

where wo -+ 0 for T -* Ts. After we average over q the 
corresponding contribution to K takes the form 

where 8 ( x )  is the Heaviside function, and d=2, 3 is the 
space dimensionality. Then, if the function p(E) is smooth 
near EF, we find 

In the presence of a two-dimensional van Hove singularity 
at the Fermi level, when p(E) a - In 1 E 1, the expression 
(27) is multiplied by In( W/T), where W is on the order of 
the conduction bandwidth. 

In the ferroelectric phase the spectral density exhibits a 
"central peak"22 

(28) 
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where r= l/T1 is the inverse time for the longitudinal 
relaxation of the dipole moment. Substitution of (28) 
yields 

A nonzero contribution to (23) from the odd-parity term 
in (29) arises from including the energy dependence of the 
smooth factors in u(e): 

Then 

If r (  T) b T for all T, a linear temperature contribution to 
the conductivity and a large constant contribution to the 
thermopower arise (cf. Ref. 24). 

4. EFFECT OF CURRENT CARRIERS ON THE PSEUDOSPIN 
SUBSYSTEM 

The perturbation theory framework also makes it pos- 
sible to consider the reaction of the conduction electrons 
on the lattice pseudospin subsystem. At present, experi- 
mental information about this latter is rather limited (to 
EXAFS data,ls6 in fact). Nevertheless, the pseudospin dy- 
namics can in principle be separated in inelastic neutron 
scattering superposed on the usual phonon contributions. 
Therefore its theoretical study may be of use in designing 
an appropriate experimental research problem. 

Here it is necessary, however, to remember the simpli- 
fications we employ in the model (pseudospin formalism, 
or the assumption of a ferroelectric order-disorder transi- 
tion; and the use of the Hamiltonian (5), which implies the 
symmetry of the two-well potential). Consequently the re- 
sults obtained in this section should be regarded as only 
qualitative when applied to real HTSC materials. 

The effect of conduction electrons on the pseudospin 
dynamics is conveniently analyzed by the method of 
retarded-commutator Green's functions for pseudospin op- 
erators, 

in an analogous fashion to the RKKY interaction in the s-d 
exchange model. By decoupling to second order in I we 
find 

The system of linear equations for the Green's functions, 
Eq. (33), determines the spectrum of pseudospin excita- 

tions. In contrast to the usual s-d model, the population 
difference between electronic energy subbands 

is not small in I (except for the case of a degenerate bare 
band to be discussed below). It is therefore possible to limit 
ourselves to first-order terms by retaining only the first 
term in the brackets in (33) [note that a =z and, by ( 101, 
P=x,z]. Then we obtain for the spectrum 

where 

Expression (35) differs from (7) by the renormalizations 
(36). While the replacement R +  R does not lead to any 
radical consequences, the appearance of the An term in g is 
very important. Its implication is that the conduction elec- 
trons cause a spontaneous distortion of the lattice at any 
temperatures (the left-hand and right-hand wells become 
inequivalent). If there is no physical reason to expect this 
inequivalence, then it is necessary to set Iz=0 in Eq. (10); 
generally speaking, it is only in this case that a ferroelectric 
phase transition may occur. 

In the case of the band Jahn-Teller effect, when in the 
absence of electrons E ~ +  =EL-- holds and An is small in I ,  
the "mixing" of (Sz) and (SX) due to the I: and I: inter- 
actions arises only in higher orders of perturbation theory. 
For this case, the dependence on the pseudospin indices 
may be neglected in the second-order terms on the right- 
hand side of Eq. (33). Then Eqs. (33) become 

where 

is the polarization operator in the random phase approxi- 
mation. Restricting ourselves for simplicity to the case of a 
paraelectric phase ((SX) =O), we find that to within 
second-order terms, 
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where the square of the renormalized frequency has the 
form 

The imaginary part of the quantity A describes the damp- 
ing of the pseudospin waves due to their interaction with 
electrons. Since 

the damping is linear in frequency. Analogous to the case 
of Kondo magnetics,24925 this damping gives rise to loga- 
rithmic contributions to the pseudospin correlation func- 
tions (qy-,) and the means (sB). Using the spectral rep- 
resentation we obtain 

