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We consider current carrying states in a one-dimensional system of interacting electrons. 
New exact results for the Hubbard model and the bosonization method are exploited. We find 
that away from half-filling, both spin and charge excitations carry currents which are 
proportional to their momenta in most cases. Being in qualitative agreement with a single 
particle picture of the noninteracting 1-d Fermi gas, this result contradicts the spin- 
charge separation concept as it is usually derived from bosonization concepts and strong 
coupling arguments. We show that the bosonization procedure can be reconciled with the exact 
one (in the weak interaction limit) if spectrum parabolicity is taken into account. Both 
the current and the Hamiltonian acquire nonlinear cross-terms between the two channels. 
Finally, we study current carrying excited states for the Hubbard model in the presence 
of a magnetic field flux. In addition to the known diamagnetic contribution, we find a 
temperature-dependent orbital paramagnetic contribution from both singlet and triplet 
excited states. This paper extends and details the recent statements formulated by P. Nozieres 
and the present authors. 

1. INTRODUCTION 

One of the most-discussed properties of quasi-one- 
dimensional correlated electronic systems (see, e.g., Refs. 1 
and 2 for reviews) is the separation of spin and charge 
degrees of freedom. Related phenomena are described in 
the context of two substantionally different approaches: 
bosonization and exact Bethe ansatz 

Being related to the linear spectrum approxi- 
mation, the bosonization method has advantages in calcu- 
lations of physical properties and the system descriptions 
in terms of phenomenological hydrodynamic parameters 
corresponding to charge-and spin-density sounds, provid- 
ing an explicit spin-charge separation: typical operators 
are additive, while correlation functions become multipli- 
cative. Exactly solvable models, primarily the Hubbard 
model,' describe the same system in terms of certain par- 
ticles at a deeper level (nowadays sometimes called holons 
and spinons) which are also assumed to correspond to 
charge and spin degrees of freedom independently. 

In this article, we will show that the concept of spin- 
charge separation should be revised in the following sense. 
All elementary excitations of the Hubbard model are 
charged as long as the band is not half-filled. The spin 
excitations, both singlet and triplet, carry similar current 
to charge excitations. In the bosonization approach, the 
Fermi velocity dispersion (the spectrum parabolicity) 
should be taken into account, whenever both charge and 
spin excitations are found to carry a charge current con- 
sistent with the Hubbard model. The actual charge-spin 
separation emerges only at the level of a macroscopic 
current-carrying ground state, e.g., in an applied magnetic 
field, where the number of charged bosons is not conserved 
and the current appears as their condensate. These state- 
ments have recently been formulated in Ref. 8 and the 
present publication provides the necessary details. 

The currents have been already calculated9 in the 
strong-interaction limit: u = U/t% 1, where U is an on-site 
repulsion energy and t  is a nearest-sites hopping amplitude. 
An unexpected result was obtained: both charge and spin 
excitations carry electric currents, which are typically pro- 
portional to their momentump asp-0. On the other hand, 
in the weak-coupling limit ( u g l )  at least, a continuum 
model with a linearized electron spectrum is expected to be 
adequate when the bosonization method results in spin- 
charge separation. Spin excitations are then not presumed 
to carry a current. To elucidate this inconsistency, we now 
study the excitation currents in the Hubbard model for the 
case of weak interactions, where the bosonization tech- 
nique is applied and the two methods should be reconciled. 
The following types of excitations will be considered: spin 
triplet and singlet pairs, hole and particle states, added 
particles, gap states at half filling ( p = 1 ) . We will find that 
for both charge and spin states, the currents are propor- 
tional to the momenta, which confirms the disagreement 
with the usual bosonization results. The conflict will be 
resolved by studying effects of spectrum parabolicity and 
reexamining the structure of the current operator. 

This article is arranged as follows. In Sec. 2 we con- 
sider currents of spin and charge excitations for the Hub- 
bard model. We summarize and refine earlier results9 for a 
simple case of the strong repulsion, and we present new 
calculations for weak repulsion. In Sec. 3 we discuss results 
of the bosonization method. Agreement with exact results 
is achieved by taking into account the electron spectrum 
parabolicity near the Fermi surface (the Fermi velocity 
dispersion). We point out an important distinction be- 
tween the ground-state current and the currents due to 
excitations. In Sec. 4 we discuss the solution for a Hubbard 
ring with excitations in a magnetic field. We show that all 
properties are periodic as a function of the magnetic flux 
through the ring with a period of the magnetic flux quan- 
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tum Oo=ch/e, while a separate excitation does not dem- 
onstrate local gauge invariance. We calculate the total or- 
bital magnetic susceptibility of the Hubbard ring, 
consisting of a large diamagnetic part due to the ground- 
state current, and a paramagnetic part due to both spin and 
spinless excitations. Sec. 5 is devoted to conclusions. A 
detailed analysis of spin singlet excitations and new results 
at arbitrary p are given in the Appendix. 

