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The S-matrix of diffractive scattering is diagonalized in terms of the color dipole-dipole cross 
section. Recently, we have shown that the dipole cross section satisfies the generalized 
Balitskii-Fadin-Kuraev-Lipatov (BFKL) equation. In this paper we discuss the spectrum and 
solutions of our generalized BFKL equation with allowance for the finite gluon correlation 
radius R,. The latter is introduced in a gauge-invariant manner. We present estimates 
of the intercept of the pomeron and find the asymptotic form of the dipole cross section. We 
consider the difference between the BFKL and Gribov-Lipatov-Dokshitzer-Altarelli-Parisi 
(GLDAP) evolutions and conclude that the GLDAP evolution remains a viable 
description of deep inelastic scattering well beyond the kinematical range of the HERA 
experiments. We suggest methods of measuring the pomeron intercept in the HERA 
experiments. 

1. INTRODUCTION 

The asymptotic behavior of high-energy scattering in 
perturbative QCD is usually discussed in terms of the 
Balitskii-Fadin-Kuraev-Lipatov (BFKL) pomeron. 
The BFKL equation is the integral equation for the differ- 
ential density of gluons, so that predicting observable 
quantities like total cross section is not sraightforward. 
Furthermore, the original BFKL equation is the scaling 
equation, and when discussing realistic QCD one encoun- 
ters the difficult task of introducing an infrared cutoff in 
the BFKL equation. The scaling BFKL equation has a 
continuous spectrum and corresponds to the vacuum sin- 
gularity described by a cut in the complex angular momen- 
tum plane. One of the pressing issues in the theory of the 
perturbative QCD pomeron is whether the infrared cutoff 
and the running QCD coupling can change the spectrum of 
the pomeron and produce isolated poles. 

In this paper we discuss the spectrum and solutions of 
the generalized BFKL equation directly for the total cross 
section, derived by us recently.4y5 Our equation allows us to 
introduce a finite correlation radius for the perturbative 
gluons in a gauge-invariant manner. The starting point of 
its derivation is the technique of multiparton lightcone 
wave functions, developed by two of the present 
The principal observation is that the transverse separations 
pi, = pi- pj  and the lightcone momentum partitions zi of 
partons in the many-body Fock state are conserved in the 
scattering process. Interaction of the (n + 2)-parton Fock 
state is described by the lightcone wave function 
*,+2( p11+2,~n+2,...,p1 ,zl) and the (n + 2)-parton cross sec- 
tion on 2(pn+2,...,p1), which are perturbatively t calculable (here n refers to the number of gluons in the 
Fock state). 

To lowest order in perturbative QCD one starts with 

the qq Fock states of mesons (qqq state for the baryons) 
and with the scattering of the (A) projectile and (B) target 
color dipoles of transverse size rA and rB  (here rA,rB are 
the two-dimensional vectors in the impact parameter 
plane) 

Here 

is the running strong coupling, Do= 1 1 - 2/3Nf = 9 for 
Nf = 3  active flavors, and in the integrand of the dipole- 
dipole cross section a; must be understood as 

where C z  1.5 (Ref. 6). The introduction of the infrared 
freezing of the running coupling and the correlation radius 
for gluons R,= l/pG is discussed below. In terms of the 
dipole-dipole cross section ( 1 ) the perturbative part of the 
total cross section for the interaction of mesons A and B 
equals 

806 JETP 78 (6), June 1994 1063-7761 /94/060806-15$10.00 @ 1994 American Institute of Physics 806 



The irrefutable advantage of the representation (3) is that 
it makes full use of the exact diagonalization of the scat- 
tering matrix in the dipole-size representation. [Hereafter 
we discuss uo(r,R) averaged over the relative orientation 
of dipoles, as it appears in Eq. (3).] Notice the beam- 
target symmetry of the dipole-dipole cross section, 

U O ( ~ A , ~ B )  = u o ( ~ B , ~ A ) ,  (4) 

and of the representation (3). 
The increase of the perturbative component of the total 

cross section comes from the increasing muliplicity of per- 
turbative gluons in hadrons, ngalogs, times bug-the 
change in the dipole cross section in the presence of gluons: 
AU'~') -n&ug. (Here s is the square of the c.m.s. energy.) 
The n-gluon Fock components of the meson give contribu- 
tions a log" s to the total cross section. The crucial obser- 
vation is that the effects of higher-order Fock states of the 
interacting hadrons can be reabsorbed into the energy de- 
pendent dipole-dipole cross section with retention of the 
representation ( 3 ) . This energy-dependent dipole cross 
section satisfies the generalized BFKL equation derived in 
Refs. 4 and 5, investigation of properties of which is the 
subject of the present paper. The presentation is organized 
as follows. 

