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The effect of the dimensionality of the space of vibrational coordinates and the topological 
features of the adiabatic potentials of electronic states on the absorption and 
luminescence spectra of electron-vibrational systems is examined. Analytical expressions are 
derived for the combined densities of states J i f ( w )  for the one-, two-, and three- 
dimensional problems and all possible types of critical points relevant to these cases. Using 
the quasiclassical approximation, the dependence of the absorption and luminescence 
spectra is found to be determined by certain universal functions introduced in this paper. 
Finally, the combined densities of states are analyzed for the case where the 
vibrational frequencies in the final and initial electronic states are different and the adiabatic 
potential of the final electronic state is shifted. 

1. INTRODUCTION 

In Refs. 1 4  the theory of critical points1) for functions 
fixed on topological manifolds5 was applied in analyzing 
the phonon and electron energy spectra of crystals. It was 
found that spatial periodicity is sufficient for the existence 
of such points. The special role of these points is related to 
the emergence at the points of singularities in the spectra of 
a number of physical quantities with the following mathe- 
matical properties: 

with x an (n-dimensional vector, s an (n - 1)-dimensional 
hypersurface, and x, the mth root of the equation 
f (x) =O. The singularities manifest themselves most strik- 
ingly in the density of phonon and electronic states and in 
what is known as the combined density of states. The latter 
is related to absorption, luminescence, and scattering opti- 
cal spectra. A fairly detailed discussion of the theoretical 
and experimental results pertaining to critical points in the 
electron and phonon dispersion laws can be found in Refs. 
6 and 7. 

The present study is devoted to the problem of critical 
points of the adiabatic potentials of electron-variational 
systems. The role of adiabatic potentials of multiatomic 
media in various physical effects is well known.' They are 
especially important for the theory of absorption, lumines- 
cence, and Raman-scattering line shapes and the problem 
of electron-vibrational interaction in crystals with impuri- 
ties and intrinsic defects. 

Although adiabatic potentials are not periodic func- 
tions of vibrational coordinates, the presence of critical 
points in them is fairly obvious. Indeed, the stable existence 
of such multiatomic objects as molecules and solids irre- 
vocably points to the fact that within a broad set of elec- 
tronic states of these systems the nuclear subsystem pos- 

sesses a stable position of equilibrium. This implies that 
there is at least one minimum for each adiabatic potential 
related to these electronic states. The possibility of struc- 
tural phase transitions in multiatomic systems suggests 
that an adiabatic potential carries a set of minimum points 
and hence a set of maximum points. Obviously, there are 
no restrictions on the appearance of saddle points. 

Studying adiabatic potentials near critical points and 
especially the features of optical spectra associated with 
such points is desirable for the following reasons: 

(a)  the features of the spectra of absorption, lumines- 
cence, and scattering of light can be identified and the 
contributions of adiabatic potentials not related to the to- 
pology can be isolated; 

(b) fairly simple analytical expressions can be derived 
for adiabatic potentials near critical points and for optical 
spectra near the respective singularities; 

(c) comparing the experimental data and the analyti- 
cal expressions makes it possible to classify the critical 
points and determine some characteristic parameters of 
electron-vibrational systems; and finally, 

(d) a fairly good approximate reconstruction of adia- 
batic potentials can be made from the known critical points 
via interpolation 

The simplest and most direct experimental way of find- 
ing the critical points of adiabatic potentials is to employ 
optical methods. In view of this we examine the combined 
density of states that allows for the electron-vibrational 
interaction. This quantity directly determines the absorp- 
tion and luminescence line shapes. To illustrate the singu- 
larities that emerge at critical points, we restrict the dis- 
cussion to a combined density of states calculated in the 
quasiclassical approximation. lo For the sake of definiteness 
we select the optical transitions between nondegenerate 
electronic states of a molecule or an impurity center in a 
crystal. Then, allowing in the adiabatic potentials for terms 
to within the second order in the vibrational coordinates, 
we arrive at the following expression for the combined 
density of states: 
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where i and f label the initial and final electronic states, 
Q, is the vibrational coordinate of the nth mode, 
P= (kBT) -I ,  with kB Boltzmann's constant and T the ab- 
solute temperature, Eif is the energy gap between the final 
and initial states, a, is a constant describing the shift of the 
adiabatic potential of the final electronic state in the 
Q,-direction with respect to the minimum of the ground- 
state adiabatic potential, w, is a constant proportional to 
the difference of the vibrational frequencies of the nth 
mode in the final and initial electronic states,') and A is a 
constant proportional to the square of the absolute value of 
the dipole moment of the optical transition. 