2. CURRENTS OF EXCITATIONS FOR THE HUBBARD 
MODEL 

The Hamiltonian for the Hubbard model is 

where Nu is the number of sites, cf;,,,cn,, are the creation 
and annihilation operators of electrons with spins a= t ,1 , 
and U > 0 is the on-site repulsion amplitude of particles 
with opposite spins. 

The Bethe ansatz equations7 are 
M 

Nakj=2?TI,+ 2 8(2 sin kj-2AB), j= 1 ,..., N, (2) 
/3= 1 

2 O(2 sin kj-2A,) =2rrJa- C 8(Aa-AD), ,= 1 /3= 1 

where 

N= pNa is the number of particles, and M is the number of 
spins "down". 

In the ground state, N is even, M=N/2, 
S,= N/2-M=O. The values I ,  ,Ja ,k, are distributed sym- 
metrically about zero: 

-Q=kl < k 2 <  ... <kN=Q. (3) 

The momentum p, the energy E, and the current j are 
given by7v9 

p =  2 k,, E= -2 2 cos kj, j = 2  2 sin kj. (4) 

The electric current follows either from the charge conser- 
vation law 

or from the general definition j = - SH/SA, where A is the 
vector potential introduced into the Hamiltonian ( 1 ) by 
the transformation t-. t exp(ieA/&). 

We now consider relevant results for various basic ex- 
citations of the Hubbard model. 

2.1. Spin triplet excitations 

Spin excitations were studied basically in Refs. 10-13. 
As in the 1-d Heisenberg model, spin degrees of freedom of 
the 1-d Hubbard model are spanned by an even number of 
doublets spinons (s= 1/2). Two spinons can form a spin 
singlet or a spin triplet excitation. 

The spin triplet excitations can be obtained by the fol- 
lowing choice of numbers I, ,J, : 

I j = e ,  Ja+l-Ja=1+&,p,+~p,p2. 

Excited states are conveniently described9 by the func- 
tion 

p(kj) =Napo(k,)Skj, po(k,) = l /~ , (k ;+~-ky) ,  

where po is a known function for the ground state,7 and Sk, 
is the shift in the wave number kj  due to the excitation. 
The function i3 must be determined from the equation 

p(k)= f(sin k), 

where 

K(t)  =- dy, t= sin k. 

The interval Q in (3 ) ,  (5) is defined self-consistently via 
the normalization 

The momentum, energy, and current (4) are expressed in 
terms of ji(k) as follows: 

Q 
E - E ~ = ~  JPQ p(k)sin k dk, 

where Eo is the ground-state energy. The interval value Q 
was known in the limit u) 1 to be14 

In the limit u(sin rrp, we can similarly obtain 

In the limit 24.41, we find from (5) that 

and 

893 JETP 78 (6), June 1994 S. Matveenko and S. Brazovskii 893 



P=PI+P~,  E = E ~ + E z ,  j = j 1 + j 2 .  

In the limit u)l, the solution of (5) was found in Ref. 9. 
At small momentum p(1, we find for both limits the cur- 
rents: 

"P sin .rrp 
u 4 l :  jz2pcos-;  u)l: jz2p- 

2 "P (11) 

We conclude that at p# 1, spin waves carry an electric 
current proportional to the momentum. 

2.2. Spin singlet excitations 
The spin singlet states have been shown12 to be de- 

scribed by an additional pair of complex numbers 
A,= A * i r .  They are described by significantly different 
and more complicated Bethe-ansatz equations, which will 
be described in Appendix. Nevertheless, we have found 
their properties to be identical to properties of spin triplet 
states, see Sec. 2.1. 

2.3. Hole and particle states 
These states determine the lowest branches of charge 

 excitation^."^ Consider the hole states, which are described 
by a hole in the k distribution: 

The following equation was derived in Ref. 9 for this case: 

XK(sin k-sin kt) ,  (12) 

where ko=kjo. In the limit u)l, the energy1' and the 
current9 were found to be 

Note that at quarter filling ( p =  1/2), the current (13) 
vanishes to zeroth order in l/u. The first-order expression 
j -p/u can be extracted from Eq. ( 13) of the Ref. 9. In the 
opposite limit u(1, we find from (6) and (12) that 

The same expressions can be obtained for particle 
states. The results are similar to results for spin excitations 
(10). Thus, we see that in the weak-coupling limit, both 
spin and particle-hole excitations have similar spectra and 
carry a current j a p  at small p. 

