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The inverse scattering method is used to solve the spectral problem for the bound states of 
solitons and the asymptotic behavior of ultrashort optical pulses in a dense resonant 
medium is found. The time dependence of the roots of the scattering amplitude corresponding 
to soliton-breather bound states or O a  pulses is analyzed in the complex plane as a 
function of the time between the excited optical pulses and in terms of their "areas." 

1. INTRODUCTION 

As is well known, when high-power ultrashort optical 
pulses propagate in a dense resonant medium the phenom- 
enon of self-induced transparency found by McCall and 
~ a h n '  can arise, in which solitary waves (solitons) de- 
velop. Although many theoretical results in this area were 
originally obtained using relatively simple methods, the 
greatest progress has resulted from the use of the inverse 
scattering m e t h ~ d . ~ - ~  

Essentially the method consists of finding a pair of 
operators comprising the so-called Lax representation. 
This formalism was applied by Ablowitz et al. and ~ a . n b ~  
to the Maxwell-Bloch equations describing propagation of 
ultrashort optical pulses with lengths less than the time for 
irreversible relaxation of the polarization in a resonant me- 
dium. The Lax operator is associated with a scattering 
problem in which the amplitude of the optical pulse intro- 
duced into the resonant medium, which varies slowly as a 
function of time, plays the role of the "potential," while the 
spatial coordinate is treated as a parameter. The spectral 
problem-the determination of the eigenvalue spectrum of 
the Lax operator-is one part of the inverse scattering 
method. 

The eigenvalue spectrum of the Lax operator contains 
both discrete and continuum modes; since the form of the 
operator is in general non-Hermitian, the discrete eigenval- 
ues correspond to complex numbers. These bound states 
determine the soliton part of the scattering problem, where 
each 2a pulse (soliton) is associated with a distinct eigen- 
value lying on the imaginary axis of the complex plane. 
The continuum part of the spectrum corresponds to real 
values.' 

In addition to the soliton or steady nonlinear solutions 
of the Maxwell-Bloch equations, an important role in the 
dynamics of ultrashort pulses is also played by solutions in 
the form of soliton waves, which have soliton properties 
but are not steady  solution^.^ These are the so-called 

"bound states" of solitons or breathers. In addition to 
breathers there are also "soliton-antisoliton" waves with 
envelope pulses having * 2 a  areas and with various ampli- 
tudes. These soliton-antisoliton pairs and breathers both 
have total area 8=0  and therefore belong to the class of O r  
pulses. 

To date questions involving the formation of solitons 
and 0 a  pulses when an individual ultrashort light pulse 
propagates and also when a resonant medium is excited by 
pairs of optical pulses with identical areas and phases 
shifted by a have been extensively st~died.'~ In particular, 
it has been shown that a breather consists of a bound state 
of two solitons having the same group velocity but different 
phase velocities and is describable by the two-soliton solu- 
tion of the Maxwell-Bloch equations. In terms of the spec- 
tral problem these states correspond to eigenvalues of the 
Lax operator lying in the complex plane. 

Similar problems arise when several ultrashort light 
pulses pass through the resonant medium, e.g., in nonlin- 
ear optical phenomena involving three- or four-wave inter- 
actions and photon echo effects (see, e.g., Ref. 9). 

The spectral problem associated with the propagation 
of two ultrashort optical pulses and the formation of pho- 
ton echo signals was first treated by Zakharov and 
~ a n ~ k i n . "  In particular, it was noted that for areas el = e2 
of the excited pulses and a particular value of the time 
interval between the pulses a new branch of the soliton 
solutions developed. lo Subsequently this anomalous behav- 
ior of the asymptotic form of the solutions for large sepa- 
ration in a resonant medium was confirmed by the results 
of numerical studies of the Maxwell-Bloch 

Hence it is of interest to generalize the results found in 
Ref. 10 (see also Refs. 14-16) and to include bound soliton 
states (i.e., breathers) in the treatment. Another motiva- 
tion for studying them is that a number of articles have 
appeared to date in which self-induced transparency and 
photon echo effects were investigated in dense resonant 
medium. Specifically, these include optical fibers with res- 
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where 

sin(R1/2) G r  sin ( R2/2 

FIG. 1. Shape of the exciting optical pulses applied to the resonant me- 
dium. 

