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The instability of plane periodic waves and solitons in near-surface shear flows of deep water 
is investigated within the framework of the Shrira model. The discrete of modes 
spectrum growing in time superposed on an arbitrary nonlinear wave and their growth rate 
are found explicitly for small wave numbers of the transversal modulation. It is shown 
that the nonlinear wave instability is involved with a decay dispersion relation for linear 
perturbations, which allows the resonance condition to be met for three-wave 
interaction processes. 

1. INTRODUCTION 

The mechanism of modulational and self-focusing in- 
stabilities of weakly nonlinear quasiharmonic waves is well 
known for different dispersive media (see, for example, 
Refs. 1-5). However, the instability of essentially nonlin- 
ear waves including solitons has not been studied well 
enough until now. 

Plane nonlinear waves and solitons in weakly disper- 
sive isotropic media are stable with respect to small longi- 
tudinal and transverse perturbations if the phase velocity of 
quasiharmonic waves decreases with increasing wave num- 
ber (i.e., the dispersion is In this case the 
linear dispersion relation does not meet the conditions of 
three-wave resonance and the spectrum of weakly nonlin- 
ear waves is referred to as a nondecaying spectrum. How- 
ever, the presence of an external field or flow that intro- 
duces anisotropic properties in the medium can lead to a 
decaying spectrum even for negative dispersion and have a 
destabilizing effect on the stability of quasiplane waves 
with respect to transverse modulation of their  front^.^-'^ 

Our work is also concerned with the problem of non- 
linear wave stability in anisotropic media with negative 
dispersion. We consider the Shrira mode1I3-l5 describing 
large-scale moderate-amplitude perturbations in shear 
flows of a nonstratified fluid. The corresponding integro- 
differential equation is written in the form 

In the context of this problem, the variable A is the 
amplitude of the longitudinal velocity perturbation of the 
fluid particles; c, a and fl are positive constants which can 
be calculated from the velocity profile of the main flow, 
and the kernel of the integral operator Q(x,y) is expressed 

where k = and H i s  a free parameter correspond- 
ing the fluid depth in the original hydrodynamic problem. 

It is readily verified that the dispersion relation for 
linear perturbations in the model has the form 

The spectrum (1.3) is non-decaying in the one- 
dimensional ( 1D) case. However, three quasiharmonic 
perturbations propagating at different angles can form a 
resonant triplet. Therefore, it is to be expected that plane 
nonlinear waves should be unstable with respect to trans- 
verse perturbations of their fronts in the Shrira model, 
resulting in the formation of two-dimensional (2D) soli- 
tons. Indeed, 2D soliton solutions were revealed by numer- 
ical calculations based on Eq. ( 1.1 ) (Refs. 14,15 ) . Accord- 
ing to the estimates given in Ref. 14 these solitons can be 
associated with the coherent structures of the boundary 
layer observed in experiments in a wind tunnel.16 It is im- 
portant to emphasize that the structures are formed spon- 
taneously as a result of the development of the self-focusing 
instability of plane nonlinear waves and live for a long time 
as characteristic entities of the boundary layer. 

Note that in the limiting case H+O, Eq. ( 1.1 ) trans- 
forms into a 2D analog of the Zakharov-Kuznetsov equa- 
tion describing ion-acoustic waves in a magnetized 
plasma.17 In this paper we consider the other limiting case 
H+ oo. However, our results are qualitatively similar to 
the ones found in the Refs. 8-12 for the Zakharov- 
Kuznetsov model. This fact enables us to speak about the 
general mechanism of plane nonlinear wave instability in 
shear flows of fluid of arbitrary depth H described by equa- 
tion (1.1). 

2. PLANE NONLINEAR WAVES AND THEIR STABILITY 

by the Fourier transform Below, we shall consider only the limiting case of deep 
+ m  water (H+ oo ). In the referenck frame propagating with 

~ ( x , y )  =-& II ~(k,,k~)exp(jk~+ik~)dk&k~ velocity c, equation ( 1.1 ) can be simplified by replacing 

-m - a - - - 
u(z,y,t) = -- A(%,y,t), x=x-ct, t=Pt. 

of the function 2B 
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As a result, equation ( 1.1 ) takes on the form (the tilde is 
omitted below) : 

where Q(x,y) = I / ~ T ( X ~ + ~ ~ ) ~ ' ~ .  
In a 1D case, this equation transforms to the well- 

known Benjamin-Ono (BO) equation, which has a com- 
plete family of steady solutions with the following explicit 
form18 

V tanh2 Q 
uo = 

1 - cos (Kx - o t  ) sech Q ' 

where V and 4 are positive real constants, and o and 
K(Kx,K,,) are related by the nonlinear dispersion equation 

o= VKx, V= dm coth Q. 

