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In this paper the magnetic field at which the normal state of a superconducting twinning 
plane becomes absolutely unstable is calculated, taking into account the most general type of 
boundary conditions for the order parameter at the twinning plane. Various types of 
localization of the superconductivity at the twinning plane are considered. The experimental 
phase diagram is discussed for superconductivity in tin. A mechanism is proposed that 
leads to the appearance of a nonuniform state in the twinning plane, which is responsible for 
delaying the transition to bulk superconductivity. 

1. Superconductivity in twinning planes has been the I I b 1 
subject of a considerable amount of experimental and the- s,= d v  a ~ d $ l ' + ~  1 $ 1 4 + 4 m l ~ x $ 1 2  
oretical work in the last 10 years (see, e.g., the review Ref. 
1 ). Additional interest in this topic has been stimulated by 1 

the discovery that the high-temperature superconductor +- 8.rr (B-HPJ, 

YBa2C~307-6 develops a twinning structure (Ref. 2). 
However, at this point a rather large number of questions 
in the theory of ordinary superconductivity with twinning ss= l dv(-Y( I $+ I'+ I 1- 1'1 
planes remain unresolved. In particular there is no expla- 
nation for the phase diagram of superconducting twinning 1 
planes in tin subjected to a magnetic field,3 which we re- += I $ + - $ -  l2)6(z), 

produce in Fig. 1. Here Hd( T )  is the critical magnetic field 
for thermodynamic equilibrium between the normal and where 
superconducting states of the twinning plane, Hm(T)  and 
Hb(T) are critical fields for supercooling (i.e., the field for T-T, 2ie 
absolute instability) of the normal state of the twinning T=- , Dk=Vk--Ak, $*=$(x,y,z= f 0). 

Tc C plane, and H*(T) is the critical field for supercooling of a 
sample with a superconducting twinning plane. In the fig- 
ure we also show the bulk critical field H,(T) and the 
critical field for surface superconductivity Hc3( T )  for tin 
(which is a type-I superconductor). The temperature Tb is 
obtained by extrapolating Hb(T) until it intersects the 
temperature axis. 

Certain features of this phase diagram are worth not- 
ing: 1) the bulk phase transition in the presence of a local- 
ized superconducting seed is delayed until a field H* < H, 
is reached, i.e., even though bulk superconductivity is en- 
ergetically advantageous, seeds from the twinning plane 
cannot freely "germinate" in the bulk of the crystal; 2) the 
curve for the upper critical field Hm is parallel to Hc3. 

2. We will use a phenomenological Ginzburg-Landau 
functional to describe the magnetic behavior of supercon- 
ductivity at a twinning boundary, taking into account the 
local increase in T, near a twinning plane and the change 
in boundary conditions for the superconducting order pa- 
rameter at the twinning plane. 

Let us consider a crystal consisting of two parts that 
are mirror twins, separated by a boundary at the plane 
z=0. We will neglect effects connected with the crystalline 
anisotropy, and write the Ginzburg-Landau functional for 
the free energy of the superconductor F=F,+Fs in the 
following form: 

The term with y describes the change in the superconduct- 
ing coupling constant near the twinning plane. We con- 
sider the case y > 0, for which the temperature Td at which 
superconductivity localized at the twinning plane appears 
is such that Td > T, (Ref. 1 ). The second term in the 
surface energy, which includes the superconducting cou- 
pling between the twins in a phenomenological way, was 
first proposed by ~ n d r e e v . ~  In the microscopic theory the 
constant a is determined by the transparency of the twin- 
ning plane to 

These features of the phase diagram can be obtained in 
a consistent way within the framework of model ( 1 ) . Let 
us first note that one possible explanation for the existence 
of a supercooling field H* could perhaps be the fact that 
the superconducting state of the twinning plane is nonuni- 
form along the twinning plane itself with a characteristic 
dimension L that is smaller than the correlation length.' In 
this case, the growth of seeds from the superconducting 
twinning plane into the bulk can in fact be suppressed as 
the sample is cooled below H,(T), due to the increased 
surface energy (for a uniform state of the superconducting 
twinning plane, there is no energy barrier to the growth of 
a planar seed). Up to now it has been unclear what the 
reason for the appearance of such a nonuniformity might 
be. We will show that the model ( 1 ) leads to a periodic 
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FIG. 1. Experimental phase diagram for tin with a twinning plane in a 
magnetic field.' The angle at the peak of the twinning wedge is 
a = 1 . 4  lo-'. 

modulation of the superconducting state of the twinning 
plane even in the case of fields that are parallel to the 
twinning boundary. 