In Sec. 2 we briefly review the derivation of our gen- 
eralized BFKL equation for the dipole cross and in Sec. 3 
discuss its BFKL scaling limit. In Sec. 3 we also comment 
on the introduction of the infrared cutoff into the scaling 
BFKL equation. The subject of Sec. 4 is the conventional 
QCD evolution as the limiting case of our generalized 
BFKL equation. The impact of the finite correlation length 
for gluons and of the running QCD coupling on the spec- 
trum of the generalized BFKL equation is discussed in 
detail in Sec. 5. Our principal conclusion is that the gen- 
eralized BFKL kernel has a continuous spectrum, so that 
the partial waves of the scattering amplitude have a cut in 
the complex angular momentum plane. We also comment 
on the conditions under which the pomeron can have a 
discrete spectrum. In Sec. 6 we find the form of the dipole 
cross section for the rightmost singularity in the j-plane 
and its intercept as a function of the gluon correlation 
radius R,. The subject of Sec. 7 is the transition from the 
Gribov-Lipatov-Dokshitzer-Altarelli-Paris (GLDAP) 
evolution to the BFKL evolution with increasing energy. 
The beam-target symmetry of the dipole-dipole cross sec- 
tion and the admissible form of the boundary conditions 
for the generalized BFKL equation are discussed in Sec. 8. 
In Sec. 9 we comment on the restoration of the factoriza- 
tion property of the asymptotic cross section. In Sec. 10 we 
suggest practical methods of measuring the intercept of the 
pomeron in the HERA experiments on deep inelastic scat- 
tering. In the Conclusions we summarize our basic results. 

2. GENERALIZED BFKL EQUATION FOR TOTAL CROSS 
SECTION 

Now we sketch the derivation of our generalized 
BFKL equation495 for total cross sections. Unless otherwise 
specified, we consider the contribution to the hadronic 
scattering from the exchange by the perturbative gluons 

and suppress the superscript (pt) . The perturbative qqg 
Fock state generated radiatively from the parent color- 
singlet qq state of size r has the interaction cross section4 

where p l , ~  are separations of the gluon from the quark and 
antiquark respectively, p2 = p1 - r. (Hereafter we suppress 
the target variable r, and for the sake of brevity use 
r=  r, . ) The cross section u3 (r,pl ,p2) has the gauge- 
invariance properties u3 ( r,O,r) = u3 ( r,r,O) =ao ( r )  and 
u3(0,p,p) =9/4u0(p) (Ref. 4). The former shows that 
when the gluon is sitting on top of the (anti)quark, the 
qg(qg) system is indistinguishable from the (anti)quark. 
The latter shows that the color-octet qg system of vanish- 
ing size is indistinguishable from the gluon, and 9/4 is the 
familiar ratio of the octet and triplet couplings. The in- 
crease of the cross section for the presence of gluons equals 

The lightcone density of soft, zg<l, gluons in the qqg 
state derived in Ref. 4 equals 

Here gs(r) is the running color charge, as(r) = & ( r ) / 4 ~  
is the running strong coupling, r i p )  = min{r,pl,2), K ,  (x)  
is the modified Bessel function, zg is a fraction of the (light- 
cone) momentum of the qq pair carried by the gluon, and 
~dz~zg=log(s /so)  =g is the parameter of the leading 
log( l/x) approximation and gives the usual logarithmic 
multiplicity of radiative gluons. The wave function (7) 
counts only the physical, transverse, gluons.4 

If ng(r) is the number of perturbative gluons in the 
dipole r, 

then the weight of the radiationless qq component will be 
renormalized by the factor 1-ng(z,r). As a result, the 
total cross section with allowance for the perturbative glu- 
ons in the beam dipole A takes the form 

where the kernel X is defined by4p5 
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Equation (9) shows that the effect of gluons can be reab- 
sorbed into the generalized, energy-dependent, dipole cross 
section u((,r). To higher orders in (, this generalized di- 
pole cross section can be expanded as 

where an+ = X 8 on ,  so that 

is our generalization of the BFKL equation for the dipole 
cross section. 