Singular contributions arise from the imaginary part of the 
numerators in (39) (note that we can set A,=@, in the 
denominators). Then we have 

To logarithmic accuracy we find 

Thus, Kondo singularities reduce (Sz) in proportion to 
the tunnel splitting and hence suppress the two-well nature 
of the potential; this effect is similar to the suppression of 
local moments in Kondo systems. According to Ref. 1, the 
effective separation between the apex oxygen potential 
wells is a minimum at the superconducting transition point 
T = T,. The explanation is that the reduction in (Sz) with 
decreasing temperature follows Eq. (44) only in the nor- 
mal phase. For T < T,, the logarithm is cut off at the value 

of the superconducting gap A( T) ,  where A( T(T,) is 
much greater than T and G, so that the decrease in (Sz) 
becomes growth. A similar conclusion was reached in Ref. 
10 based on a calculation of the static "susceptibility" 
(SZ, SZ). 

5. THE RENORMALIZATION GROUP AND THE KONDO 
TEMPERATURE 

The appearance of logarithmical singularities in the 
self-energy and in the "local moment" correction raises the 
problem of summing them in order to examine the low- 
temperature (low-energy) behavior. This problem has 
been re eatedly considered for a single-impurity s-d model 
with I!=IfiaD (isotropic case) and I=diag(Il ,Il ,IlIll) 
(see Ref. 35 for a review!. We will examine a single-center 
model with an arbitrary I matrix and HI,, + 0. 

The simplest, and easiest to grasp, approach to the 
summation of singularities at low temperatures is the 
renormalization method in Anderson's "poor man's 
scaling."34 In order to derive the equations for the effective 
interaction parameters, let us evaluate the electron Green's 
function averaged over the states of the electronic sub- 
system (but not over the pseudospin states). The result 
may be written 

where 

is the free-electron spinor Green's function and the T ma- 
trix is (for the contact interaction) independent of k and 
k', and has the spinor structure of 

with Ieff=I to within first-order perturbation terms [see 
Eq. (9)]. When we evaluate the Green's function (45) by 
the equation-of-motion method, corrections to Ieff appear 
in second order which contain {=lnl W/EI ( W is the 
cutoff parameter of the order of the bandwidth). The cor- 
responding renormalization group equations are obtained 
by the replacement I + Ieff in dIeff /a{ (cf. Refs. 36,35,3 1, 
25 ) . After calculations which are in principle analogous to 
those for the usual Kondo problem36 we find 

where, for simplicity, we have set p + (0) = p- (0) = p 
and introduced the dimensionless interaction constants 
& = p(Ieff)t It is convenient to introduce the vectors 

g"= (&,&$Ye). 
Then Eq. (48) becomes 
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From Eq. (49) it follows that if the bare interaction matrix 
is of the form ( lo), i.e., g"1 $,gl for g=0, the same will be 
true after renormalization. In this case Eqs. (49) take the 
form 

We see that setting I;=0 in the Hamiltonian would in 
general be dangerous because from Eq. (50) it follows that 
in higher orders in perturbation theory the corresponding 
interaction processes are induced anyway. Thus, the main 
physical result of the interaction I;-the appearance of an 
electron-hole asymmetry in the density of states (Sec. 
3)-is true even for I;=0. At the same time, if the matrix 
I is diagonal (i.e., I:=I:=O), this structure will remain in 
all orders in perturbation theory. The discussion which 
follows is restricted to this latter case, in which Eqs. (50) 
can be integrated in full. Then we have 

From (51), 

where the constants are defined in terms of the bare pa- 
rameters as 

Specifically, let us assume that 

so that we have C1 > 0,C2 > 0 (otherwise permute the indices 
x,y,z). Two cases then arise. 

For gs,gZ> 0, the sign of g, is the same as that of the 
product g,gz and, according to Eq. (5 1 ), renormalization 
reduces the absolute value of g,. This case, similar to the 
"ferromagnetic" s-d exchange Kondo problem, does not 
lead to the strong coupling regime and is not overly reveal- 
ing physically. We will not discuss this case below. 