The quantity described by the argument of the delta 
function in (2) is, to within the photon energy, the differ- 
ence of the adiabatic potentials of the initial and final states 
and is represented by an m-dimensional surface in the 
vibrational-coordinate space. Obviously, it possesses three 
types of points: ordinary, elliptic, and hyperbolic. Only 
points of the last two types can be critical. For these all the 
coefficients a, are zeros. It is well known that elliptic points 
correspond to maxima and minima and hyperbolic to sad- 
dle points. Saddle points break down into types whose 
number is determined by the dimensionality of states and 
the number of negative (positive) coefficients w, . 

FIG. 1. The universal function fa( D,u) [Eq. 
(3)] ,  which determines how the combined 
density of states J i f ( o )  depends on the fre- 
quency detuning D=/3(tio - Ei,-), the param- 
eter u = ~ ' / ~ a  proportional to the shift of the 
adiabatic potential of the final electronic state, 
and the temperature P= kBT. The curvatures 
of the adiabatic potentials of the initial and 
final electronic states are assumed to coincide. 
The function fa( D,u) describes the case of 
electron-vibrational coupling with an arbitrary 
finite number n of vibrational modes if for u 
we take (Z;=,U;) 'I2. 

2. THE ONE-DIMENSIONAL PROBLEM 

Let us consider the combined density of states Jif(w) 
for the case where in the final electronic state of a molecule 
or an intrinsic or impurity defect of a crystal there is in- 
teraction with a single vibrational mode Q. 

(a) Let the frequencies of vibrations in the initial and 
final electronic states coincide. Then Jif (w) is the product 
of PA by a universal function f ,( D,u) : 

where D = B ( h  - Eif) is the dimensionless detuning of the 
frequency of light from the point of electron resonance, 
and u =B1I2a a dimensionless constant describing the shift 
of the adiabatic potential of the final electronic state. A 
characteristic feature of the situation under discussion is 
the absence of low- and high-frequency thresholds in the 
spectral dependence of Jif(w). Equation (3) shows that 
the combined density of states at a fixed and finite u attains 
its maximum value at D = 0, in the limit u - 0 the universal 
function fa(D,u) behaves like a delta function, and for a 
fixed and finite D the function Jif(w) has a maximum at 
u = & 2"' D. TO illustrate the qualitative dependence on 
the detuning parameter D, the shift u in the adiabatic po- 
tential, and the inverse temperature P=l/kBT, Fig. l 
shows a plot of fa(  D,u). 
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(b) If the difference of the adiabatic potentials of the 
initial and final electronic states at the origin of coordinates 
(Q=O) has a critical point (a=O and w finite),3) in the 
one-dimensional case it can be either a minimum or a max- 
imum. Irrespective of the type of critical point, the annlyt- 
ical expression for the combined density of states ;.,(w) 
has the following form: 

In contrast to the previous case the spectral dependence of 
Jif(w) has a threshold nature and possesses a branch point 
of order 2 of the 1 / ~ - ' / ~  type. This singularity is similar 
to those in the density of electronic and phonon states of 
crystals. The spectral threshold of Jif(w) coincides with 
the point of electron resonance, D=0. If the critical point 

FIG. 2. The universal function f,( D,w) [Eq. 
( 4 ) ] ,  which determines how the combined 
density of states J i f (w)  for the one- 
dimensional problem depends on the fre- 
quency detuning D = f i ( k ~ - E , ~ ) ,  the param- 
eter w  proportional to the difference of the 
vibrational frequencies in the final and initial 
electronic states, and the temperature 
p= l /kBT.  The shift of the adiabatic potential 
in the final electronic state is assumed to be nil 
(u=O).  The section of the graph with D>O 
and w>O belongs to a critical point of the min- 
imum type and with DgO and wgO to a criti- 
cal point of the maximum type. 

is a minimum (w positive), Jif ( o )  has a low-frequency 
threshold D>O. Such a possibility is realized in the case 
where the adiabatic potential in the final electronic state 
possesses a minimum and the curvature of this potential is 
greater than in the initial state. If the critical point is a 
maximum (w negative), Jif(w) has a high-frequency 
threshold D<O. This is possible when the adiabatic poten- 
tial of the final electronic state possesses a maximum or 
minimum with a curvature less than in the initial state.The 
graph of the universal function f b (  D,w) for the first and 
second cases (w positive and w negative) is depicted in Fig. 
2. Note that for a fixed detuning D#O the combined den- 
sity of states attains its peak value at w = 2 D. 