The color gauge invariance of the presented formalism 
is noteworthy. Firstly, the dipole-dipole cross section 
uo(rA,rB) vanishes at r A + O  or rB+O, because gluons de- 
couple from the color-singlet state of vanishing size. Sec- 
ondly, for the same reason the wave function (7) vanishes 
at r+O. Thirdly, Aug(r,pl ,p2) -0 when p1 -0 (or p2-O), 
since by color charge conservation the quark-gluon system 
with the gluon sitting on top of the (anti)quark is indis- 
tinguishable from the (anti)quark, and the interaction 
properties of such a qijg state are identical to that of the qij 
state. Therefore, our introduction of a finite correlation 
radius for gluons R,= l/pG, which takes care of the per- 
turbative gluons not propagating beyond the correlation 
radius R,, is perfectly consistent with the gauge invariance. 
For instance, Eq. ( 10) supports the gauge invariance con- 
straint un(r) -0 at r-0, to all orders n. (We do not have 
a complete proof of the gauge invariance, though. Neither 
can we prove that our prescription is unique.) 

The renormalization of the weight of the radiationless 
qij Fock state in Eq. (9) in a simple and intuitively appeal- 
ing form takes care of the virtual radiative corrections (in 
the BFKL forma~ism"~ these very radiative corrections are 
responsible for the reggeization of gluons). Notice, that 
although the multiplicity of radiative gluons n,(r), which 
appeared in the intermediate stage of the derivation of our 
Eq. ( lo) ,  is formally divergent, the generalized dipole 
cross section u({,r) and Eqs. (10) and (1 1) are both 
ultraviolet- and infrared-finite. 

3. THE BFKL SCALING LIMIT 

In the BFKL scaling limit of r,pl ,p24Rc and for fixed 
as 3 

the kernel X becomes independent of the gluon correla- 
tion radius R, and with fixed as it takes on the scale- 
invariant form. The corresponding eigenfunctions of Eq. 
(11) are 

with the eigenvalue (intercept) [here r=m, pl = rx and 
p2=r(x+n)1 

Here 'Y ( x )  is the digamma function, and we have indicated 
the regularization which preserves the symmetry of the 
kernel X .  The final result for A(w) coincides with eigen- 
values of the BFKL equation found in Refs. 1-3. The so- 
lution (13) corresponds to the singularity in the complex-j 
plane, located at j = 1 + A  (o) . The rightmost singularity is 
located at j =aIp = 1 + AIp , where 

12 log 2 
AIP=A(0) =y Qs. 

When o is real and varies from - 1/2 to 0 and to 1/2, 
the intercept A(w) is also real and varies from + co down 
to A (0) = AIP and back to + oo , along the cut from 
j = 1 + AIP to + oo in the complex angular momentum j 
plane. If w=iv holds and v varies from - co to 0 and to 
+ W ,  then the intercept A(iv) is again real and varies from 
- w up to A(0) =AIP and back to - co, along the cut 
from j= - co to j= 1 +AIP in the complex j-plane. The 
choice of the latter cut is appropriate for the Regge asymp- 
totics at (> 1 and the counterpart of the usual Mellin rep- 
resentation is 

= r  JI: dvf (v)exp[2iv log(r)]exp(A(iv)(). 

(16) 

The Mellin transform is obtained from Eq. (16) if one 
changes the integration variable from v to the angular mo- 
mentum j = 1 + A ( iv) . The spectral amplitude f ( v) is de- 
termined by the boundary condition u((=O,r): 

Eqs. (16) and (17) give a nontrivial connection between 
the r-dependence of the total cross section and its energy 
dependence. In the BFKL scaling regime, the rightmost 
j-plane singularity corresponds to the asymptotic dipole 
cross section uIp((,r) = uIp(r) exp((AIp), where 

808 JETP 78 (6). June 1994 Nikolaev et a/. 808 



A more direct correspondance between equations ( 10) 
and ( 1 1 ) in the scaling limit of pG+ 0 and the conventional 
BFKL equation can be established if one rewrites Eqs. 
( 10) and ( 1 1 ) as an equation for the function 

which in the BFKL scaling limit is simply the density of 
gluons g(x,k2) at the Bjorken variable x=xoexp( - f ) and 
with virtuality k2- I/?, where xo- 0.1 -0.01 corresponds 
to the onset of the leading log(l/x) approximation (the 
relation (19) holds also for the running strong coupling 
as=as(r); for the detailed derivation see Refs. 4,7). The 
transformation from the size-r representation to the 
momentum-p representation can easily be performed mak- 
ing use of the conformal symmetry of the BFKL equation.3 
Namely, by virtue of the conformal symmetry r can easily 
be traded for p and u( {,r) can be traded for g( f,p2), with 
the result 