cos(Rl/2) G r  sin(R2/2) 

onant ~ r ~ +  ion and optically dense LaF3 :pr3+ 
+ .I- ) .  ( 3 )  

~ r ~ s t a l s . ~ ~ ' ~ ~  The equation 

2. BASIC EQUATIONS 

As noted above, the inverse scattering method enables 
one to find the asymptotic behavior of the solutions for an 
ultrashort optical pulse propagating in a resonant medium 
analytically.3 Here the search for the soliton part of the 
solution in the problem where square-wave pulses in time 
are incident reduces to finding the zeroes of a complex 
transcendental equation for the scattering coefficient a on 
the imaginary axis of the complex argyment ( (the eigen- 
values of the Lax evolution operator L).1° 

It is of interest to find the total number of zeros, in- 
cluding the complex values, and the corresponding soliton 
solutions, and also to study the way these roots change as 
the time T between the two exciting pulses incident on the 
medium increases (Fig. 1 ) . 

Consider the case when there is no phase difference 
between the exciting optical pulses, so that the amplitudes 
El and E2 can be regarded as real quantities. As is well 
known,' when this condition holds the roots of the equa- 
tion 

are either on the imaginary axis or are in pairs symmetric 
with respect to the imaginary axis, so that their imaginary 
parts are the same and their real parts differ in sign. 

In this case the expression for the scattering coefficient 
is given in Ref. 10. Employing the notation 

we can write this expression in the form 

FIG. 2. Contour to be traced in the complex region. 

has roots whose number and location in the complex z 
plane depend on the four parameters R1, R2, TO, and r. 
Here we consider the important (and interesting from an 
experimental standpoint) case for which El = E2 holds, so 
that r=  1. 

In what follows we will show that the number of zeros 
of Eq. (4) can increase without bound as the parameter TO 

increases. 

3. EIGENVALUES OF THE LAX OPERATOR 

In order to find the number of zeros of Eq. (4) it is 
convenient to use the principle of the argument given by 
Lavrent'ev and  hab bat,^^ according to which the argument 
of an entire transcendental function changes by an amount 
equal to the product of the number of zeros n by 2 r  when 
a closed contour is traversed. In the present instance the 
entire transcendental function is a(z), and in what follows 
we will analyze the increment AArg A (z). We choose the 
contour in the form of a segment of the real axis and a 
semicircle located in the upper half-plane whose points are 
given by z= R exp(iq) (Fig. 2). 

If the radius of the semicircle satisfies R &  1, then the 
function A(z) at these points is given by an exponential 

so that 

tg ArgA(z)=-tg[(R1+R2)R cosq/2]. 

We choose R so that (R,  +R2)R/2= 2rN, where N is 
a whole number much greater than unity. Then we find 
that the argument (Arg) of the function A(z) changes 
from -2rN to +2vN as we move over the semicircle. 
Hence it follows that to determine the number of zeros we 
must find A Arg A(z) only for movement along the real 
axis. Moreover, in this case when E, and E2 are real, it 
suffices to trace the increase of the argument only on a 
positive segment of the real axis. 

If A Arg A ( x )  becomes equal to nN1 as we move from 
zero to x=R, then the number of zeros n of Eq. (4) is 
found to be 
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FIG. 3. Disposition of the zeros of the imaginary (points) and real 
(crosses) parts of the function A ( x )  when the inequality r < Q, +a, < 2~ 
holds; the limits of the interval correspond to N=4;  the separation in time 
under the applied pulses is equal to zero. 

Now let us consider the case of incident pulses whose 
separation in time vanishes, rO=O. It is evident that the 
two successive pulses are identical to a single pulse with a 
total area beneath the curve equal to R1 +a2. At points x 
of the real axis the argument of the scattering coefficient 
A(x) is such that we have 

As x increases the right-hand side of this expression goes 
over to -tg(Rl+R2)x/2. This suggests that from the rel- 
ative position of the zeros of the numerator and denomi- 
nator, which constitute the imaginary and real parts of the 
function A (x), we can easily find A Arg A (x) associated 
with motion along the specified segment of the real axis. In 
fact, each zero of the functions Im A (x) and Re A (x) cor- 
responds to a complex vector directed parallel to either the 
real or the imaginary axis of the z plane and representing 
the complex number A(x). The total angle through which 
this sector turns in the clockwise direction as x goes from 
zero to R will be equal to the change in the argument of 
A(x), i.e., ITN,. 