If in addition to a shift in the adiabatic potential the 
vibrational frequencies in the initial and final states are 
distinct (a and w finite), the expression for the combined 
density of states Jif (o) acquires the following form: 

exp{- (u2/4w2 +Z1/w))cosh{(~/w) (u2/4w2+Z1/w) ' I2)  
Jif ( o )  =PA fc(D,u,w)  PAT-'/^ 

(wzl ) 9 ( 5 )  

where z l = ~ + u 2 ( 4 w ) - '  is the frequency detuning from the origin of coordinates Q=O to the position 
renormalized by the electron-vibrational interaction. Q= Qo = a(2w) - '. The spectral dependence of Jij(o) is 
This formula for Jij(w) is the most general and corre- of a threshold nature and possesses a branch point of order 
sponds in the one-dimensional case to the shift of the crit- 2. In contrast to case (b), the spectral threshold occurs at 
ical points of the argument of the delta function in (2) a photon energy of &= Eif - u2/4w. For a critical point of 
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the minimum type (w positive) this yields a shift toward 
the long-wave part of the spectrum, and for a critical point 
of the maximum type (w negative) a shift toward the 
short-wave part. 

3. THE TWO-DIMENSIONAL PROBLEM 

Let us examine the combined density of states Jif(w) 
in the case where in the final electronic state of a molecule 
or impurity ion there is an interaction with two vibrational 
modes, Ql and Q2. 

(a) If the vibrational frequencies in the initial and final 
electronic states coincide ( wl = w2 =0), the function 
Jij(w) is described by Eq. (3) with u= (u:+ u:) 'I2. 1n ~ i ~ .  
1 the respective universal function fa( D,ul ,u2) is plotted 
as a function of the frequency detuning D, the parameter u, 
and the temperature P= l/kBT. 

(b) If the difference of the adiabatic potentials of the 
final and initial electronic states at thecoordinate origin 
(Ql=Q2=0) has a critical point (al =a2=0, and wl and 
w2 finite), the point can be a minimum (wl and w2 posi- 
tive) or a maximum (wl and w2 negative) or a saddle point 
( w w2 negative). 

In the case of critical points of the minimum or max- 
imum type, the combined density of states Jif(o) has the 
same analytical form and can be expressed in terms of the 
modified Bessel function I,(x) (see Ref. 11) as follows: 

FIG. 3. The universal function fb( D,wl ,w2) 
[Eq. ( 6 ) ] ,  which determines how the com- 
bined density of states J i f ( o )  for the two- 
dimensional problem depends on the fre- 
quency detuning D=/3(fiw- Eu), the 
parameters w, and w2 proportional to the dif- 
ference of the vibrational frequencies in the fi- 
nal and initial electronic states, and the tem- 
perature p= I/kBT. It is assumed that w2 and 
there is no shift of the adiabatic potential in 
the final electronic state ( u ,  = u2=O). The sec- 
tion of the graph with D>O and w>O belongs 
to a critical point of the minimum type and 
with D<O and w(O to a critical point of the 
maximum type. 

with r'+ =0.5(l/w2& l/wl). Here for both w, and w2 pos- 
itive Jif(w) has a low-frequency threshold D)O and for 
both wl and w2 negative a high-frequency threshold D<O. 
The universal function fb( D,wl ,w2) is plotted in Fig. 3 for 
w2 = 1. AS Eq. (6) shows, such a choice of parameter w2 
makes it possible to illustrate qualitatively the dependence 
of Jif(w) on the detuning D and the differences of the 
vibrational frequencies of the final and initial electronic 
states, w,, in all essentially different ranges of arguments of 
fb(D,wl,w2). 

In the case of a saddle critical point (for definiteness 
we assume wl > 0 and w2 < 0) we have 

where 

and K,(x) the modified Bessel function." There is no 
threshold in the spectral dependence of the combined den- 
sity of states, and at the point of electron resonance ( D  
=0) there is a singularity of the logarithmic type. The 
universal function fsp(D,w1,w2) is plotted in Fig. 4 for 
w2= 1. 