The factor p2 in the integrand of (20) is crucial for sup- 
porting the gauge invariance constraint g(f,p2) -0 in the 
limit p2+0, which is the counterpart of the gauge invari- 
ance constraint u({,r)-+O in the limit r+O in the 
r-representation. If one introduces +(f,k2) =g(f,k2)/k2, 
then the original form of the BFKL equation will be re- 
covered from Eq. (20) [in the scaling limit $(f,k2) satisfies 
the same equation as the more often considered 
ag( c,k2)/aPi. 

Introduction of the infrared regularization into the 
BFKL scaling equation (20) is one of the pressing issues in 
the theory of the perturbative QCD pomeron. We are go- 
ing to use neither Eq. (20) nor any of its modifications to 
be discussed below; we resort to Eqs. ( 10) and ( 1 1 ), which 
allow effects of both the gluon correlation radius R, and 
the running strong coupling to be treated in a consistent 
and manifestly gauge-invariant manner. Nevertheless, in 
order to establish a connection with the existing literature, 
we comment on the infrared regularization of the BFKL 
Eq. (20) in the momentum representation. 

Our form (20) of the BFKL equation is more conve- 
nient for these purposes, as it allows the clearcut separation 
of propagators l/k2 and l / ( ~ - k ) ~  from the factor p2 in 
the nominator in Eq. (20). The latter, like the factor ? in 
Eq. (12), has its origin in cancellations of the radiation of 
soft gluons by the color singlet states. Therefore, the infra- 
red regularization of Eq. (20) which plausibly respects the 
gauge invariance, is the substitution 

which treats the both gluon propagators on the equal foot- 
ing. In the scaling limit of p2,m2, the function 
$({,p2) =g({,p2)/(p2 + m2) is similar to, and satisfies the 

same equation as, ag(f,p2)/ap2. The equation for $ ( s , ~ ~ ) ,  
which follows from (20) subject to the substitution (21), 
reads 

a@(6,p2) 3as p2 +(f,k2) 
ac = G ~ + ~  J d2k[(~--k)2+m2 

The asymmetric form in the second line of Eq. (22) is 
obtained from the symmetric form in the first line of Eq. 
(22) if one uses the identity2 

(An erroneous form of this identity is cited in Ref. 8). The 
asymmetric form of Eq. (22) at m2=0 is precisely the 
Balitskii-Lipatov form2 of the BFKL equation, which is 
the one customarily used in the recent literature. 

One often imposes on this asymmetric version of the 
BFKL equation the infrared cutoff k2>ki (Refs. 9-1 I),  
which is illegitimate. Indeed, such a cutoff does not ensure, 
and as matter of fact manifestly breaks, the condition of 
the identical infrared cutoff of different gluon propagators, 
as it breaks the initial symmetry property of the BFKL Eq. 
(20) (for a similar criticism of the ~ollins-~wiecinski~ 
(CK) sharp cutoff k2>G see also Collins and 
~andshoff"). Furthermore, such a cutoff is evidently sus- 
pect from the point of view of gauge invariance. One must 
rather use Eq. (22) which introduces the infrared regular- 
ization with retention of the symmetric cutoff of the gluon 
propagators and in the manifestly gauge invariant manner. 
Balitskii and ~ i ~ a t o v ~  did not encounter these problems, as 
they introduce the massive vector mesons in a consistent 
manner, using the spontaneous breaking of gauge symme- 
try. Introduction of massive gluons into the BFKL equa- 
tion was also discussed by Ross and Hancock." The Ross- 
Hancock prescription is different from ours in Eq. (22), 
manifestly breaks the symmetry of the cutoff of gluon 
propagators, and, in contrast to Eq. (22), does not support 
the p2 + 0 gauge invariance constraints. 