The solution (2.2) describes a plane nonlinear periodic 
wave with frequency o and wave vector K, where I K I < V. 
The parameter Q characterizes the nonlinear properties of 
the wave. In the limit Q+  a, the wave has an vanishingly 
small amplitude and a sinusoidal shape superposed on the 
constant background V: 

CO=K, J=f+0(a2), a =  V/ sech Q4 V. (2.34 

In the other limiting case Q+O, K-0, the solution 
(2.2) yields a plane "algebraic" soliton falling off ratio- 
nally in the direction of the vector S=K/Q: 

As is known (see, for example, Ref. 18), the entire 
family of stationary waves (2.2) is stable with respect to 
the longitudinal perturbations whose evolution is described 
by the 1D BO equation. Below, we consider the stability of 
plane wave with respect to the transverse modulations of 
their fronts using Eq. (2.1 ) . We introduce an angle a be- 
tween the direction of wave propagation and the x-axis so 
that K=K(cos a,sin a ) ,  and rotate the coordinate system 
propagating with the wave velocity V by this angle: 

( ; )= (cosa  sina)(~;Vt) 

-sin a cos a 

Further, by linearizing Eq. (2.1) about the solution 
(2.2) and looking for the perturbation in the form 
u, (c,q,t) = w(~)exp(ilt+i~,q), where K, is the wave num- 
ber of transverse modulation, we obtain a linear integr* 
differential equation with variable coefficients for the func- 
tion w(f): 

where ax=cos ad5-sin a i~ ,  and R(5) is expressed by the 
first-order modified Bessel function of the second kind 

If the plane wave uo(g) is unstable, a spatially bounded 
perturbation exists in the problem (2.5) for the eigenvalue 
il with a positive real part Re il > 0. 

The eigenvalue problem (2.5) is rather complicated. In 
the general case we have to use numerical calculations to 
investigate its solutions. However, the problem may be in- 
vestigated analytically under certain assumptions. Namely, 
the approximation of a long transverse modulation scale 
leads to essential simplification of the problem for the 
waves propagating along the main flow (a =O) .  

Note that the waves propagating at small angles a to 
the flow are the most critical ones from the standpoint of 
their possible instability. On the other hand, the waves 
propagating transversely to the flow are neutrally stable 
(i.e., the parameter il is a purely imaginary value) because 
the integro-differential operator on the right-hand side of 
(2.5) is anti-Hermitian for a = ~ / 2 .  Moreover, in this case 
the original wave uo(y) can have an arbitrary form and 
may in fact be regarded as a static inhomogeneity in the 
distribution U(z,y) of the shear flow. Therefore, in what 
follows we shall consider mainly the most unstable waves 
with a = O .  

Using the known form of the modified Bessel 
functionlg at small values of its argument, we expand the 
kernel of the integral operator in the series of K,: 

where C, the Euler constant, is unimportant in what fol- 
lows. 

Substituting the expansion (2.6) into Eq. (2.5) at 
a = O  and neglecting the terms that are o ( K ; ~ )  and 
higher, we find a simpler eigenvalue problem 

where Hw = ( l / ~ )  S " [w (x' )dx'/x1 -XI is the Hilbert 
transform of the function w (x). 

This simplified equation is valid when the transverse 
modulation length is much greater than the characteristic 
length of the original wave. For the problem (2.7) we 
succeed in constructing a complete set of time-growing 
modes of the discrete spectrum for an arbitrary nonlinear 
wave described by the solution (2.2), (2.3) at K,=O. 