(c) In the most general case for the two-dimensional 
problem, namely, where there is a shift of the adiabatic 
potential of the final electronic state (a, finite) and the 
curvature of the adiabatic potential differs from that of the 
adiabatic potential of the initial state (w, finite), that is, 
the critical points are not at the origin of coordinates but 
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are shifted to the position Qon = an/2wn, the analytical 
expression for the combined density of states Jif(w) be- 
comes noticeably more complicated. For instance, for a 
critical point of the minimum type (wl and w2 positive) 
and for an arbitrary ratio4) of wl to w2 the function where 
Jif(w) is given by the following formula: 

Jif(w) =PAfc(D,ul,u2,~1,~2) 

FIG. 4. The universal function f,( D,wl ,w2) [Eq. 
(7)], which determines, in the presence of a saddle 
point, how the combined density of states J i f ( o )  
for the two-dimensional problem depends on the 
frequency detuning D=B(fh- Ei f ) ,  the parame- 
ters wl and w2 proportional to the difference of the 
vibrational frequencies in the final and initial elec- 
tronic states, and the temperature B= l /kBT.  It is 
assumed that I w, I = 1 and there is no shift of the 
adiabatic potential in the final electronic state 
( u , = u 2 = 0 ) .  

FIG. 5. The universal function fvn( D,wl,w2) 
[Eq. (14)], which determines how the com- 
bined density of states J,,.(o) for the three- 
dimensional problem depends on the fre- 
quency detuning D = B ( f h -  E i f ) ,  the param- 
eter w proportional to the difference of the vi- 
brational frequencies in the final and initial 
electronic states, and the temperature 
B= l /kBT.  It is assumed that the difference 
of the adiabatic potentials is a sphere 
( wl = w2 = w, = W )  and that there is no shift of 
the adiabatic potential in the final electronic 
state (u,=u2=u,=O).  The section of the 
graph with D>O and w>O refers to the case of 
a critical point of the minimum type and with 
D<O and w<O to a critical point of the maxi- 
mum type. 
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The quantity z, is the frequency detuning renormalized by 
the electron-vibrational interaction. As before, the com- 
bined density of states Jif ( a )  has a low-frequency thresh- 
old. But the shift in the adiabatic potential of the final 
electronic state leads to a situation in which the threshold 
is displaced from the point of electron resonance D=O to 
the long-wave region of the spectrum, fiw)Eif -u:/4wl 
- u;/4w2. When the adiabatic-potential difference is a cir- 
cle (wl = w2 = w), the analytical expression for the com- 
bined density of states Jif(o) simplifies and the has form 

For a critical point of the minimum type (wl and w2 neg- 
ative), Jif(o) is determined by the same Eqs. (8) and (10) 
in which I w, 1 must be substituted for w, and D' = - D for 
D. 

But if the critical point is a saddle point (say, wl > 0 
and w2 < O), the combined density of states can be repre- 
sented only in integral form: 

FIG. 6. The universal function A;' 
x (D,w,w,w3) [Eq. (7)], which determines, ~n 
the presence of a saddle point of the first type, 
the dependence of the combined density of 
states J i f (w)  for the three-dimensional prob- 
lem depends on the frequency detuning 
D=/3(fiw-Eif), the parameters w and w3 
proportional to the difference of the vibra- 
tional frequencies in the final and initial elec- 
tronic states, and the temperature /3= l /kBT.  
It is assumed that I w2 I = 1 and that there is no 
shift of the adiabatic potential in the final elec- 
tronic state ( u ,  =u2=0) .  

where z;= D+u:/~w, - uz/4 I w2 1 is the frequency detun- 
ing renormalized by the electron-vibrational coupling. But 
even this form makes it possible to draw conclusions con- 
cerning the effect of the shift of the adiabatic potential of 
the final electronic state on the most important changes in 
the spectral dependence of Jif(o). We see that the loga- 
rithmic singularity has remained, but now it is shifted from 
the point of electron resonance D=O and occurs at 
fiw=Eif-u:/4wl+u;/41 W 2 I .  

IV. THE THREE-DIMENSIONAL PROBLEM 

Let us examine the combined density of states Ji ( w ) 
for the case where in the final electronic state there is an 
interaction with three vibrational modes, Ql, Q2, and Q3. 