4. THE GLDAP LIMIT 

The limit of large but finite f and very small ? & R ~  is 
often referred to as the Double-Leading-Logarithmic Ap- 
proximation (DLLA). Here R is either the target size, 
R - r, or the correlation radius R, if R, < r,. This is the 
limit typical of deep inelastic scattering, and it is usually 
described by the GLDAP evolution equations.12 Introduc- 
tion of the gluon correlation radius R, and of the running 
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QCD coupling poses no problems in the DLLA. In the 
DLLA we have {= log (xdx),  where x is the Bjorken vari- 
able, and xo <, 0.1-0.01 is the threshold for the leading- 
log( l/x) approximation. The BFKL equation contains the 
GLDAP equation as the limiting case. In the DLLA the 
kernel X takes a particularly simple form4 

which is equivalent to the GLDAP evolution equation. 
The dominant contribution comes from the DLLA order- 
ing of sizes 2-4 p 2 g ~ 2 ,  which justifies factoring out as(') 
in Eq. (24). In the same DLLA the boundary condition, 
the dipole-dipole cross section (3), equals 

where L(R,r) is the parameter of the leading-log(?) ap- 
proximation (the leading-log(@) approximation in the 
more conventional momentum representation), 

Iterations of Eq. (24) subject to the boundary condition 
(25) give the DLLA solution4 

The corresponding generalized dipole cross section has the 
DLLA asymptotic form 

where q is the expansion parameter of DLLA, which is a 
product of the leading-log (s) and the leading-log (3) ex- 
pansion parameters: 

Notice that the DLLA solution implicitly invovles an as- 
sumption that at large r-R, the cross section gDLLA({,r) 
is approximately constant. 

The large-n behavior of the DLLA iterations (27) 
must be compared to 

for the leading BFKL solution, which suggests the crite- 
rion for the breaking of the DLLA and/or GLDAP evo- 
lution: At large q the DLLA cross section (28) is domi- 
nated by the contribution from large n - &. The DLLA- 
to-GLDAP evolution breaks when 

The pattern of this DLLA breaking in the case of running 
as(r) will be discussed in more detail below. Here we only 
wish to emphasize that in the physically interesting case of 
the running coupling and of finite correlation radius for the 
perturbative gluons R, the intercept AIp is the constant, 
which does not depend on r. Therefore, the boundary line 
x=x,(r) in the (r,g) plane between the BFKL evolution 
and the GLDAP evolution to DLLA is given by 

It is different from the much discussed ermneous boundary 
suggested in Ref. 8. We shall comment more on the tran- 
sition from the DLLA to GLDAP evolution to the BFKL 
evolution below; for now we concentrate on the investiga- 
tion of the spectrum and eigenfunctions of our generalized 
BFKL equation. 

5. THE SPECTRUM AND EIGENFUNCTIONS OF THE 
GENERALIZED BFKL EQUATION 

5.1. The Green's function, diffusion, and the "Schr6dinger" 
equation 

The generic solution of Eq. ( 11 ) can be written as 

where in the BFKL regime the evolution kernel (Green's 
function) equals 

Since A(iv) has the maximum at v=O, 

the large-{ behavior of the Green's function can be evalu- 
ated in the saddle-point approximation: 

exp ( Alp61 (log ?-log r12) 
K(P,r,rl a exp [ -  

Since the BFKL eigenfunctions ( 13) are oscillating func- 
tions of r, 6 priori it is not obvious that an arbitrary solu- 
tion ( 16) will be positive-valued at all { and r. The BFKL 
kernel K(C,r,r1) of Eq. (34) is manifestly positive-valued 
at large 6, so that starting with the positive-valued a(0,r) 
one obtains the positive-valued asymptotic cross section 
u({,r>. 

The "diffusion" kernel (34) makes it obvious that the 
BFKL scaling approximation is not self-consistent in the 
realm of realistic QCD: starting with u(g=O,r), which was 
concentrated at the perturbative small r 5 R 9 R,, one ends 
up at large { with o([,r), which extends up to the nonper- 
turbative r - R exp[ Jml > R,. Therefore, introduc- 
tion of a certain infrared regularization in the form of a 
finite gluon correlation length R, is inevitable; hereafter we 
concentrate on effects of finite Rcon the intercept AIp. In- 
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terpretation of p ~ =  l/Rc as an effective mass of the gluon 
suggests the infrared freezing of the strong coupling as(') 
at r >  R R,. In the numerical analysis we use the run- 

f -. ning coupling 

4a 
as( r) = 6 log ( c2/~&,3 ' 

where6 CZ 1.5. At large r we impose the simplest freezing 
as(r > R f )  =ap) =0.8. This corresponds to the freezing 
radius Rfz0.42 F and/or the freezing momentum 
k ~ 0 . 7 2  GeV/c in the momentum representation (2). The 
more sophisticated smooth freezing can easily be consid- 
ered, but it will be obvious that our principal conclusions 
do not depend on the form of the freezing. The gluon 
correlation radius R, and the freezing coupling provide the 
minimal infrared regularization of the perturbation theory, 
and in the sequel we assume that the so-regularized gener- 
alized BFKL Eqs. (10) and ( 11) is applicable at both 
small and large radii r. 

