
Electron photocapture into the bound state of a short-range potential in a strong laser 
field 

E. A. Voikova and A. M. Popov 

Nuclear Physics Research Institute, M. V: Lomonosov Moscow State University 
(Submitted 3 1 January 1994) 
Zh. Eksp. Teor. Fiz. 105, 1559-1565 (June 1994) 

We examine the scattering of an electron wave packet by a short-range potential in an 
electromagnetic field by numerically solving the one-dimensional time-dependent Schradinger 
equation. We study transitions from the continuum to discrete bound states under the 
influence of an electromagnetic wave over a wide range of parameters describing the radiation 
and the electron wave function. 

Direct numerical solution of the time-dependent 
Schrodinger equation for a quantum system in the field of 
an electromagnetic wave has recently become one of the 
commonest ways to investigate elementary processes in a 
laser radiation field. Here the emphasis has principally 
been on the photoionization of atoms or negative ions- 
that is, on processes that can be described as a transition 
from a discrete bound state to the continuum.'" This pro- 
cess can also be reversed so as to consider an electromag- 
netic field-induced transition from an initial continuum 
state (or group of states) to a final discrete bound state. 
Depending on the nature of the potential, such a process 
amounts either to stimulated photorecombination or stim- 
ulated photoattachment of an electron to a neutral atom. 

The formation of a bound state of a quantum- 
mechanical system stimulated by a strong electromagnetic 
field was addressed in Refs. 7 and 8 using perturbation 
theory in a study of the induced formation of mesoatoms 
and mesomolecules, and in resonant atomic scattering of 
electrons in an external electromagnetic field. 

Electron capture into a bound state of some potential 
in an external electromagnetic field was first studied via 
direct numerical solution of the time-dependent Schro- 
dinger equation by Grobe et who modeled the scatter- 
ing of an electron by a one-dimensional potential that sim- 
ulated the negative hydrogen ion H- (ionization potential 
~ 0 . 7 5  eV). They solved for the evolution of an electron 
wave packet in time and space, and determined the dynam- 
ical behavior of the probability of detecting an electron in 
a bound state. Grobe et a19 also pointed out the resem- 
blance between the scattering of an electron by a potential 
in an electromagnetic field and photodissociation: in both 
cases, the electron wave packet oscillates within the region 
affected by the potential, leading to transitions among the 
various states of the discrete and continuous spectrum. 

Electron scattering was also considered8 in a short- 
range potential subject to a strong laser field, and it was 
shown that under certain circumstances, in addition to 
transitions among continuum states (stimulated brems- 
strahlung ) , transitions to discrete states (electron photo- 
capture into a bound state) are also important. 

The present paper describes the numerical modeling of 
electron photocapture into a bound state when the electron 
is scattered by a short-range potential. We derive the de- 

pendence of the photocapture probability on the intensity 
and frequency of the electromagnetic radiation, and on the 
initial parameters of the electron wave packet. We compare 
our results with those of Grobe et ~ 1 . ~  

As in our previous we have restricted the 
treatment to a one-dimensional model of electron photo- 
capture into a bound state, with the electron wave packet 
being scattered by a potential in the presence of an external 
electromagnetic field. Atomic scattering of the electron is 
then described by the Schrodinger equation 

where V(x) is the atomic potential, E(t)=Eocos(wt) is 
the electric field due to the electromagnetic wave, and w is 
its frequency. 

As in Ref. 10, we chose the atomic potential V(x) to 
be a rectangular well of width d=2  A and depth Vo= -5 
eV; a well of this size will have a single bound state at 
E, = -2.55 eV. The field intensity of the electromagnetic 
wave was varied over the range P= 10"-10'~ w/cm2, and 
the photon energy was tiw = 2.5-5 eV. The initial state ( t  
=0) was assumed to be a Gaussian wave packet, 

" ( x ) = ~  exp tfi -pox J exp ( -2 a T a2- 1, 

where p, is the mean momentum, a is the packet's half- 
width, and xo is the particle's mean spatial coordinate. 
Equation (2) describes an electron moving toward positive 
x at a mean speed uo=p,,/m. Note that the assumed time 
dependence of the wave electric field strength does not lead 
to any additional directed velocity over and above vo. An 
electron in the state (2) does not have a precisely defined 
energy: for po)fi/a, the mean energy is ~ ~ = ~ 2 2 m .  