3. PLANE WAVE INSTABILITY TO LONG TRANSVERSE 
MODULATIONS 

We consider an auxiliary equation possessing some re- 
markable properties: 
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This equation helps us investigate the spectrum of ei- 
genvalues and to construct the eigenfunctions of the prob- 
lem (2.7). First of all, we consider the family of exact 
solutions describing plane stationary waves. It is conve- 
nient to express them by the vector variable u=V$ [cf. 
(2.2)]: 

where the parameters 4, w, K and V are related by the 
nonlinear dispersion equation 

and 

sign 4 =sign K,. (3.4) 

It is not difficult to show that there exists a close anal- 
ogy between the solutions (2.2) and (3.2), on the one 
hand, and the corresponding dispersion Eqs. (2.3) and 
(3.3), (3.4), on the other hand. In the paraxial approxi- 
mation (K;/K;< I ) ,  Eq. (2.3) leads to the expression 
w=: (K;+ 1/2K;)coth 4 that coincides with the dispersion 
dependence (3.3) to within a factor 1/2 (which can be 
easily eliminated by scaling transformation of the vari- 
ables). 

By differentiating Eq. (3.1) with respect to x and lin- 
earizing it about the plane wave k= (uo,O) with the wave 
vector K= (K,O) we find an equation for the linear pertur- 
bation u = w (x - Vt) exp (At + ikg) which coincides with 
the eigenvalue problem (2.7). 

The auxiliary equation (3.1 ) is remarkable in that it 
can be reduced to a bilinear form 

by the substitution of the dependent variable 

Here we use the Hirota operator (see, for example, [18]): 

For transformation to equation (3.5) the functions f * are 
supposed to satisfy the additional relation 

Following Ref. 18, we can use the Hirota direct 
method to construct the partial solutions of Eq. (3.5) in 
the form of a polynomial of exponential functions. One of 
them is necessary for our analysis of plane wave stability 
and has the form 

where qi= ki (x - vit-xi) + iqoi and qoi are arbitrary con- 
stants, 

vi=k,coth and exp A12= 
Iv1-v2I2- Ik1-k2I2 
Iv1-v2I2- lkl+k212. 

For qo2= + co and qol =0, the solution (3.6), (3.8) of 
Eq. (3.1) is a family of plane stationary waves. We set 
exp( -qo2) =e(l and write the expression (3.8) in the 
form f * = f$ + E  f F. Substituting it into (3.6) and ne- 
glecting the terms of order o ( E ~ )  and higher, we find the 
solution of Eq. (3.1) linearized about the plane wave 
(3.2): u = u ~ + E u ~ + o ( E ~ ) .  The condition (3.7) is fulfilled 
for the two first terms of the expansion if the zeros of the 
function fz (f; ) of the complex variable x lie in the 
upper-half (lower-half) of the plane. The relation (3.4) 
meets this condition. In addition, the functions fF must 
satisfy the limiting relations: 

Now we consider the plane wave k(uo,O) propagating 
along the x-axis: kl = K = (K,O) , v1 = V = ( V,O) , and 
4, =#. We remind our reader that only for this wave can 
the linearized analog of equation (3.1) be reduced to the 
eigenvalue problem (2.7). We denote the perturbation pa- 
rameters by k2=k= (kx,ky), ~ ~ = ~ + i ~ k / ) k 1 ~ ,  and 4j2--8. 

Analysis shows that nontrivial solutions of the linear- 
ized problem may be found only under the condition that 
the factor exp(A12) in (3.8) is equal to zero or to infinity. 
Otherwise, the limiting relations (3.9) hold only at k,=O, 
but then ff= f$ and ul=O. 

Let us set exp(A12) =O. The corresponding solution of 
equation (3.1 ) can be written explicitly as 

where tanhe= (k2,+g)/(kxv+iA), and the growth rate 
A (k, ,ky ,K, V) is found from the equation exp A12 =0: 

It is not difficult to show that for the case exp A12= co 
the solution (3.8) transforms to the same discrete- 
spectrum mode w after renormalization of the parameters 
k and 8. 