We now list the specific results for the different areas of 
the excited optical pulses. 

Case 1: (R1 +R2)/2 < 5-/2. 
In this case the numerator of (6), like the undeformed 

sin(R,+R2)x/2, has 2N+ 1 zeros in the interval (0,R). In 
each interval bounded by two successive roots of the nu- 
merator there is one root of the denominator. In each such 
interval the complex vector A(x) turns through an angle IT 

in the clockwise direction. This implies N, = 2N, and hence 
n from Eq. (5) vanishes, so that the scattering coefficient 
a(z) has no zeros anywhere in the complex plane. 

Case 2: 7~/2 < ( a 1  + R2)/2 < T. 
The number of intervals of the x axis bounded by 

neighboring zeros of the numerator of (6) remains un- 
changed. But now the first zero of the denominator of (6) 
is located in the second interval (Fig. 3). The change in the 
argument of the function A(x) in the first interval, denoted 
in Fig. 3 by the interval I, now is equal to zero. Accord- 
ingly, N1 (the number of intervals in which a phase equal 
to IT "accumulates") decreases by unity. This implies that 
there is one root in the complex plane. 

Case 3: IT < ( a ,  +R2)/2 < 31~/2. 
The number of zeros of both the imaginary and the 

real parts of the function A(x) is smaller by one than in 
case 1, as can be seen from expression (6). In each interval 
bounded by adjacent zeros 1, 2 of the imaginary part, etc. 
(Fig. 3), there is one root of the imaginary part. 

The complex vector A(x) contains 2N-1 half- 
rotations as x varies from 0 to R. Altogether A(z) has one 
root in the z plane. 

Case 4: 3/2a < (R, + R2)/2 < 27r. 
The number of intervals distinguished by roots of the 

numerator of expression (6) remains the same as in the 
previous example, but the first root of the denominator 
disappears from the first interval. The increase in the ar- 
gument of A(x), which is equal to IT, is "accumulated" 
over a number of intervals which is smaller by two than in 
case 1 when x varies from zero to IT, so that A(z) has two 
roots. 

Case 5:  IT < (R1 +R2)/2 < 51~2. 
Under these conditions another root of the imaginary 

part disappears. The number of intervals has decreased by 
two relative to case 1. In each of the other intervals there 
is one root of the real part. As in the previous case the 
number of roots is equal to two. 

Now we can easily sum up the results obtained. When 
the condition 

holds the scattering coefficient a(z) corresponding to two 
pulses with identical amplitudes and zero separation in 
time and having a total area Rl  +R2 in the pulses has n 
roots in the complex plane ( n =  1, 2, ...). These results also 
holds for a single pulse with area equal to R1 +a2. 

We note now that for z=iy Eq. (4) becomes real. It is 
easy to tabulate the number of roots of this equation for 
rO=O. For this it suffices to find the number of intersec- 
tions of the two functions f (y) and f 2(y) : 

~ I ( Y ) = Y / & ~ ,  f2 (y )=-c tg (~ l+n , )  JW 
on the interval (0, 1 ). Outside this interval the equation 
f = f 2  obviously has no solutions. The results can be ex- 
pressed by analogy with Eq. (7): if the total area of the 
pulses satisfies Eq. (7), then Eq. (4) allows n roots on the 
imaginary axis. 

From this a simple and useful conclusion follows: if 
two pulses are separated by a vanishing or small time in- 
terval, then all roots of the scattering coefficient lie on the 
imaginary axis, and the complex roots can appear only 
when this time interval increases. 

Let us now consider some specific examples of applied 
pulses separated in time. We choose R1 + R2 so as to satisfy 
the conditions 

This example is of interest because the function A(z) 
corresponding to each pulse has a single root, but the scat- 
tering coefficient of the total applied pulse also has one 
root. 