2.4. Excitations with a gap at p = 1 
These states are described by a pair of complex quasi- 

momenta kjo=~&iX,12 and by two holes in the k distribu- 
tion I,ekl, Im@km. The energy is known at large u to be12 

e z  u + ~ ( C O S  kl+ cos k, - 2 cos Q) . 

For those excitations, the following equation was derived 
in Ref. 9: 

X sign (2 sin k - sin k,- sin km) 

+ I:Q dk' cos k'F(kf )K(sin k-sin kt).  

(15) 

It follows from (15) and (6) that j=O, so that these states 
carry no current for any value of u. 

2.5. States with one added particle 
These states are described by the equation9 

F(k) = Ikh d k ' ~  cos kl(sin k-sin k t )  

+ I:Q d k f P ( k ' ) ~  cos k' (sin k-sin k'). 

We find that for both limits, u) l9 and u(1, the energy and 
current are given by 

&z -2 cosp, j z s i n p ,  Ipl >Q. 

The conclusion of this section is that not only charge 
excitations (hole and particle states, states with added par- 
ticles) but also spin states (spin singlet and triplet excita- 
tions) carry electric charge current. In the next Section, we 
consider this problem in the framework of the bosonization 
approach. 

3. THE BOSONIZATION TECHNIQUE 

The bosonization procedure3'4"5 relies upon a decom- 
position of the Fermi operator into right- and left-moving 
parts, and on linearization of the spectrum in the vicinity 
of *k,: 

The interaction part Hi,, of the Hamiltonian is propor- 
tional to u, or in the more general case it has the form of 
66g-ology". '6.17 

In the notation of Ref. 18, one introduces the Bose field 
q, and the conjugate momentum %:I8 

qu,* aexp[ *i&qu,,(x)l, (17) 

Being related to exact gauge invariance and approxi- 
mate chiral invariance, these transformations are assumed 
to be asymptotically valid8 for all coupling strengths within 

894 JETP 78 (6), June 1994 S. Matveenko and S. Brazovskii 894 



a gapless sector of the phase diagram. While in relativistic 
field theory4 the bosonization is introduced axiomatically, 
we must follow the primary3 explicit formulation with a 
smooth momentum cutoff which allows for a direct substi- 
tution of (17) into the original Hamiltonian. In the new 
variables, the Hamiltonian takes the form 

where q= (q,+q,)/2 and a= (9,-q,)/2 are the charge 
and spin polarization fields. For the forward scattering case 
(the Tomonaga-Luttinger model), or asymptotically for 
the repulsive Hubbard model at p#1, the Hamiltonian 
take the sound forms19 

For the weak-coupling model, the coefficients a, b, c, and d 
are close to 1, e.g., for the Hubbard model, b=d = 1 and 
a,c= 1 U / T .  Within the present discussion the difference 
between them is not important, and we will set all of them 
to unity as for a noninteracting Fermi gas. 

The electric current expression is obtained from the 
definition 

so that it contains the charge field operators only. Conse- 
quently, the eigenstates of the spin Hamiltonian H(u)  will 
carry no current j ,  and they will not interact with the 
electric field. (A similar problem was addressed in Ref. 20, 
where was shown that phonon-assisted processes mix the 
charge and the spin degrees of freedom, which, for exam- 
ple, makes it possible to observe optical absorption across 
the spin gap for the attractive model, or to excite the spin 
wave continuum for the allowed absorptions in the repul- 
sive case.) This common conclusion is in apparent dis- 
agreement with our exact results for the Hubbard model, 
as we have discussed above. 

In order to resolve the disagreement, we take into ac- 
count the spectrum parabolicity (the Fermi velocity dis- 
persion). Then the Hamiltonian ( 16) becomes 

so that for the Hubbard model 

The electric current becomes 

where : (...): denotes the normal ordering of operators in 
(...). The charge density operator remains unchanged: 

p a  ( l / r )  (aq/dx), SO that the current (21) gives the ex- 
pression for the time derivative j a - ( l / ~ )  (dq/dt). The 
conservation law (aj/ax) = - (ap/at) =i[p,H] is pre- 
served due to an additional term SH, in the Hamiltonian 
coming from (20). In the representation ( 17), we find it to 
be 

The expressions for S j  and 6H may be easily obtained 
with the help of the following identities, which can be de- 
rived as in Ref. 18: 

7 i / 2 ~  
-q* (x) I): x - y r  iao ' 