We have assumed in our calculuations that e0= 1-8 eV 
and a =  10-60 A. The duration of the scattering process 
~ , ~ 2 a / v ~  is such that w~,> 1 holds over the full range of 
both parameters, i.e., the electron interacts with the atomic 
potential over many periods of the wave field. 

We used the finite-element method to solve the Schro- 
dinger equation over a region of size L = 600-700 A with a 
cubic approximation for $ at each element, following the 
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approach described in Ref. 11. The computational region 
was subdivided nonuniformly in such a way that the great- 
est precision was achieved in calculating the wave function 
within a region =: 100 in extent centered on the atomic 
potential. We artificially attenuated the solution near the 
boundaries of the spatial grid so as to "eat away" at the 
wave function and avoid reflections. This made it possible, 
as required, to study the evolution of an electron trapped in 
a discrete bound state over times exceeding the electron 
transit time for the spatial grid, L/vo. In integrating the 
equation, the temporal step size ranged from 0.01 to 0.02 of 
the period of the laser field T = ~ P / w .  

Figure 1 shows the typical evolution in time and space 
of an electron wave packet scattered by an atom in the field 
of an electromagnetic wave. The wave packet separates 
into three parts-a transmitted part, a reflected part, and a 
part "stuck" in the well. The latter corresponds to the 
wave function of the bound state in the well. As we noted 

It' 

10-1 I 

FIG. 1 .  Space-time evolution of 141' in electron scattering by a 
potential in the field of an electromagnetic wave (fiw=2.5 eV, 
P =  10" w/cmZ). Parameters of the initial wave packet are .c0=2 
eV, 0 = 2 0  A. The arrow indicates the position of the potential well. 

above, this state has energy -2.55 eV, so photocapture in 
the present case (fiw=2.5 eV) is accompanied by the emis- 
sion of two field quanta. 

To analyze the numerically modeled solution of the 
one-dimensional time-dependent Schrodinger equation, we 
expanded the wave function $(x,t) in eigenfunctions of the 
atomic Hamiltonian. The probability of finding the elec- 
tron in the bound state of the well is then 

where pl(x) is the eigenfunction of the atomic Hamil- 
tonian corresponding to energy E . 

Typical calculated probabilities W(t) for an electron 
with energy E O = ~  eV to be captured into the bound state in 
a field with intensity P= 1013 w/cm2 are shown in Fig. 2 
for photon energies fiw = 2.5 eV and ih = 5 eV. In the case 

FIG. 2. Probability of electron detection in 
a bound state as a function of time during 
potential scattering. Photon energy is a) 
fw=2.5  eV or b) b = 5  eV. The half- 
width of the initial wave packet is 1 )  10 A, 
2 )  20 A, 3) 60 A. Electron energy is &=2 
eV, and radiative intensity is P =  10" 
w/cm2. 
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FIG. 3. Probability of photocapture into a bound state as a function of 
electron energy (P= l0I3 w/cm2). The continuous curve represents tiw 
=2,5 eV, the dashed curve fw=5  eV. The half-width of the initial wave FIG. 4. Probability of photocapture as a function of radiative intensity: 
packet is 20 A. I) fw= 2.5 eV, 2) tiw = 5  eV. Continuous curve, E = 2  eV; dashed curve, 

~ ~ 2 . 5  eV. The half-width of the initial wave packet is 20 A. 

considered, the maximum photocapture probability is 
W0~0.05-0.06, which is somewhat less than Grobe et a19 
computed in similar fashion for the probability of detecting 
an electron in a bound state. We believe that the discrep- 
ancy is not a fundamental one, but is merely related to the 
fact that a number of parameters, such as the size of the 
potential well, the frequency of the laser field, and the 
resonance energy of the scattered electron, have different 
values. 

After scattering has ceased, W decreases monotoni- 
cally and exponentially as a result of photoionization, the 
reverse process, as shown by Fig. 2: 

Here t,, is the time required for bound-state occupancy to 
reach its maximum value Wo, and rd is its characteristic 
decay time, which depends on the frequency and intensity 
of the radiative excitation. For the cases shown in Fig. 2, rd 
is approximately 90 fs for fio=2.5 eV and 27 fs for fio 
=5.0 eV. The estimates indicate that the time scales and 
their ratio are consistent with photodissociation of the 
bound state as a result of the one-photon (fio=5.0 eV) 
and two-photon (fio=2.5 eV) photoelectric effect. 