(a)  If the vibrational frequencies in the initial and final 
electronic states coincide ( w1 = w2 = w3 = 0) , then, as in the 
previous cases of lower dimensionality, Ji ( o )  is described 4 by the expression ( 3) in which u = ( uf + u2 + u:) 'I2. In Fig. 
1 the respective universal function fa( D,u1 ,u2,u3) is plot- 
ted as a function of the frequency detuning D, the param- 
eter u, and the temperature p= l /kBT.  

(b) In the three-dimensional case considered here, the 
difference of the adiabatic potentials of the final and initial 
electronic states at the origin of coordinates 
(Ql = Q2 = Q3 = Q4) can have critical points 
(a1 =a2=a3=a4, and wl , w2, and w3 finite) of the mini- 
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mum type (wl, w2, and w3 positive), the maximum type arbitrary shape. All three semiaxes of this ellipsoid are 
(wl, w2, and w3 negative), and saddle points of the first different (wI#w2#w3). But if two semiaxes coincide (say, 
(wl and w2 positive and w3 negative) and second (wl and wl = w2= w#w3), that is, if we are dealing with an ellip- 
w2 negative and w3 positive) types. soid of revolution, the analytical expression for Jij(w) sim- 

The combined density of states Jif ( a )  for wl , w2, and plifies considerably: 
w3 positive (a minimum) is represented in the form of a 
series in the Kummer functions" M(a;b;x) as follows: Jif (w)  =PAfer(D,w,~,w3) 

, . . , 
m 2n+ 1 z (-1)n(:)r[2n+3/2]($)2n~(2n where a = w3w-I, and erf(x) and erfi (x) = i- erf(ix) are 

n=o the error functions of the real and imaginary 

3 arguments." If all three semiaxes are equal + ( 12) (wl = w2= w3 = w), the ellipsoid transforms into a sphere. 
The combined density of states Jij(w) in this case can be 

where C= (w1w2w3) -I/2¶ ,u= (w3 - wI)/wl, expressed in terms of elementary functions: 

with r ( x )  the gamma function." For wl, w2, and w3 neg- 
ative (a maximum) Jif(o) is described by the same for- 
mula (12) but with 1 wnl substituted for w, and 
D'= - D for D. Equation (12) shows that for a critical 
point of the minimum type the spectral dependence of the 
combined density of states has a low-frequency threshold 
D)O, and for a critical point of the maximum type it has a 
high-frequency threshold D<O. In both cases the threshold 
coincides with the point of electron resonance, D=0. Near 
a threshold ( I D 4  1 I ) Jif (w) exhibits a characteristic spec- 
tral dependence Jif(o) - D'". The above expression for 
the combined density of states Jij(w) refers to the case 
where the difference of the adiabatic potentials of the initial 
and final electronic states is represented by an ellipsoid of 

The universal function fsh( D,w,w,w) is plotted in Fig. 5. 
The selection of Eq. (14) to illustrate the dependence of 
Jij(w) on the frequency detuning D and the parameters 
wn is determined by the fact that qualitatively the plot of 
this function coincides with the plots of the more compli- 
cated expressions ( 12) and ( 13). At the same time, the 
features exhibited by Fig. 5 can easily be explained by an- 
alyzing the simple formula ( 14). 

If the difference of the adiabatic potentials of the final 
and initial electronic states has a saddle critical point of the 
first type (wl and w2 positive and w3 negative), the com- 
bined density of states Jif (o) can be represented by the 
following series in the Kummer functions U(a;b;x) (see 
Ref. 11): 

where C= (wlw2 1 w3 1 ) -'I2, q= l/wl + 1/ I w3 I, $= 1/w2 The universal function f:i)( D,wl ,w2 ,w3) can be obtained 
+1/Iw31. from ~ $ ) ( D , w ~ , w ~ , w ~ )  [see Eq. (15)] by replacement of 

For a critical point of the second type (wi and w2 I w3 1 with w3, w1 with I w1 I, and w2 with 1 w2 1 and by 
negative and w3 positive), mirror reflection with respect to D=0, that is, by substi- 

J ~ ~ ( w ) = B A ~ ~ ~ ) ( D , w ~ , w ~ , w ~ ) .  ( 16) tuting D' = - D for D. There is no threshold in the spec- 
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tral dependence of Jif ( w ) ,  but the first derivative of 
Jif(w) has a singularity, a discontinuity at the point of 
electron resonance, D= 0. 