The disposition of the roots of the imaginary and real 
parts of the scattering coefficient for Rl  +Rz and ro=2 is 
shown in Fig. 4. 

It follows from the material given above that the num- 
ber of roots of the imaginary and real parts for r o = O  is 
smaller by one than the number of zeros of the imaginary 
and real parts of the undeformed function 
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exp[- ( a l  +a2)x/2]. But for r0=2 the imaginary part has 
a double root, indicated in Fig. 4 by an arrow. Neverthe- 
less, the number of roots of the complex scattering coeffi- 
cient remains equal to unity. In fact, the first root of the 
real part is located beyond the second root of the imagi- 
nary part, so that in the first interval of the x axis, distin- 
guished in Fig. 4 by the label 1, we have A Arg A (x) =O. 

We emphasize again that this becomes obvious if for 
each zero xk of either the real or the imaginary part we 
draw a vector corresponding to A(xk). Then, true, we need 
the signs of the corresponding parts of the function A(xk). 
In the course of an actual computational procedure it suf- 
fices to know the signs in the first intervals. In Fig. 4 the 
signs of the imaginary and real parts are indicated by the 
symbol " - ." as x varies along the computational axis the 
angle through which this vector rotates is the change in the 
argument of the function A(x). 

Thus we can perform a check which is readily imple- 
mented in the form of an algorithm. If the first interval 
bounded by two adjacent zeros is the imaginary part of 
A (x) has an even number of zeros of the real part, then the 
change A Arg A (x) in this interval vanishes. If the number 
of roots is odd, then A Arg A(x) is equal to * T. The plus 
sign results if Im A (x)Re A (xl) < 0 holds. Here xl repre- 
sents the start of the first interval, and an arbitrary number 
x located beyond xl ,  but before the first root x2 of the real 
part, is inside this interval. We can take x =  (x1+x2)/2. 
The change in the argument will be -T if the opposite 
inequality holds. 

When TO varies in the interval (2.0-2.1), the roots in- 
dicated in Fig. 4 by the arrows change places. In the first 
range of roots of the imaginary part, indicated in Fig. 4 by 
the label I, there is now a single root of the real part, while 
the second interval is found to be empty. In accordance 
with the above discussion the function A(x) in the first 
interval acquires the phase T; in all the others except the 

FIG. 4. Disposition of the zeros of the imaginary (points) and real 
(crosses) parts of the function A(x) for a, =&=4 and r0=2.0 on 
the segment of the real axis corresponding to N = 4 ;  the zeros, 
marked with arrows, change their relative position as T~ increases, so 
that for r0=2.1 the scattering amplitude A(x) has a root on the real 
x axis [the signs of both parts of A(x) are explicitly shown on the 
first intervals]. 

second, where A Arg A(x) =O holds, the phase change is 
equal to - T. From this we conclude that for r0 > rh1) = 2.1 
the scattering coefficient A(z) now has three roots. New 
roots appear near the real axis. In this example the value xo 
at which the real and imaginary parts of A(x) vanish si- 
multaneously is given by xo=0.495 & 0.001. As r0 increases 
these roots should move out into the complex planes and 
either go to zero or move to the imaginary axis. It is inter- 
esting to note that as 7, increases without bound the num- 
ber of branches occurring near the real axis for xo=0.495 
becomes arbitrarily large. In fact, r0 enters in A(x) 
through the power in the exponent. Hence the zeros dis- 
play periodicity depending on 70. Thus, if rA2) satisfies the 
condition 

i.e., for rA2)= 14.7, a second branch of the complex roots 
comes out of the point at xo. 

The computational procedure implemented using this 
technique confirms the presence of five roots of the func- 
tions A(z), beginning with TO= 14.7, seven roots beginning 
at 27.4, etc. Each time the appearance of a new branch is 
associated with a change in the relative positions of the 
roots of the imaginary and real parts near the point 
x0=o.495. 