The function w describes a linear perturbation of the 
nonlinear periodic stationary wave uo= (uo,O) at the val- 
ues of the parameters k,, k,,, quasi-periodic in space and 
growing in time, for which A2 > 0. The period of the carrier 
wave is determined by the parameter K varying in the 
range from 0 to V. The wave number k,, which together 
with K determine the two other periods of the perturbation 
w, can be regarded as the Floquet-parameter in the theory 
of linear equations with periodic c~efficients.~~ This param- 
eter must vary in the range O<kx < K. Indeed, direct cal- 
culation revealed that the relations (3.9) are fulfilled only 
for this range of k, variations. 
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FIG. 1. The instability regions of a plane periodic wave in model (2.7) 
for K/V=0.99 (a); 0.75 (b) and 0.5 (c).  The asterisk indicates the 
position of the global maximum of the growth rate. In Fig. la the dashed 
line corresponds to the resonant curve of quasiharmonic waves. 

This time-growing mode has some symmetries. First 
of all, the symmetry about the axis k,=O as 
w(-ky)=w(ky) follow~fromtheformulas (3.10), (3.11). 
Further, using the identity 

=sinh G(k,)sinhe(~- k,), 

which is valid for real A, we can prove that 

sinh(e(K-kx) -4) - 
w(K-kx) = ~ ( k , ) .  (3.12) 

sinh O(k,) 

The equality (3.12) means that the plane wave pertur- 
bations growing in time are also symmetrical about 
kx=K/2. Moreover, as follows from the relation (3.1 I), 

the global maximum of the growth rate lies on this curve 
where $= v2/2-~'/4 and is determined by the equality 
max(A2) = v2( v2- ~ ' ) / 4 .  

The instability regions on the k, k, plane with the 
global maximum of the growth rate labeled by the asterisk 
are hatched in Fig. 1 for three values of the parameter 
K / E  0.99, 0.75, and 0.5. (Bear in mind that the nonlinear 
properties of the waves increase as the parameter K/V 
=tanh 4 decreases.) It is obvious from Fig. 1 that the 
instability region expands with increasing wave amplitude. 
The solitary waves (for which K/V=O) are the most un- 
stable with respect to transverse modulations of their 
fronts. The dependence of the growth rate A on the wave 
number of the transverse modulations k, is shown in Fig. 2 
for the particular cases kx = 0 and kx = K/2. 

In the limiting case of weakly nonlinear waves K/V- 1 
the instability region degenerates to the curve 
k;=k,(~-k,) shown in Fig. la  by a dashed line. It is easy 
to verify from the dispersion relation in the limit (3.3) 
4 -+ co that the resonance conditions for the triplet of waves 
wo, K, wl, k; w2, (K-k) are fulfilled on this curve so that 

Thus, this instability of the whole family of nonlinear 
stationary waves generalizes the well-known phenomenon 
of the decay instability of a quasilinear wave with param- 
eters wo, K caused by its resonant interaction with the 
satellite waves which have the parameters wl, k and w2, 
K-k. In fact, it is obvious from Eq. (3.10) that the wave 
vectors k and K - k determine the two-dimensional profile 
of the perturbation superposed on a nonlinear wave with 
finite 4. 

Note that A has no imaginary part at any point of the 
instability region. It means that the growing mode does not 
change the frequency of the carrier wave and propagates 
with the same velocity. For weakly nonlinear waves this 
phenomenon is related to the fact that the wave-satellites 
wl, k and w2, K-k have the same velocity V along the 
x-axis as the carrier wave wo, K. 

For perturbations with the period of the carrier wave 
(k,=O), we found that the growing mode w(x) can be 

FIG. 2. The growth rate versus wave num- 
ber of transverse modulation in the model 
(3.1 ) for perturbations with the same and 
double periods compared to the carrier 
wave [Fig. (a) and (b), respectively] for 
the cases K/V=0.9 (curves I); K/V=0.7 
(curves 2); K/V=0.5 (curves 3).  
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expressed as a superposition of odd and even components 
with respect to uo: 

The first term in fact describes phase modulation of the 
carrier wave and the second term describes modulation of 
its velocity (amplitude). The mode structure along the 
x-axis is presented in Fig. 3 for three different values of k,: 
near the left (b) and right (d)  edges of the instability 
region and near the region of maximum growth rate (c). 
The profile of the wave uo with the parameter K/V=0.5 is 
shown in Fig. 3a. Evidently the instability of a plane wave 
can be regarded mainly as phase instability in the region of 
long-wave transverse perturbations and as amplitude insta- 
bility in the region of short-wave perturbations. The wave 
instability mechanism is accounted for the positive feed- 
back between amplitude and phase modulations: wave 
front bending is accompanied by increasing amplitude in 
its convex portions and by decreasing amplitude in the 

FIG. 3. The profile of the periodic wave uo 
for K/V=0.5 (a) and the structure of the 
growing mode w with the same period at 
the left (b) and right (d) edges of the in- 
stability region and near the region of peak 
growth rate ( c )  for the model (2.7). 

concave portions. The convex portions move faster and the 
concave ones move slower, which leads to further bending 
of the wave front. 