Grobe et aL9 derived a time dependence for the prob- 
ability of detecting an electron in the well after the cessa- 
tion of scattering that looks much like (4), and that cor- 
responds to rs<rd.  For rs>rd, the bound state decays 
more rapidly than it is repopulated, and in the limit 7,) rd, 
the dynamical behavior of the bound-state population de- 
pends on the probability of detecting a scattered electron 
within the effective range of the potential.9 Under the con- 
ditions considered here, the duration of scattering--over 
the full parameter range-was less than the photodissoci- 
ation time, and therefore the bound state decayed exponen- 
tially. Oscillations of the bound-state population while a 
wave packet traverses the potential well are also worth 
noting. Those oscillations are graphically obvious in Fig. 
2a, and are associated with transitions between discrete 

bound states and a group of continuum states lying an 
integral number of quanta fio higher in energy. Photocap- 
ture is then most likely at re~onance:~ 

where ~ , = e ~ ~ $ 4 r n o ~  is the oscillatory energy of an elec- 
tron in the field of the electromagnetic wave, which shifts 
the boundary of the continuum, n is an integer equal to 
nmi, or greater (n>nmin), and nmin is the minimum number 
of photons required to couple a continuum state to a dis- 
crete bound state. Under the present conditions, nmi,,=2 
for radiation with fio = 2.5 eV and nmin = 1 for fro= 5 eV. 
Figure 3 shows the photocapture probability as a function 
of the energy of the scattered electron (P= 1013 w/cm2) 
for fio = 2.5 eV and 5 eV. Here and below, the figures show 
the maximum probability of the bound state being occu- 
pied, which is attained by the end of the scattering process. 
The curves display clearcut maxima spaced by fio that 
correspond to the n-photon resonance (5). The peaks for 
fio = 2.5 eV and 5 eV fail to coincide here, a consequence of 
the ponderomotive energy that appears in (5). Note that 
peaks corresponding to the emission of more than nmi, 

FIG. 5. Probability of capture into a bound state as a function of the 
half-width of the initial wave packet (P= 1013 w/cm2): 1) h = 2 . 5  eV, 
~ = 2  eV; 2) h = 5  eV, ~ = 2 . 5  eV. 
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photons are suppressed, since the photon multiplicity pa- 
rameter N=EJ&, which determines the probability of the 

satisfies N < 1 in the present case. 
Figure 4 shows the calculated electron photocapture 

probability as a function of radiative intensity. One char- 
acteristic feature of these curves is the saturation of W 
when the intensity reaches f i  1013 w/cm2. This saturation 
is probably related to the rise in photoionization in the 
electromagnetic radiation field as the discrete bound state 
becomes populated. The rise in electron oscillatory energy, 
which leads to a gradual change in the resonance energy 
given by (5), must also be taken into account. It is pre- 
cisely this circumstance that has a bearing on the features 
of the W(P) curves obtained at fiw=2.5 eV and electron 
energies of 2.0 and 2.5 eV. In the intensity range 
P(5 X 1012 w/cm2, the oscillatory energy can be neglected, 
and the 2.5 eV electron energy satisfies the two-photon 
resonance condition essentially exactly. When the intensity 
satisfies P=: 1013 w/cm2, the oscillatory energy is approx- 
imately 0.25 eV, thereby reducing the two-photon reso- 
nance energy. 

It should be pointed out that photocapture in fields 
much stronger than those considered here, leading to sup- 
pression of electron photodissociation in a superstrong op- 
tical field, is a problem of interest in its own right.M912 
Such a system undergoes so-called dichotomization of the 
electron wave function, which can be treated in the 
Kramers-Henneberger approximation.13 In a superstrong 
field, it is therefore more correct to consider photocapture 
into Kramers-Henneberger states, which determine the 
stationary states of the atom+electromagnetic field sys- 
tem, an approach taken in Ref. 14. It must be borne in 
mind, however, that when the Kramers-Henneberger ap- 
proximation actually describes the stationary states of an 

atom in an electromagnetic field accurately, photocapture 
into those states should be completely suppressed. Electron 
scattering due to atoms in a superstrong field therefore 
requires further study. 

To conclude, we briefly discuss the way in which the 
electron photocapture probability depends on the extent of 
the original wave packet. This dependence is shown in Fig. 
5 for a Gaussian wave packet with half-width a=  10-60 A; 
the function decreases monotonically over the range 
a,d=2 A. This results from a decrease in the probability 
of detecting the scattered electron within the effective 
range of the atomic potential, and a consequent decrease in 
the transition probability from the continuum to a discrete 
bound state. In analyzing actual experiments, the simula- 
tion results must be averaged over the parameters of indi- 
vidual electron wave packets. 
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