Converting to dimensionless  variable^,^ we rewrite the 
Ginzburg-Landau functional as follows: 

3,= dv{t1$I2+f 1 TI4+ 1 ( -1Vk-ak)$12 I 
+ ~ ~ ( b - h ) ~ ) ,  (2) 

where 

here h is the dimensionless external field, and K is the 
Ginzburg-Landau parameter (in what follows we will 
omit the tilde from the notation). We will vary the bound- 
ary conditions via the dimensionless temperature- 
independent quantity r= a/ td ,  which in the phenomeno- 
logical theory takes on values from -m to + oo. A zero 
value of r corresponds to a twinning plane that is transpar- 
ent to electrons, while an infinite value of r defines a twin- 
ning plane that is completely opaque. 

3. Our problem is to calculate the field at which the 
normal state of the twinning plane is absolutely unstable. 
However, we must first determine the possible types of 
localized superconductivity, which we derive from symme- 
try considerations. 

Let the magnetic field be directed in the plane of the 
twinning boundary (along they axis); then the symmetry 
group of the system described by the functional (1) is 
G= G0x U( 1 ). Here Go={E,oJ?), where a, is a reflection 
in the plane z=0, R is the time reversal operation, and 
U( 1) is a group of gauge transformations. In order to list 

all the possible superconducting phases it is necessary to 
find the subgroups H of the group G (i.e., the supercon- 
ducting classes).' The order parameter of each phase re- 
mains invariant under the action of all the elements of the 
corresponding subgroup H. Each of the groups H is iso- 
morphic to one of the subgroups Ho of the group Go, and 
consists of the transformations of Ho combined with vari- 
ous gauge transformations from U(1) (i.e., multiplication 
by phase factors). 

In our case Go is isomorphic to the group Cs (Ref. 5 ), 
so that it will have a total of two superconducting classes: 
Cs= {E,aJ?) and CJE) = {~,e '~a$).  Two possible super- 
conducting phases ("even" and "odd") correspond to 
these two classes. Using the terminology of Volovik et al.,' 
we will say that the odd phase is a form of nontrivial 
superconductivity. 

Returning to the question of the upper critical field, we 
can easily see that the normal state can be reached directly 
from either superconducting phase. Actually, since the 
phase transition from the normal to the superconducting 
state in a magnetic field is second-order, it can be discussed 
within the framework of the Landau classification, accord- 
ing to which the order parameter for the ordered (super- 
conducting) phase that arises below the transition temper- 
ature should transform according to one of the irreducible 
representations of the group Go. The group Cs has two 
one-dimensional irreducible representations with different 
parity;5 consequently, either the even or odd phase can 
appear immediately below the transition field. We will need 
this symmetry-related fact below in analyzing the admissi- 
ble solutions to the Ginzburg-Landau equation. 

4. We should point out here that Koshelev et ~ 1 . ~  have 
already calculated the upper critical field for the even su- 
perconducting phase using the model ( 1 ). However, their 
paper contains some erroneous assertions; therefore, their 
calculation will be repeated here using a different mathe- 
matical apparatus. 

Let the magnetic field be applied along the y axis. In 
the gauge a= (a(z) ,O,O), a(0) = 0, the linearized 
Ginzburg-Landau equation (for either of the twins) has 
the form 

The boundary condition for 9 is obtained from the surface 
part of the free energy 3, in ( 1 ) : 

Let us seek a solution for the order parameter in the fol- 
lowing form: 

The function fz0(z) satisfies the equation 

910 JETP 78 (6). June 1994 K. V. Samokhin 910 



the solution to this equation that decreases at infinity has 
the form: 

where Hv(x) is a Hermite polynomial10 and v=-1/2(1 
+t/h). 

Substituting Eq. (5)  into (4) and making use of 
H:(x) =2vHv- (x) (see Ref. 10) leads to a homogeneous 
linear system for C+ and C- . Setting the determinant of 
this system equal to zero, we obtain the following transcen- 
dental equation for h (t,z,) : 

where 

The field hm(t) at which the normal state is absolutely 
unstable is determined by the maximum value of the func- 
tion h(t,zo) with respect to zo. However, before we analyze 
the solution to (7) for arbitrary h, let us find the phase 
transition temperature in zero field, for which we pass in 
(7) to the limit h+O. In this case the left-hand portion of 
the equation can be. factored: 

Using the property Hv(0) = r(-v/2)/2r(-v) of the Her- 
mite polynomials (Ref. lo), we are led to the following 
two equations that determine the two possible types of 
behavior of the system as h+O: 

and 

[here B(x,y) is the beta function]. 
The first equation, which is well-known in the theory 

of superconductivity in twinning planes, has been used 
previously1 to describe the behavior of a twinning plane 
that is transparent to electrons (i.e., r=O) in a magnetic 
field. It follows from (8a) that the transition temperature 
for a plane in zero field is given by tcl = 1. To verify that 
(8a) corresponds to the even superconducting state of the 
twinning plane, it is enough to compare the critical tem- 
perature for the even phase with the value of tcl obtained 

from (8a). At h=O, the order parameter for the even 
phase near the critical temperature has the form 

Substituting into the boundary condition (4), we have 
k= 1, from which t,,,,,, = k2 = 1 = tcl. 