Let g&,gLX <0, that is, either one or three interaction 
constants are negative. Then we have from (51), using 
(52), that 

Equation (55) can be represented in the form 

in which 

q1=1-- 
(I:)' 

r)'= 1 -- 
(I:)' ' (I:)' ' 

*=(I,g)?I:, (57) 

whence it is possible to express qb in terms of l with the aid 
of Jacobi elliptical functions. We will not give this expres- 

sion because of its length, but restrict ourselves to a dis- 
cussion of the "Kondo temperature" TK. This is defined as 
the boundary of the strong coupling region, at which the 
quantity g, goes to infinity when evaluated perturbatively. 
From (57) with $= m,g=ln( W/TK) we find 

where 

is the elliptic integral of the first kind. Of special interest is 
the case in which 

Then from Eq. (58) we obtain 
- 

which agrees with the corresponding result for anisotropic 
s-d in the weak interaction case. 

From (52) it is seen that as E + TK, all three effective 
constants diverge, their signs coinciding with those of the 
bare constants. If one of the latter is equal to zero (apart 
from the already assumed condition I:= I;=O), we are 
dealing with a peculiar-"marginal"+ase in which the 
usual strong coupling regime is not realized. For example, 
for I;=0 we have g,=const, gz=const, and g,, grows lin- 
early with g. 

The above results are valid for TK> 6 (for a one- 
center case this condition implies TK> R) .  For the simul- 
taneous inclusion of the Kondo effect and pseudospin dy- 
namics, the Kondo divergences are cut off at G, this latter 
in turn being renormalized by the conduction electrons [to 
lowest perturbation order, via the renormalization in 
(Sz), Eq. (44)]. Thus, there is a need for a self-consistent 
treatment of the problem. An analogous Kondo lattice 
problem (isotropic, periodic s-d model with Heisenberg 
type dynamics) has been solved in Ref. 25. In the present 
case the situation is much more complicated because both 
the effective interaction and dynamics are characterized by 
several relevant variables. The construction of a scaling 
theory for the "pseudo-Kondo lattice" seems to be an in- 
teresting problem for future investigation. 

In concluding this section, we emphasize that the usual 
perturbation theory considered in Secs. 3 and 4 is valid for 
all temperatures and energies (including the case 
T, I El < TK) provided TK<G. This follows from the fact 
that, because of the "cutoff' of the Kondo logarithm at 

I El -G [see Eq. (44)], the quantity l is bounded by the 
inequality l< ln (  W/G) and its entire variation is within 
the weak coupling region (small renormalization of 2) for 
G > TK. According to Eq. (40), the conduction electron 
contribution to 6 is of order 2, while TK depends expo- 
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nentially on lgl. Consequently, for a weak electron- 
pseudospin interaction and high density of two-level sys- 
tems perturbation theory is always applicable except in the 
case of a "spurious" smallness of E due to the cancellation 
of the direct, J,,, and indirect, a 2, interactions. At the 
same time, for dilute systems Z may be small (for small fl) 
because of the large separation between the two-level sys- 
tems involved. 

6. DISCUSSION AND CONCLUSIONS 

Let us emphasize the most essential points of our dis- 
cussion. 

1. We have relied on the pseudospin description of the 
anharmonic vibrations of apex oxygen, which is obtained 
by considering atomic displacements after first projecting 
onto a space of states, each center of which contains the 
ground and first excited states of a two-well potential. Such 
an approach relates to the usual phonon picture in the 
same way as the description of electronic states in the lan- 
guage of atomic terms relates to the band description. In 
other words, if the phonon-phonon interaction at a single 
center exceeds the characteristic phonon frequency, we go 
over to the "Hubbard subband" description of atomic dis- 
placement dynamics, the pseudomagnetic mode (7) corre- 
sponding to excitations from the lower to upper subband. 