For arbitrary k,, we found that the structure of the 
time-growing perturbations at each crest of the carrier 
wave has the same features in different portions of the 
instability region. However, the perturbation phases are 
different at the neighboring crests. In the symmetrical case 
kx=K/2, the linear mode has a period double that of the 
carrier wave and the perturbations of the neighboring 
crests have opposite phases. Using (3.12) we also found for 
this case an explicit form of the growing mode for an ar- 
bitrary nonlinear wave uo: 

Kx+S K Kx+S 
w a sin (1) axuo + cos (T) uO. (3.14) 

The parameter S = Arg[sinh (0  - 4)/sinh 81 is real inside 
the instability region and varies from ?r at the left edge to 
zero at the right one. The profile of the mode (3.14) is 
drawn in Fig. 4 for three values of k,. 

1L? W 
FIG. 4. The same for the mode with period 
twice that of the carrier wave. 

/" 
0- 

J 
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887 JETP 78 (6), June 1994 D. E. Pelinovsky and Yu. A. Stepanyants 887 



We would like to point out the existence of a critical 
value of the wave number k, at which the wave modulation 
does not grow. At this point one should expect the plane 
stationary solution to bifurcate and a branch of 2D struc- 
tures periodic in the transverse direction to The 
features of the linear modes allow us to conclude that the 
2D structures with large transverse periods look like phase- 
modulated nonlinear waves while the ones with small pe- 
riods look like amplitude-modulated waves. Formation of 
such 2D structures may be observed in the nonlinear stage 
of the self-focusing instability of plane waves. 

4. PLANE WAVE INSTABILITY TO TRANSVERSE 
MODULATION WITH AN ARBITRARY PERIOD 

The approach used in reducing Eq. (2.5) to (2.7) is 
valid to within PJv2. Therefore, in order to extend the 
results discussed in the previous section to Eq. (2.5) we 
need to neglect the higher-order terms, which does not 
allow us to take into account the cut-off instability at large 
transverse modulation wave numbers (k,,/ V- 1 ) . Never- 
theless, results of analytical and numerical investigations of 
Eq. (2.5) reveal that there is good qualitative correspon- 
dence between the solutions of both equations for the wave 
uo(x) propagating along the x-axis. 

4.1. The decaying instability of weakly nonlinear waves 

In the limiting case #= oo when there is no periodic 
structure in the carrier wave uo, the linear integro- 
differential equation (2.5) transforms to an equation with 
constant coefficients and admits an explicit solution in the 
form of neutral perturbations of a certain background V: 

A O ( ~ ( , ~ , )  = i ( ~ ~  cos a-K, sin a)  (v- V), (4.1) 

Here and in what follows the Greek symbols denote as 
before, the coordinates and wave numbers of perturbations 
in the reference frame rotated at the angle a in accordance 
with the transformation (2.4), and the Latin symbols de- 
note the coordinates in the laboratory frame. 

In the solution (4.1 ), the wave number component KC 

is an arbitrary parameter determining the imaginary eigen- 
value A. When the harmonic wave (2.2a) in (2.5) has a 
small but finite amplitude, the parameter KC can have only 
a countable number of values differing by the value NK, 
where N is an arbitrary integer. This follows from the the- 
ory of linear differential equations with periodic 
 coefficient^.^^ The instability of the wave uo(f) can arise 
from merging of an eigenvalue pair A O ( ~ g , ~ , )  and A, 
( - ~ i ,  -K;), where K; = -(K{ - NK), K; = -K, and 
their transition from the imaginary axis to the complex 

By equating the eigenvalues for two modes we 
find the resonant Nth order condition for the carrier wave 
oo, K and two satellite waves o l ,  k and a,, k' in the 
reference frame f ,  7: 

where the dependence w(k) is expressed by the relation 
(2.3a). 

