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We use a scaling transformation of canonical variables which conserves the geometric 
relations on the phase trajectory of a Hamiltonian N-body system with a homogeneous 
potential function to obtain the phase equilibrium curves (especially the melting 
curve) and the dependence of the self-diffusion coefficient on the melting temperature. We 
show that there are no critical points on the phase equilibrium curve for systems 
with a homogeneous potential function. 

It is well known that the melting curve of normal sub- 
stances can be very accurately described by the empirical 
Simon equation:lV3 

A number of papers"7 have been devoted to the theoretical 
justification of this equation. The present paper proposes 
what would seem to be the simplest, previously unknown, 
approach to this (and not only this) problem. A hint of the 
possibility of the proposed method can be found in Ref. 8. 

We consider a system of N particles interacting 
through a potential function U(rl, ...,rN) = U(qi), where i 
runs from 1 to 3N. The classical dynamics will then be 
governed by the following Hamiltonian equations with 
H= K(pi) + U(qi), where K(pi) = zpT/2rni : 

We assume that U(qi) is a homogeneous function of degree 
s: U(aqi) =asU(qi). We note that K(pi) is a homogeneous 
function of degree two: K(api) = a 2 ~ ( p i ) .  

We assume that there exists a solution of (2): 
qi=qi(t), pi=pi(t) such that the phase trajectory corre- 
sponds to a macrostate which is an equilibrium multiphase 
system. We can then associate this macrostate with ther- 
modynamic variables Po, Vo, To. Since we use a microca- 
nonical ensemble the pressure and temperature will fluctu- 
ate but in the limit as N, V-+ oo the procedure we have 
described will not be open to doubt. We note that we can 
easily introduce a wall potential by simply adding interac- 

tion terms to U of the same degree s, but we shall not 
clutter up the equations since the final result is independent 
of these terms. 

We carry out the following scale transformation of the 
canonical variables (if we take the wall potential explicitly 
into account we must add to (3) a transformation of the 
wall coordinates) : 

qj=aqi, pl=bpi, tl=ct, (3) 

where a, b, and c are constants and we require that 

q; =qi (t') =aqi(ct), p] =pi (t') =bpi(ct) 

is also a solution of (2). For this it is necessary that the 
transformation (3) preserve the form of Eqs. (2). Using 
the homogeneity of the functions K and U one can easily 
find the required conditions: 

where a is an arbitrary positive constant. 
We draw attention to the major feature of the trans- 

formation (3)-it conserves geometric relations on a phase 
trajectory, thereby preserving the scaling of the individual 
trajectories of each of the N particles and, hence, it con- 
serves the multiphase nature of the whole system. Finally 
we can conclude that the scaling transformation (3) trans- 
forms one state on a phase equilibrium curve to another 
state on the same curve. 

The simplest example of a phase equilibrium curve is 
the two-phase melting curve. We use the well known for- 
mulas for the temperature and pressure to obtain it: 
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The Boltzmann constant k is here taken to be unity and 
(...) indicates time averaging. The exponent in (4) was 
known before9 but other methods were used to obtain it. A 
noteworthy feature of the proposed method is that any 
physical quantity F= ((qi,pi,t)) can be represented along 
the melting curve similarly to (4). For instance, the self- 
diffusion coefficient is connected with the velocity self- 
correlation function by the formula 

Applying (3) we see that D depends as follows on the 
melting temperature: 

It is interesting to note that for hypothetical Coulomb (or 
gravitational) systems with [s= - 1 (s > - 2)] the self- 
diffusion coefficient decreases with increasing melting tem- 
perature, but for systems with a steeper repulsive potential 
with ( s <  -2), on the other hand, it increases. Could it 
possibly follow from this observation that the crystalliza- 
tion and melting of Coulomb systems will be strongly in- 
hibited at high temperatures and that then long-lived meta- 
stable states would be probable? 

A direct consequence of the scaling transformation (3) 
and Eqs. (4) is that there is no critical point on the phase 
equilibrium curve for systems with a homogeneous poten- 
tial function. 

The condition for the homogeneity of the potential U is 
rather rigid and excludes many physical potentials of phys- 
ical interest. However, potentials of the form 

which have a homogeneous repulsive part when the attrac- 
tive part of the potential plays the role of a perturbation 
superposed on the dominating repulsive part. It is interest- 
ing that the result (4) is correct both for spheres with 
identical sizes (n = + co ) and for different spheres when 
the phase equilibrium curves cannot intersect one another. 
This result is also correct for "soft" spheres with a finite n. 