Here a, is a cutoff parameter.3 
Consider now the effects of these corrections. 
a) Spin excitation currents 
The lowest excitations (magnons) of the spin Hamil- 

tonian can be obtained by the quantization of H,: 

where aL,ak are the magnon creation and annihilation op- 
erators. Then for the state with one spin excitation R 
= ar  lo), we find from (21 ) the average current 

to be proportional to the momentum of the spin wave, 
which is in the agreement with the exact results. Quanti- 
tative agreement on the dependence of the interactions can 
be achieved by taking account of the coefficients in (18) 
and (23). 

b) Charge excitation currents 
For excitations of the charge Hamiltonian H(q) ,  we 

consider as in (22) the state with one charge density sound 
quantum R = bl lo), where bi is the charge sound cre- 
ation operator. 

Unlike the spin case, the current operator now has 
two contributions, ( 19) and (2 1 ). Nevertheless, due to the 
nondiagonality of .rr, a (bi - bk) / &, we have ( 0  1 .R, 1 R)  
=0, so that the average value of the current remains the 
same as for the spin excitation: 

This observation is quite natural, since 

where N, are the particle numbers in the right- and the 
left-hand branches of the spectrum. For an arbitrary linear 
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superposition of charge sound bosons, the numbers N+ , 
N- then remain equal, and the current is zero until the 
velocity dispersion r is taken into account. 

The mean value ( P ~ )  can be nonzero, and the contri- 
bution linear in the boson operators will appear only for 
those states which are not eigenstates of the charge sound 
Hamiltonian. In other words, these states should change 
the numbers N+ , N- . There are several important exam- 
ples. 

1. The simplest umklapp 2kF state, which may corre- 
spond to the case 2.3 of the Hubbard model eigenstates. 
Then 

2. The macroscopic current-carrying ground state, e.g., 
for a ring with a magnetic flux, when the number of sound 
bosons is not conserved due to the presence of the term 
jA a T'+' in the Hamiltonian (A is the vector potential). 

The orbital effects of the magnetic field will be studied 
in detail in the next section in the context of the Hubbard 
model. 

4. THE HUBBARD RING IN A MAGNETIC FIELD. 
DIAMAGNETISM AND PARAMAGNETISM 

Consider the Hubbard model for a ring with magnetic 
flux through it. The Bethe ansatz equations have the 
form21-23 

where v= (2?r/Na) (@/ao), ao=hc/e is the magnetic flux 
quantum, and @ is the magnetic flux through the ring. 
Equations (25) are valid both for the and ex- 
cited states, so that all properties are periodic as a function 
of @, with period Qo. In this way, the system is manifestly 
gauge-invariant, although it does not seem to hold for a 
single e ~ i t a t i o n , ~ ' ~ ~  since the ratio of the current to the 
group velocity is not universal. 

Suppose that there is a spin singlet or spin triplet ex- 
citation on the ring. By analogy with (5), we can obtain 
from (25) the following equation for the function P(t) :  

sin Q + J p(tp)dtlK(t-tl), 
-sin Q 

where t=sin k. Expressions (6) for the momentum and 
energy can be generalized to 

Q+ v 

= J F ,  e=2 J-Q+v Q+ v F(k)sin k dk, 
(27) 

while the current should be obtained afterwards via j= 
-SH/GA. There are two contributions due to the magnetic 
field: the new term v/a in Eq. (26), and the offsets in the 
integration limits in (27). For u ~ 1 ,  the solution of (27) 
yields 

sin .rrp sin .rrp 
~=vslpsl+2 7 + 2 ~ s  v, 

where the spin velocity10 and momentum are 

The current is found by variation of (28) over A, were 
A = @/ L is the vector potential: 

sin n p  
sin .rrp + 2ps - 

"P 

The first term in (29) is the ground state contribution, and 
the second is the spin-wave current ( 11 ). [Unlike ( 11 ), 
expressions (29) etc. are given in dimensional units.] 

With the help of these results we obtain the orbital 
susceptibility 

where fl is the thermodynamic potential, 2Y is the mag- 
netic field, T is the temperature. 

The first term in (30) is the ground state contribution, 
and the second is due to spin waves. Note that spin-wave 
currents contribute to the paramagnetic susceptibility. 

For particle-hole excitations, we easily obtain a similar 
expression, but with us+ v, cc sin ?rp. 

The total susceptibility consists of the orbital part (30) 
and a spin-paramagnetic part: 

5. CONCLUSIONS 

1. We have studied the current-carrying states of the 
Hubbard model. We found that both spin (singlet and 
triplet) and charge (hole and particle) excitations carry 
current j a p  (for p ( l ) ,  except for the half-filled case, 
where only states with one added particle carry the cur- 
rent. We also found that for p f l ,  the singlet excitation 
spectrum is terminated at some end point. 