In fact, if the interaction between d-electrons in a nar- 
row energy band is large enough to lead to the formation of 
localized magnetic moments, then the interaction of the 
wide-s-band with the d-electrons reduces to an s-d ex- 
change and leads to the Kondo effect. This case is in sharp 
contrast to the situation in which both subsystems retain 
their band (or, more precisely Fermi-liquid) character. 
Consequently, the interaction of the conduction electrons 
with highly anharmonic local atomic displacements has 
different properties than the usual electron-phonon inter- 
action. 

In the problem of localized magnetic moments one can 
interpolate between the cases of a weak and strong 
d-electron correlation within the framework of the Ander- 
son model. For the electron-lattice problem the role of 
such a model is played by that of Yu and ~nderson,~ '  in 
which the two-well nature of the potential is due to a 
strong electron-phonon interaction and its appearance is 
described by formal analogy with the appearance of the 
localized moment. Unlike Ref. 32, we do not specify the 
nature of the two-well potential (it may arise for purely 
lattice reasons) and instead describe the electron-ion in- 
teraction phenomenologically with the use of the interac- 
tion matrix (10). This approach appears to be more suit- 
able for constructing a perturbation theory as well as for 
including the effects of center-center interactions. 

2. For the weak coupling regime, the major result of 
our discussion is that corrections to the density of states 
change dramatically near the Fermi level on the scale of 
the characteristic dynamics frequency G and, in contrast to 
the usual electron-phonon interaction, do not have an 
electron-hole symmetry and so may lead to large values of 
thermopower even in a perturbative regime. 

The work was supported by a Soros Foundation grant. 

'J. Mustre de Leon, S. D. Conradson, I. Baltistik, and A. R. Bishop, 
Phys. Rev. Lett. 65, 1675 (1990); Phys. Rev. B 44, 2422 (1991). 

2 ~ .  D. Conradson and D. Raistrick, Science 243, 1340 ( 1989). 
3 ~ .  Nishida, M. Katada, and Y. Matsumoto, Japan. J. Appl. Phys. 29, 
259 (1990). 

4 ~ .  V. Gasparov, V. D. Kulakovskii, V. B. Timofeev, and E. Ya. Sher- 
man, Zh. Eksp. Teor. Fiz. 100, 1981 (1991) [Sov. Phys. JETP 73, 929 
(1991)l. 

'v. I. Anisimov, M. A. Korotin, J. Zaanen, and 0. K. Andersen, Phys. 
Rev. Lett. 68, 345 (1992). 

6 ~ .  Maruyama, T. Ishii, N. Bamba et ol., Physica C 160, 524 (1989). 
7 ~ .  Kaldis, P. Fisher, and A. W. Hewat, Physica C 159, 668 (1989). 
'K. A. Miiller, Z. Phys. B 80, 193 (1990). 
9 ~ .  Yamazaki, H. Kimura, H. Maeda et ol., Physica C 185-189, 879 

(1991). 
'OV. Yu. Irkhin, M. I. Katsnelson, and A. V. Trefilov, Europhys. Lett. 15, 

649, (1991); Pis'ma Zh. Eksp. Teor. Fiz. 53, 242 (1991) [JETP Lett. 
53, 255 (1991)l. 

"A. Heinz and R. Tscheuschner, Phys. Rev. B 43 ,  5601 (1991). 
"Y. Ohta, T. Tohyama, and S. Maekawa, Phys. Rev. B 43,2968 (1991). 
I'M. Zoli, Phys. Rev. B 44, 7163 (1991); Physica C 178, 390 (1991). 
1 4 ~ .  Frick, I. Morgenstern, and W. von der Linden, Z. Phys. B 82, 339 

(1991). 
"A. Zawadowsky, K. Penc, and G. T. Zimanyi, Progr. Theor. Phys. 

Suppl. N108, 11 (1991 ). 
1 6 ~ .  M. VujiEiC, V. L. Aksenov, N. M. Plakida, and S. Stamenkovic, 

Phys. Lett. A 73, 439 (1979); J. Phys. C 14, 2377 (1981). 
I7N. M. Plakida, V. L. Aksenov, and S. L. Drechsler, Europhys. Lett. 4, 

1309 (1987). 
"A. S. Shcherbakov, M. I. Katsnelson, A. V. Trefilov et al., Pis'ma Zh. 