One should emphasize that Eqs. (4) and (5) describe 
whole families of curves in the ( V,T), (P,T), and ( D,T) 
planes depending on the choice of the parameters Po, Vo, 
To, and Do. Only the choice of Po, Vo, To, and Do corre- 
sponding to some state of equilibrium between the phases 
determines a curve along which phase equilibrium is con- 
served. In other words, physically only phase equilibrium 
curves are selected from these families of curves. 

It is probable that the largest amount of experimental 
data on melting in the high pressure and temperature re- 
gion is available for the inert gases. Moreover, the inter- 
atomic potential of the inert gases is the simplest and is 
known better than the interatomic potential of other sub- 
stances. This is the reason why we chose the inert gases as 
the object for applying our theory. In Fig. 1 we give the 
experimental data for the dependence of the pressure on 
the melting temperature in reduced units. For each gas the 
unit of temperature (energy) was set equal to the depth Vo 
of the potential well and the unit of length to the equilib- 
rium distance rm of the interatomic potential. We used here 
the following parameters: 

satisfy the homogeneity condition so that the method is 
applicable for dense systems with interparticle potentials The straight line in Fig. 1 is drawn through the two points 

FIG. 1. Dependence of the pressure on the 
melting temperature of inert gases:'0 O - 4 ~ e ,  
L N e ,  X-Ar, A-Kr, &Xe. 
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FIG. 2. Dependence of the specific volume in 
the liquid phase on the melting temperature of 
inert gases.'0 Notation as in Fig. 1 .  

with the highest temperatures and corresponds to a repul- 
sive potential with n,=6.89. In Fig. 2 we give the experi- 
mental data for the dependence of the specific volume of 
the liquid phase on the melting temperature in the same 
units. The straight line in Fig. 2 is drawn through the two 
points with the highest temperatures and corresponds to a 
repulsive potential with n V =  11.41, i.e., n v> np . Qualita- 
tively this result can be explained as follows. The specific 
volume is proportional to the cube of the average inter- 
atomic distance f which does not change significantly along 
the melting curve. One may thus say that the magnitude of 
the specific volume is sensitive to a change of the potential 
over a small range of distances over which the potential is 
approximately homogeneous with index n v .  One readily 
notes that n V=  1 1.41 is close to n = 12-the homogeneity 

index of the repulsive part of the popular interatomic 
Lennard-Jones potential, u = 4 ~ [ ( u / r )  l2  - (u/r16]. On the 
other hand, the pressure depends on the behavior of the 
potential over much larger ranges of distances over which 
the potential cannot even approximately be assumed to be 
homogeneous. To illustrate this statement we consider the 
equation connecting the pressure in a system with a real 
potential and the pressure in a system with a homogeneous 
potential ua=4( l / r ) a  with unknown a ( E =  1 ,  a= 1 ): 

Here g ( r )  is the radial distribution function, which we put 

FIG. 3. Dependence of the effective homogeneity index a on the 
sphere diameter, x=o/u, for ( I )  the W and (2) the E P  po- 
tentials. 
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equal approximately to the first (zeroth) order distribution 
function of a hard sphere system. In the zeroth approxi- 
mation we have 

In the first-order approximation we have 

Here p is the density of a system of hard spheres. One finds 
that the solution of Eq. (6) depends weakly on the form of 
g ( r > a ) .  We show in Fig. 3 the results of a numerical 
solution of (6) for two interatomic potentials: the 
Lennard-Jones (L-J) and, more realistically, the Barker- 
Pomp (B-P) potentials.11 It is very clear that with increas- 
ing density the effective homogeneity index a for the B-P 
potential becomes approximately constant and satisfies 
a z 8 ,  which is much closer to the experimental np=6.89 
than a= 12 for the G J  potential. One can expect that 
making the behavior of the interatomic potential at short 
distances more precise would improve the agreement with 
experiment even more. Equations (4) thus give a basis for 
the empirical Simon equation with C= 1 - 3/s both for the 
case of a homogeneous potential and for a realistic poten- 
tial with an inhomogeneous repulsive part and an effective 
homogeneity index a, given by (6), with C= 1 + 3/a. 

Landau and Lifshitz (see Ref. 12, 53 1, Probl. 1) con- 
sidered a scaling transformation of the partition function. 
However, in the opinion of the author, the approach using 
a partition function leads to the loss of information about 
the individual motion of each particle in the system and 
therefore it becomes impossible to use a geometric repre- 
sentation of the motion, which is proposed in the present 
paper. 

The author expresses his gratitude to I. T. Yakubov 
and A. G. Khrapak for a useful discussion and remarks 
about this work. 
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