Equation ( 15) was obtained for arbitrary absolute val- 
ues of the parameters w, . The analytical expression for the 
combined density of states Jif (w) simplifies considerably in 
the case where the absolute values of the quantities w, with 
the same sign are equal. For instance, for wl = w2= w > 0 
and w3 <O (a saddle point of the first type), 

where erfc(x) = 1 - erf(x). A plot of the universal function 
f!;) is given in Fig. 6. The case where all three parameters 
w, are equal is of no particular interest because the expres- 
sion for Jif ( a )  does simplify. 

(c) Let us consider the most general situation for the 
three-dimensional problem: namely, the adiabatic potential 
of the final electronic state is shifted in relation to the 
adiabatic potential of the initial state (a,, a2, and a3 finite) 
and the potentials have different curvatures (wl, w2, and 
w3 finite). 

In the case of a critical point of the minimum type 
(wl, w2, and w3 positive), the combined density of states 
can be written as 

with Z3 the frequency detuning renormalized by the 
electron-vibrational interaction, the quantities t, T,, g, and 
A3 defined by Eqs. (6) and (9), and the expression for the 
function N(p,y, 2m) given in the Appendix. If the differ- 
ence of the adiabatic potentials of the final and initial elec- 
tronic states is an ellipsoid of revolution (wl = w2 = w), we 
have 

The analytical expression for Jif ( a )  in the case where the 
difference of the adiabatic potentials constitutes a sphere 
(w, = w2= w3= W) is not given here. If necessary, it can 
easily be obtained from Eq. ( 19) by putting w3 = w. 

The explicit form of the combined density of states 
Jif ( o )  when there is a critical point of the minimum type 
(wl, w2, and w3 negative) is determined from Eqs. (18) 
and (19) in which I w, 1 must be substituted for w, and 
Dl=-D for D. 

Equations (18) and (19) show that the shift of the 
adiabatic potential of the final electronic state does not 
change the threshold nature of the spectral dependence of 
Jij (a ) .  However, the renormalization of the frequency de- 
tuning leads to a situation in which for Z3 small the com- 
bined density of states is proportional to z:l2 and not to 
0'12, as it was earlier. 

In the case of saddle critical points the combined den- 
sity of states can be represented only in integral form. For 
instance, for a saddle point of the first type (wl and w2 
positive and w3 negative) we have 

Xexp ( -x ( I ~ 3 1 + ~ + ) ] ~ ~ ~ h ( l ~ ; 3 / 2 ( ~  - 

where 
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A characteristic feature of the given situation is the ab- 
sence of frequency thresholds and the renormalization of 
the frequency detuning z;. There also remains the discon- 
tinuity in the first derivative of Jif (w). However, Z; =0 is 
a singular point. An analytical expression for the combined 
density of states Jif (w) in the presence of a saddle point of 
the second type (wl and w2 negative and w3 positive) can 
be obtained from Eq. (20) by replacing wl with I wl 1, w2 
with Iw2/, Iw31 with w3, and Dwith D'=-D. 

4. CONCLUSION 

In Sec. 4 we established the analytical expressions for 
the combined density of states Jij(w) that determine the 
absorption and luminescence line shapes of molecules and 
of intrinsic and impurity defects of crystals in the case of 
electron- vibrational interaction with one, two, and three 
vibrational modes. Theoretically similar results can be ob- 
tained for physical systems of higher dimensionality. For 
one thing, if the curvatures of the adiabatic potentials of 
the initial and final electronic states coincide (w,=O) and 
the potentials are only shifted in relation to each other 
(a, finite), the combined density of states Jif (w) for an 
arbitrary dimensionality n is described by Eq. (3) in which 
u = (EL= ,uk) 'I2. However, a detailed analysis of such sit- 
uations is of less interest than that of the cases discussed in 
this paper. There are two reasons for this. First, if the 
curvature of the adiabatic potential of the final electronic 
state differs from that of the initial state, the analytical 
expressions for Jij(w) become grossly complicated as the 
number of vibrational modes taken into account grows. 
Second, and this is more essential, the spectral features of 
the combined density of states Jij(w) become less pro- 
nounced as the dimensionality of the problem grows. In- 
deed, as demonstrated above, in the presence of critical 
points, Jif (w) has a singularity of the 1 / ~ - " ~  type in the 
one-dimensional case, a logarithmic singularity in the two- 
dimensional case, and only a discontinuity in its first de- 
rivative in the three- dimensional case. As the dimension- 
ality grows, the spectral singularities become 
discontinuities in higher-order derivatives. Their discovery 
is aggravated by serious experimental difficulties and re- 
quires special spectroscopic methods, such as the modula- 
tion spectroscopy technique. l2 