Analysis of the functional equations (4.2) reveals that 
the higher order ( N >  1) resonance conditions are not ful- 
filled for harmonic waves in the Shrira model (2. l ). How- 
ever, at N=  l such a solution exists for any a and gives the 
dependence K,=K$(K~) which has a form of two broken 
curves. This dependence is shown in Fig. 5 by dashed lines 
for some values of a in the laboratory frame. At a=O, the 
two curves are connected and form a single curve deter- 
mined by the expression: 

Comparison of this curve and the ellipse where the 
wave resonance conditions in the simplified model (3.1) 
hold (the ellipse is represented by the dot-dash line in Fig. 
5a) shows that the two curves are qualitatively similar but 
the resonance of weakly nonlinear waves occurs at larger 
values of I k, 1 in Eq. (2.1 ). The maximum deviation of the 
curves I AkJk,l is reached on the line kx = k: = K/2 is 
18.3%. 

In the other special case a=?r/2, the dependence 
kfl(kx) degenerates into the line kq=K/2. 

So, only the simplest interaction of three coupled 
weakly nonlinear waves leads to decay instability of the 
plane stationary solution (2.2a). As is the char- 
acteristic features of harmonic wave instability can be 
found in this case in the first order of wave amplitude a 
which is supposed to be a small parameter. 

By substituting the expansions 

into Eq. (2.5) with the function uo(f) in the form (2.2a) 
we obtain a linear inhomogeneous equation for the first 
correction w1 (6).  Elimination of the resonant terms in the 
right-hand side of this equation, which gives rise to secular 
growth3 of wl(f),  allows us to find the ratio 
W(kg)/ W( - ki) and the first correction A l  ( ~ g  ,K$,K,~) 
in the form 

where 

~i cos a + ~ $  sin a 
- 

up  )+sin a(~-v) 1, 
q2= ( K ~  cos a - ~ $  sin a )  (K; cos a + ~ $  sin a)  
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FIG. 5. The region of instability of a plane 
quasiharmonic wave in the laboratory 
frame with respect to small transverse per- 
turbations with amplitude a=0.1 within 
the model (2.5) at a=O (a);  a=77/8 (b); 
a=77/4 (c); a=3?r/8 (d) .  The asterisks 
and dashed lines have the same meaning as 
in Fig. 1. The dot-dash line corresponds to 
the resonant curve in the model (2.7). 

K; cos a + ~ +  sin a 2 double periods as the carrier wave in the (, 11 frame have + uf ) + s i n a ( q ) ]  . velocities v and v' equal to the wave velocity Vso that their 
amplitudes grow monotonically due to the developing in- 

The instability regions q2>0 are hatched in Fig. 5.  We stability. At the edges of the instability region, such per- 
would like to emphasize that for waves propagating in the turbations represent neutral modes from which new sta- 
x direction, the instability region expands from the reso- tionary solutions in the form of 2D modulated structures 
nant curve kN(kx) just as in Fig. la, which is drawn for with the same and double periods may appear. 
weakly nonlinear waves perturbed by long transverse mod- 
ulation. 

As a increases, the region q2 > 0 shrinks and there is no 
harmonic wave instability in the first-order expansion of its 
amplitude for the portions of the resonant curves with 
kx < 0 and k: < 0. For a)0.297~, the instability region of 
plane quasilinear waves vanishes. It is obvious from Eq. 
(4.5) that the perturbations with large transverse wave 
numbers k,, are the most unstable ones and the maximum 
of the growth rate lies on the line k, = k: = Kx/2 if it inter- 
sects with the resonant curves. Such an intersection is ab- 
sent at large a and the maximum coincides with the edges 
of the resonant curves (Fig. 5c). 

It is important to note that the imaginary part of the 
eigenvalues does not vanish in the model (2.1 ) anywhere 
in the instability region except on two special lines: K ~ = O  
and K ~ = K / ~ .  Only the perturbations with the same and 

4.2. The transversal instability of plane solitons 

The eigenfunctions w(() and eigenvalues A of Eq. 
(2.5) for the solitary wave u o ( ( )  specified by the solution 
(2.2b) are investigated by the numerical procedure pro- 
posed in Ref. 23. The idea is based on discretizing the 
Fourier-space of the integral equation (2.5) and subse- 
quently finding the eigenvalues and eigenvectors of the ma- 
trix obtained as a result of the discretization by the projec- 
tive method. This method gives small numerical errors if 
the spectrum of the function w(() falls off rapidly with the 
order of the Fourier harmonics, which was observed in our 
numerical calculations. 