Eksp. Teor. Fiz. 46, 11 1 (1987); 49, 102 (1989) [JETP Lett. 46, 136 
(1987); 49, 121 (1987)l. 

I9s. K. Kurtz, J. R. Hardy, and J. W. Flocken, Ferroelectrics 87, 29, 
(1988). 

"v. V. Lemanov, A. B. Sherman, G. 0. Andrianov, and I. ~ r ~ a s h e v ,  Fiz. 
Tverd. Tela 32, 2161 (1990) [Sov. Phys. Solid State 32, 1258 (1990)l. 

'ID. Mihailovic and A. J. Heeger, Solid St. Commun., 75, 319 (1990). 
22 R. Blinc and B. &k$, Fermelectrics and Antiferroelectrics. Lattice &- 

nomics, North-Holland, Amsterdam (1984). 
23 V. Yu. Irkhin, M. I. Katsnelson, and A. V. Trefilov, Physica C 160, 397 

( 1989). 
2 4 ~ .  Yu. Irkhin and M. I. Katsnelson, Z. Phys. B 75 , 67 (1989); B 82, 

77 (1991). 
"v. Yu. Irkhin and M. I. Katsnelson, J. Phys.: Cond. Mat. 4, 9661 

(1992). 
2 6 ~ .  Hubbard, Proc. Roy. Soc. 285, 542 (1965). 
27 W. A. Fillips, Rep. Prog. Phys. 50, 1657 ( 1987). 

5. Kondo, in Solid State Physics, Vol. 23, Academic Press, New York 
(1969). 

29 J. Kondo, Physica B 84, 40, 207 ( 1976). 
3 0 ~ .  Zawadowsky, Phys. Rev. Lett. 45, 211 (1980). 
3 1 ~ .  Yu. Irkhin and M. I. Katsnelson, Z. Phys. B 7 0 ,  371 (1988). 
3 2 ~ .  YU and P. W. Anderson, Phys. Rev. B 29, 6165 (1984). 
3 3 ~ .  F. Brinkman and S. Engelsberg, Phys. Rev. 169 , 417 (1968). 
3 4 ~ .  M. Ziman, Electrons and Phonons: The Theory of Transport Phenom- 

ena in Solids, Oxford Univ. Press ( 1960). 
"A. M. Tsvelick and P. B. Wiegmann, Adv. Phys. 32,  453 (1983). 
3 6 ~ .  W. Anderson, J. Phys. C 3, 2346 (1970). 
3 7 ~ .  Zwicknagl, Adv. Phys. 41, 203 (1992). 
"c. L. Kane, P. A. Lee, and N. Read, Phys. Rev. B 39, 6880 (1989); 

K. J. von Szczepanski, P. Horsch, W. Stephan, and M. Ziegler, Phys. 
Rev. B 41, 2017 (1990). 

3 9 ~ .  Chen, D. Foerster, and A. I. Larkin, Phys. Rev. B 46, 5370 (1992). 
4 0 ~ .  Li, T. Kawai, and S. Kawai, Japan J. Appl. Phys. 31, L934 (1992). 
41 S. V. Vonsovskil, Yu. A. Izyumov, and E. Z. Kurmaev, Superconduc- 

tivity of the Transition Metals and of their Alloys and Compounds [in 
Russian], Nauka, Moscow ( 1972). 

42~uperconductiuity in Ternary Compounds I. Structural, Electronic and 
Lattice Properties, edited by 0. Fischer and M. B. Maple, Springer, 
Berlin-Heidelberg-New York ( 1982). 

943 JETP 78 (6), June 1994 lrkhin et a/. 943 



4 3 ~ .  I. Liechtenstein, I. I. Mazin, C. 0. Rodriguez et a[., Phys. Rev. B 44, Translated by E. Strelchenko 

5388 (1991). This article was translated in Russia. It is reproduced here the way it was 
@K. Miyake, T. Matsuura, and C. M. Varma, Solid St. Commun., 71, submitted by the translator, except for stylistic changes by the Translation 

1149 (1989). Editor. 

944 JETP 78 (6), June 1994 lrkhin et a/. 944 