2. In the bosonization approach for the linearized bare 
electron spectrum, neither spin nor charge sound excita- 
tions carry the current. The current arises only for macro- 
scopic coherent states in which the number of charge 
sound bosons is not conserved, as in the presence of mag- 
netic flux. 
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Taking account of the spectrum parabolicity leads to 
nonzero currents ( j  ap) for both charge and spin boson 
excitations, which is in agreement with exact results for the 
Hubbard model. 

3. The gauge invariance of the theory shows itself via 
the periodicity of all properties with respect to the mag- 
netic flux, with period <Po. The currents that result from 
the magnetic field lead to the orbital susceptibility, which 
for small @/@, has a diamagnetic ground state part and a 
temperature-dependent paramagnetic contribution due to 
both singlet and triplet excitations. 
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APPENDIX. SPIN SINGLET EXCITATIONS 

Spin singlet states are characterized12 by an additional 
pair of complex parameters Ao= A f ir. We omitted in Eq. 
(2) two equations with Jp, and J6, and added two addi- 
tional equations with an integer J and corresponding com- 
plex values A, and A;. The set (3) of numbers changes as 
follows: lj=t, numbers J p l ~ A l ,  Jgz(jA2 are omitted, 
numbers JuA0 = A * i r  are added. 

Equations (2) become 
M-2 

Nak,=2rIj+ 2 8(2 sin k j -24)  +8(2 sin k,-2Ao) 
p= 1 

+8(2 sin kj-2A,*), j=  1, ... N, 

N z 8(2 sin kj-22,) 
j= 1 

M- 2 

=2rJa- C e(Aa-Ap) -8(Aa-Ao) -e(n,-~,*>, 
p= 1 

N 

8(2 sin k,-2(A*iI')) 
j= 1 

M-2 

By comparing imaginary parts in Eq. ( A l )  and taking 
Eq. (2a) into account, we find as in Ref. 12 that r=u/4 .  
Then by using identities 

we arrive at 

M-2 

N a k j = 2 q +  C 8(2 sin k,-Up) -r sign(sin k, 
8= 1 

2(sin kj- A) 
--A) -2 tan-' , j= 1 ,..., N, 

u 

N 

1 8(2 sin k,-22,) 
j= 1 

M-2 4(Aa-A) 
=2rJa- 8(A,-AD) +2 tan- 

p= 1 U 

4(Aa-A) 
+2 tan-' 

3u 9 a#Bi,82, 

From Eqs. (A2)-(A4) we can derive the coupled 
integral equations for functions p(k) and iT(A), where 

and uo(Aa) is the known ground-state function.' The func- 
tions p and o allow9 the sums over j and a to be trans- 
formed to integrals over k and A: 

We have 

2(sin k-A) 
x (sin k-A)-2 tan-' 

u 

j_Pp 8up(k)cos kdk 
u2+ 16(sin k-A)' 

4(A-A) 4(A-A) 
-2 tan-' -2 tan-' 

U 3 u 
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2 2 (sin k -ABi) 
+ z 2 tan-' 

i= l 

From a requirement of the unique correspondence be- 
tween sets of Ij and of kj, we can derive the condition 

Indeed, if (A7) does not hold, then for some j we have 
sin kj<A<sin kj+', Ij+,=I,+1 and kj+'=kj as follows 
from (A2). But this equality is prohibited. 

Taking advantage of the infinite integration limits over 
A, we can apply the Fourier transform to Eqs. (A5), (A6). 
In this way we can exclude Z(d) from (A5), (A6) to 
arrive at a separate equation for (k)  : 

sin Q 
(A8) 

where t=sin k and the kernel K was defined in (5). 
The equation to determine A is found from (A4) with 

the help of (A5)-(A7). After some cancellations we ob- 
tain 

The sign "*" in (A9) depends on the sign of (sin Q- A). 
Since the first and the second terms on the left-hand side of 
(A9) are integers, the expression in square parentheses 
must be an integer of r/2. Consequently, we have from 
(A9) solutions for the parameter A: 

The Eq. (A8) differs from the similar Eq. (5) for the 
triplet states only by the term O(t- A). Provided the ine- 

quality (A7), this term is constant (0  for A < 0, or 1 for 
A > O), and we arrive at the same expression for the energy 
and the momentum (for A < 0 the momentum is shifted by 
the period r p ) .  The currents of singlet excitations are 
given by the same Eq. (10) as for triplet states. 
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