Using this procedure we found the unique discrete 
mode of a plane soliton that grows in time at a#?r/2 over 
a broad interval of transverse wave numbers K,. The de- 
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FIG. 6. The growth rate versus wave number of transverse modulation in 
the model (2.5) for a plane soliton at a = O  (curve I); a = d 8  (curve 2 ) ;  
a = ~ r / 4  (curve 3 ) ;  a= 3 ~ / 8  (curve 4 ) .  The dashed line corresponds to 
the same dependence in model (2.7) at a=O. 

pendence Re A  (K , )  is presented in Fig. 6 for some values of 
a. The instability region and the magnitude of the growth 
rate ReA > 0 decrease with increasing a but the transverse 
modulation with wave numbers K,- V is always the most 
unstable. The dashed line in Fig. 6 indicates the depen- 
dence A ( K , )  which we found in the framework of the sim- 
plified equation ( 2 . 7 )  for a = O .  Obviously, the quantitative 

correspondence is good in the region of long transverse 
perturbations but becomes worse with increasing K,. The 
qualitative characteristic features of the dependence A  ( K , )  
are presented correctly by the simplified model ( 2 . 7 )  as 
seen from Fig. 6. Note that the asymptotic dependence 
A ( k , )  for a solitary wave was also found recently in the 
long-wave limit.24 

The structure of the mode growing out of a plane soli- 
ton is shown in Fig. 7 ( M )  for three values of K, at a = O .  
It also agrees well with the approximate solution ( 3 . 1 3 )  
and can be expressed by the superposition of the odd and 
even components describing transverse modulation of the 
phase and velocity of a plane soliton. 

The eigenvalue A  for the found mode is a complex 
value except the special case a = O .  So, the appearance at 
a 5 r / 2  of numerous critical points K , ~  at which Re A  van- 
ishes does not cause bifurcation of different branches of the 
stationary solutions. 

Thus, comparison of the characteristic features of 
growing modes in the limiting cases of weakly nonlinear 
and solitary waves for the simplified ( 2 . 7 )  and original 
( 2 . 5 )  models shows that they are in good qualitative agree- 
ment with the description of the instability of waves prop- 
agating along the main flow. When the original wave prop- 
agates at some angle a to the flow, the instability region 
and the peak value of the growth rate decrease. There is no 
instability for the waves propagating transversely to the 
flow. 

5. CONCLUSION 

The analysis presented in this paper revealed the im- 
portant role of resonant interactions of plane periodical 
waves propagating at certain angles to each other in the 
problem of self-focusing instability of nonlinear perturba- 
tions of a shear flow. The structure of a growing linear 
mode superposed on the original plane wave gives us 
grounds to expect the formation of 2D nonlinear waves 

FIG. 7. The profile of the soliton u, (a) and the structure of the 
mode w at the left (b) and right (d) edges of the instability region 
and near the region of maximum growth rate (c) for the model 
(2.7) at a=O. 
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that are phase- and amplitude-modulated along the front 
as a result of developing self-focusing. The study of the 
growth rate of transverse perturbations shows that the per- 
turbations having a period twice that of the original wave 
are the most unstable ones. In this case the transition from 
plane waves to a modulated structure is probably not ac- 
companied by the formation of perturbations with different 
periods. The description of the nonlinear stage of develop- 
ing self-focusing instability of periodic waves and solitons 
needs further investigation. 

The transverse instability of plane waves occurs in a 
medium with weak negative dispersion due to the destabi- 
lizing influence of a shear fluid flow. It should be recalled 
that plane waves are stable against small transverse pertur- 
bations in isotropic media with negative dispersion.697 The 
presence of an external flow introduces anisotropic prop- 
erties in the medium, and the spectrum of small perturba- 
tions becomes decaying with respect to three-wave pro- 
cesses. This circumstance may be a cause of transverse 
instability of essentially nonlinear waves. 