To sum up: 
(a) We have established that the form of the combined 

density of states Jif(w) and, hence, the absorption and 
luminescence spectra strongly depend on the number of 
vibrational modes involved in the electron-vibrational cou- 
pling in the final electronic state and on the type of critical 
point of the difference of adiabatic potentials. 

(b) We have obtained in the quasiclassical approxima- 
tion the analytical expressions for the spectral dependence 

of the combined density of states Jij(w). The cases of 
electron-vibrational coupling in the finite electronic state 
with one, two, and three vibrational modes have been ex- 
amined, as well as all possible (for such cases) types of 
critical points of the adiabatic-potential difference. We 
have demonstrated that when there are critical points of 
the maximum or minimum type, the spectral dependence 
of Jif(w) is of a threshold nature. But if the critical point 
is of a saddle-point type, there is no threshold. 

(c) We have established that the combined densities of 
states Jij(w) are essentially temperature- dependent. 
Within the adopted approximations, their nontrivial tem- 
perature dependence is determined by the universal func- 
tions f introduced in the paper. Graphical representations 
of the universal functions for a number of characteristic 
situations are given for purposes of illustration. 

(d) We have analyzed the combined densities of state 
Jif (w) for the case where the critical points of the adiabatic 
potential of the final electronic state are shifted in relation 
to those of the initial state. The most important result of 
this shift is found to be the renormalization of the fre- 
quency detuning from the point of electron resonance. This 
leads to a shift in the spectral features of Jij(o), but their 
shape remains unchanged. For one thing, if the difference 
of the adiabatic potentials possesses a critical point of the 
minimum type, there is a shift toward the long-wave part 
of spectrum, and if the critical point is of the maximum 
type, the shift is toward the short-wave part. 

In addition to such obvious systems as molecules con- 
sisting of a moderate number of atoms, the results of this 
paper can be applied to intrinsic and impurity defects of 
crystals. Although the vibrational subsystem of a crystal is 
essentially multimode (phonon dispersion), it can be de- 
scribed in some cases by a small number of effective vibra- 
tional modes using the methods reviewed in Ref. 13. There 
is also a class of what is known as molecular defects, whose 
electron-vibrational coupling with the local vibrations gen- 
erated by these very defects is predominant. These defects 
can usually be described in terms of quasimolecular models 
and, hence, the above results are applicable. 

This paper discusses only orbitally nondegenerate elec- 
tronic states. More interesting, however, is the study of the 
effect of critical points of the adiabatic potentials on the 
optical spectra in a situation with the Jahn-Teller 
effect.14 Also, in order to be able to compare the theoret- 
ical results and the experimental data within a broad range 
of values of the physical parameters, the quasiclassical ap- 
proximation must be dropped. Work in this direction is 
currently being done. 

In conclusion, I would like to express my gratitude to 
the International Science Foundation for support of the 
present work. 

5. APPENDIX 

The function N(p,y,2m) can be expressed in terms of 
the error function erf(x) (see Ref. 1 I ) ,  and for y#O as- 
sumes the form 
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( g ) 2 ( m - n ) - 1  y-"pln! C $+(n-k)exp( -6) + $ _ ( f i k )  

k=o ( n - k ) !  
(-P \ 2 ( m - n ) - 1  

$+(n-k)exp( -6) +$_("k) 
X - y-"p1n! 2 

'-- k ) !  

where g, = y1 /2*P/2y1 /2 .  At y=O we have 

2 2m 2m(2m- 1 )  ...( 2 m - k + l )  
N(p,0,2m) =- sinh ( p )  + C 

P k= 1 pm 

' ) B ~  definition, a critical point is one at which the gradient of a function, 
grad,f(x), vanishes. 

 he directions of the principal axes of the adiabatic potentials in both 
states are assumed to be the same. 

3 ' ~ h e  vibrational frequencies in the initial and final electronic states are 
different. 

4 ' ~ h e  difference of the adiabatic potentials of the initial and final elec- 
tronic states constitutes an ellipse. 
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