Knowing the approximate location of the roots in the 
complex plane we can easily trace their evolution as the 
parameter r0 increases. Figure 5 displays two branches of 
the roots, starting at ~ \ l ) = 2 . 1  and rA2)= 14.7. From Fig. 5 
we see that at TO= 16.0 a multiple root of second order 
arises on the imaginary axis. As r0 increases further this 
root divides into two roots moving apart along the imagi- 
nary axis. Their subsequent evolution together with the 
original root is traced in Fig. 6. 

According to Fig. 6 one of the newly arisen roots on 
the imaginary axis at TO= 16.0 approaches zero, while the 

FIG. 5. Two branches of the complex roots of the scattering amplitude FIG. 6. Evolution of the purely imaginary roots of the scattering coeffi- 
A(x): the numbers next to the arrows label the time interval TO. cient as a function of the time 70 between successive pulses. 
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other merges with the original root on the imaginary axis. 
The explanation for this is that in the limit 70- t~ the 
scattering coefficient should have roots corresponding to 
the product of the scattering coefficients for two indepen- 
dent but identical (a1 = R 2 = 4 )  imposed pulses. But both 
of these scattering coefficients have only one root by virtue 
of the inequality T < R l  < 3 ~ .  

For the same reason the second branch of the complex 
roots arising for r0 > 14.7 (Fig. 5)  does not go to the imag- 
inary axis, but approaches zero. This assertion holds for all 
the other roots as well. 

On the basis of the above discussion we arrive at a 
simple conclusion. If the conditions 

hold then one branch goes to the imaginary axis, where a 
multiple root arises for some value of rO. AS r0 increases 
further the degeneracy is lifted and one of the newly arisen 
roots approaches zero while the others go to their limiting 
values, corresponding to the roots of each imposed pulse 
taken separately. As r0 increases new branches of the com- 
plex roots arise periodically; these, however, do not go to 
the imaginary axis, but approach zero in the limit of large 
70. 

If n = nl + n2 holds, then all the branches of the roots 
that occur in the complex plane approach zero as r0 in- 
creases; as r0 increases, n roots of the imaginary axis reach 
values corresponding to the individual applied pulses. 

If n > n,+n2 holds, then as r0 increases all 
n -  ( n l  + n 2 )  values of the roots of the imaginary axis ap- 
proach zero, just like all the complex branches of the roots 
that arise at the real axis. 

Note that n ,  +n2  differ from n only by unity. Thus, for 
R 1 = R 2 = 1 0  we have n l = n 2 = 2  and n = 3 .  In accordance 
with the above results for small TO, three solitons will be 
observed. Then for some value of 7, two conjugate roots 
arise, differing by the sign of the real part (they correspond 
to a breather). As r0 further increases, another breather 
develops and the first one turns into a soliton. Then this 
degenerate soliton decays into two, one of which disap- 
pears as r0 increases. 

New breathers arise periodically, are transformed into 
degenerate solitons, and disappear in the limit of large rO. 

4. CONCLUSION 

Thus, a method based on the argument principle in 
complex variable theory enables us to find the number of 
zeros of the scattering amplitude in the inverse problem 
associated with the Maxwell-Bloch system of equations. 
We have shown that if the area of an excited pulse satisfies 
the inequality ~ + 2 7 7 ( n -  1) < R  < 3 ~ + 2 ~ ( n -  I ) ,  then n 
solitons arise as an ultrashort pulse propagates in the res- 
onant medium. When the medium is excited by two closely 

spaced optical pulses separated by an interval r ,  assuming 
there is no phase difference between them, n solitons de- 
velop in the medium when the inequality 

holds. When the numbers n l  and n2 determined from these 
inequalities for the areas R l  and R 2  of the pulses add up to 
a total which exceeds n by unity, then for some value of r 
a multiple soliton develops which decays into two solitons 
as r increases further. One of these disappears in the limit 
of large r ,  while the other corresponds to the excitation of 
the medium by the individual applied pulses. If nl  +n2<n 
holds, then no further solitons arise. 

In every instance breathers develop periodically as r 
increases. If nl  + n2 = n + 1 holds, then the first branch of 
the complex roots corresponding to such breathers goes to 
the imaginary axis, which gives rise to an additional soliton 
pair. The other branches go to zero very slowly as r in- 
creases. 
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