Equation (8b) leads to a different value of the transi- 
tion temperature in zero field, namely tcz= ( 1-2/r12. This 
case corresponds to the odd superconducting state. In 
point of fact, for the even phase we have at h=O 

fo(z < 0) = -f ( -z), 

and from (8b) we obtain k=1-2/r; hence, tc,dd 
= ( 1-2/r)~ = tc2. We see, first of all, that stable odd solu- 
tions exist only for k > 0, i.e., for r > 2 or r < 0; and, sec- 
ondly, that when r < 0 the critical temperature for the odd 
phase exceeds the critical temperature for the even phase. 
Note that the odd phase, which belongs to the supercon- 
ducting class C,(E), corresponds to the "exotic" type of 
twinning-plane superconductivity proposed by ~ndreev? 
in which the order parameter has a phase jump of .sr at the 
twinning plane. 

We now turn to finding hm(t) from Eq. (7), for which 
we require that the following conditions be fulfilled: 

The first condition gives 

where 

This equation is obviously satisfied when zo=O, i.e., when 
zo=O the function h(t,zo) has an extremum. We now must 
verify the second condition. Omitting the tedious manipu- 
lations, we present the results, which turn out to differ for 
the two admissible types of localized superconductivity. 

For the even phase, using (8a), we have 

while for the odd phase [including (8b)I: 

Thus, we obtain the following picture. For the even phase, 
when r > 0: if 1 < t < tcl = 1-2/r (small fields), then the 
maximum of h(t,zo) is reached at zo=O and the tempera- 
ture dependence of the field for absolute instability h,(t) is 
determined by Eq. (8a). If t < t,, (large fields), then the 
maximum of the critical field corresponds to a nonzero 
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FIG. 2. Critical fields for superconducting 
twinning planes: a) r > 2, b) r < 0. H ,,,,,,,, and 
Hm,odd are upper critical fields for the even and 
odd phases respectively; for the critical tem- 
peratures t,, and t ,  see the text; Hc2 and Hc3 
are the bulk critical fields. The dot-dash curves 

0 
show the solutions to Eqs. (8a) and (8b). 

I t 

value of zo and the function hm(t) is determined by the 
general equation (7). When r < 0 we have tcl > 1, and zo#O 
everywhere on the curve hm(t). 

For the odd phase when r < 0: if 1 < t < tc2 = ( 1-2/r12 
(small fields), then the maximum of h(t,zo) is reached for 
zo=O and the function hm(t) is determined by Eq. (8b). 
For t < 1 (large fields) zo#O and we return to Eq. (7). 

However, if r >  2, then for any t, the field for absolute 
instability of the odd phase is given by (7) with nonzero zo. 

5. Let us now investigate the asymptotic behavior of 
the critical field hm(t) obtained from Eq. (7). 

In the limit of high transparency of the twinning plane 
(r+O), the terms of order 1 /3  in (7) cancel out. Setting 
the coefficient equal to zero for l/r, we return to Eq. (8a). 
We emphasize once again that for twinning planes with 
finite transparency, Eq. (8a), which has been used 
previously1 to describe the magnetic behavior of supercon- 
ducting twinning planes in arbitrary fields, is useful only 
for the even phase in the range of small fields. 

The limit of a twinning plane with low transparency 
( r+  co ) was investigated previously by ~ i n e e v .  l. In this 
case tcl = tc2 = 1 and zo#O in any fields. For both phases the 
function hm(t) is determined by the equation 

and has a square-root form for h +0, while for h) 1 the 
curve Hm( T)  becomes parallel to the curve Hc3 ( T). 

For arbitrary transparency, in the low-field range h +O 
we find that Eqs. (8a) and (8b) imply square-root behav- 
ior of the upper critical field: hm,eve,(t) a F t  (Ref. 1)  
and hm,dd( t) a 

In the high-field range, however, h ) hcl = hm,eve,(tcl ) 
(for the even phase) or h) hc2= hm,dd(t= 1) (for the odd 
phase), and we have from (7) the equation 

which describes the dependence of the field for surface 
superconductivity12 Hc3( T). We note that the solution to 
Eqs. (8a) and (8b) has a completely different asymptotic 
behavior in large fields, i.e., the curve Hm(T)  is parallel to 
the curve Hc2(T) for both the even1 and the odd phase. 