Note that similar wave processes are also observed in 
other anisotropic media. For instance, analysis of the ion- 
acoustic wave instability in a magnetized has 
many features in common with the results found in our 
paper. 

This work was carried out with the financial support of 
the International Science Foundation (individual support 
program), the Russian Fund of Fundamental Research 
(grant No. 93-05-8073) and a grant from the Russian State 
Committee on Science and Higher Education for 1993- 
1994 in the field of fundamental natural sciences. The au- 
thors are grateful to all these institutions and to G. Soros 
personally. 

'V. I. Karpman, Nonlinear Waves in Dispersive Media, Pergamon, Ox- 
ford (1975), ch. 5. 

2 ~ .  B. Kadomtsev, Collective Phenomena in Plasma, Nauka, Moscow, 
1988, ch. 3 (in Russian). 

3M. I. Rabinovich and D. I. Trubetskov, Oscillations and Waves in Lin- 
ear and Nonlinear Systems, Kluwer Academic, Dordrecht, 1989, ch. 20. 

4 ~ .  C. Yuen and B. M. Lake, Nonlinear Dynamics of Deep- Water Gravity 
Waves, Academic, 1982, chs. 4 and 5. 
E. Infeld and G. Rowlands, Nonlinear Waves, Solitons and Chaos, Cam- 
bridge University Press (1990), chs. 4 and 5. 

6 ~ .  B. Kadomtsev and V. I. Petviashvili, Dokl. Akad. Nauk SSSR 192, 
753 (1970) [Sov. Phys. Dokl. 15, 539 (1970)l. 

'M. J. Ablowitz and H. Segur, Stud. Appl. Math. 62, 249 (1980). 
'E. Infeld, J. Plasma Phys. 33, 171 (1985). 
'E. Infeld and P. Frycz, J. Plasma Phys. 37, 97 (1987). 

"P. Frycz and E. Infeld, J. Plasma Phys. 41, 441 (1989). 
"P. Frycz and E. Infeld, Phys. Rev. Lett. 63, 384 (1989). 
1 2 ~ .  W. Laedke, K. H. Spatschek and K. Zocha, Phys. Fluids 29, 1127 

(1986). 
"v. I. Shrira, Dokl. Akad. Nauk SSSR 308, 732 (1989). 
1 4 ~ .  A. Abramyan, Yu. A. Stepanyants and V. I. Shrira, Dokl. Akad. 

Nauk 327, 460 (1992) [Sov. Phys. Dokl. 37, 575 (1992)l. 
"v. V. Voronovich, D. E. Pelinovsky, Yu. A. Stepanyants and V. I. 

Shrira, Preprint N 343 of IAP RAS, Nizhny Novgorod, 1994 (in Rus- 
sian). 

I6yu. S. Kachanov, 0. S. Ryzhov and F. T. Smith, J. Fluid Mech. 251, 
273 (1993). 

"v. E. Zakharov and E. A. Kuznetsov, Zh. Eksp. Teor. Fiz. 66, 594 
(1974) [Sov. Phys. JETP 39, 285 (1974)l. 

I'J. Satsuma and Y. Ishimori, J. Phys. Soc. Japan 46, 681 (1979). 
191. S. Gradshtein and I. M. Ryzhik, Tables of Integrals. Sums, Series and 

Products, Academic, New York (1980). 
2 0 ~ .  M. Morse and H. Feshbach, Methods of Theoretical Physics, 

McGraw-Hill, New York (1953), Part 1, ch. 5. 
21P. G. Saffman and H. C. Yuen, Phys. Rev. Lett. 44, 1097 (1980). 
2 2 ~ .  W. McLean, J. Fluid Mech. 114, 315 (1982). 
2 3 ~ .  Serizawa, T. Watanabe, M. B. Chaudhry and K. Nishikawa, J. Phys. 

Soc. Japan 52, 28 (1983). 
2 4 ~ .  N. D'yachenko and E. A. Kuznetsov, JETP Lett. 59, 103 (1994). 

This article was translated in Russia by the authors. It is reproduced 
here with stylistic changes by the Translation Editor. 

891 JETP 78 (6), June 1994 D. E. Pelinovsky and Yu. A. Stepanyants 891 