To summarize the results we have obtained, we have 
derived the functions hm(t) shown in Fig. 2 (for 0 < r < 2 
in Fig. 2a, the curve Hm,dd is absent). A comparison with 
the experimental data (Fig. 1) probably indicates low 

transparency of the twinning planes in tin for electrons (a 
large value of r). Actually, in the opposite case of not too 
large fields hcl 2 h 2 1 (when h 5 1 we are in the range of 
square-root behavior, which is not observed in experi- 
ment), the curve H1 ( T)  should include a segment parallel 
to the curve Hc2(T) according to Eq. (8a) or (8b). Be- 
cause there is no such segment, we can assert that hCl 5 1, 
i.e., r)l. 

6. Let us discuss in more detail the properties of the 
order parameter for both phases in the high-field (low- 
temperature) range h > hcl (or h > hc2). In this range zo#O 
and the solutions to Eq. (3) are doubly degenerate 
(zo-zo), which physically corresponds to the possibility 
that superconducting seeds can be localized in either of the 
twin regions. The general solution for the order parameter 
is a linear combination of the solutions (5): 

Without loss of generality, we may choose the function 
fi,(z) to satisfy the condition f-*,(z) = fzo(z). 

The coefficients C1 and C2 are determined by solving 
the nonlinear problem below the transition temperature, 
which in general cannot be done analytically. However, we 
can avoid this difficulty to some extent by making use of 
the symmetry considerations discussed in paragraph 3 in 
determining the relative values of C1 and C2. Specifically, 
we start with the requirement that the order parameter, 
which appears on the transition curve, transform either 
according to the even (Ag) or the odd (A,) representation 
of the group C, (Ref. 9); we then find immediately from 
(10) that there are only two possibilities: Cl=C2 or 
C, = - C2. The first implies that the even phase appears at 
the field of absolute instability, and the second, the odd 
phase. Limiting ourselves in what follows to a discussion of 
the first possibility (the generalization to the odd case is 
obvious), we rewrite expression ( 10) in the following way: 

$(x,z) =fzo(z)exp(ihzdr) +f,,( -z)exp( -ihzdr), 
(11) 

where fzo(z) is defined in (6). 
Note that Koshelev et alm6 actually wrote down an or- 

der parameter of the form ( 1 1 ); however, these authors 
identified the region of existence of this phase incorrectly. 

It is easy to see that the order parameter ( 11 ) is non- 
uniform along the twinning plane. Its amplitude is period- 
ically modulated in the twinning plane (for either of the 
twinned regions) : 
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FIG. 3. Lines of current flow for a chain of "soft" vortices localized at the 
twinning plane in the high-field range (see Sec. 6). 

The same modulation with period L=2?r/hzo is also 
shared by the surface energy density: 

Currents flow in opposite directions along the x axis on the 
two sides of the twinning plane: 

j,(x,z) = ~ z o [  f;(z) -fi( -I) I -hz[ fio(z) 

The z component of the current is nonzero: 

df,( -z) 
-fzo(z) dz I sin ( 2hz,-g). 

Thus, in sufficiently high fields, the superconducting 
state of a twinning plane consists of a chain of "soft" vor- 
tices localized at the twinning plane (Fig. 3). The fact that 
we can view the twinning plane as a planar Josephson 
junction4 (of a special kind due to the local enhancement 

of the superconductivity) suggests that these vortices are in 
a certain sense analogous to Ferrel-Prange vortices in wide 
junctions. l2 

In the high-field limit h) hcl, i.e., where the upper crit- 
ical field is parallel to Hc3(T), we have from (9) that 
zo- l/$, and the period of the vortex structure 
L = 2.rr/hzo- l /  $4 1 (in units of C d ) .  If a nonuniform 
current-carrying seed of this kind is not free to grow into 
the depth of the superconductor, thereby mediating a tran- 
sition to uniform bulk superconductivity (see paragraph 
2), the system will exhibit the observed supercooling of the 
superconducting twinning plane. 

Thus, the distinctive features mentioned in Sec. 1 of 
the phase diagram of a superconducting twinning plane in 
tin can be explained within the framework of model ( 1 ) by 
assuming that the twinning planes have low transparency. 
However, a number of open questions remain, in particu- 
lar, the origin of the kink in the H, -Hb curves. 
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