Although only the case of R c z R  is of the physical 
interest, the study of (albeit unphysical) limiting cases 
R -0 at finite R,, and of finite R at R,+ W ,  is instructive 
for the insight into how the spectrum of the j-plane singu- 
larities is modified by the infrared regularization. The cor- 
responding analysis is greatly facilitated by the observa- 
tion, that in view of Eqs. (33) and (36) the large-[ 
behavior of solutions of the BFKL limit of Eq. (1 1) is 
similar to the large-[ behavior of solutions of the "Schro- 
dinger" equation 

for a particle of mass M =  l/Am(0) in the potential V(z) 
= -A (0). Here we have written z= log 2, the "wavefunc- 
tion" is @(z,[) =u(g,r)/r and the intercept equals the "en- 
ergy" E taken with the minus sign. 

5.2. Finite correlation radius R,, fixed coupling a, 

The first limiting case R -0 corresponds to introduc- 
tion of a finite gluon correlation radius R, at fixed as.  In 
this limiting case the intercept AIp will still be given by the 
BFKL formula (15). Indeed, on the infinite semiaxis 
log r <  log R, the kernel X retains its scaling properties, 
the corresponding eigenfunctions will be essentially identi- 
cal to the set ( 13), the spectrum of eigenvalues will be 
continuous and the cut in the j-plane will be the same as at 
R,+ W .  This is particularly obvious from the Schrodinger 
Eq. (38), since on the semiaxis z<z,=log ~f the potential 
V(z) = -AIP is flat, and the corresponding Schrodinger 
operator (38) has a continuous spectrum starting with the 
minimum energy E = -AIp . Evidently, this property of the 
spectrum of the Schrodinger operator (38) does not de- 
pend on the details of how the gluon correlation length R, 
is introduced. This is a reason why the similar conclusion 
on the spectrum of the infrared-cutoff BFKL equation was 
reached in Ref. 9 in a model with the sharp k2>ki cutoff in 
the momentum representation criticized above. 

The behavior of solutions at large r)R, requires spe- 
cial investigation. In this region the term 
a KI (pGpl) K1 (pGp2) in the kernel X is exponentially 
small, which is related to the exponential decay of the 
correlation function (the propagator) of perturbative glu- 
ons. [Such an exponential decay of the gluon correlation 
function with the correlation radius Rc=0.2-0.4 F is sug- 
gested by the lattice QCD studies; for a review see Ref. 13. 
We recall that Kl(x) in the kernel 5Y comes from the 
gradient of the gluon correlation function a K,(x)]. Then, 
at large r the kernel X of our Eq. ( 11 ) will be dominated 
by the contributions from pl  <"Rc(p2zr and from 
p2 5 Rc(p lz r ,  will have a limiting value which does not 
depend on r, and Eq. (1 1) takes the form 

This equation has a continuum of solutions with the large-r 
behavior of the form 

[Apparently, one can put a(B) =0, but this is unimportant 
for the subsequent analysis.] 

When continued to small r through the region r-R,, 
the plane waves in the linear-r space transform into plane 
waves in log ?--space (times the overall factor r),  

of Eq. ( 13), so that S(P) =A(iv). Evidently, the two real 
and node-free solutions with v=O and P=O must match 
each other, so that the rightmost j-plane singularity with 
the intercept AIp Eq. ( 15) must correspond to uIp(r) a r at 
r(R, and uIp(r) a const at r) R,. We wish to emphasize 
that although such a uIp(r) extends to large r, Eq. (39) 
makes it obvious that the intercept AIp is controlled by the 
behavior of uIP(r) at r-R, and is relatively insensitive to 
the large-r behavior of uIp(r). 

The intercept S(B) will have a maximum at P=O. 
Then, repeating the derivation of the Green's function 
(17) one can easily show that at large r,rl the Green's 
function of Eq. (39) has the behavior 

which is reminiscent of the familiar multiperipheral diffu- 
sion. Indeed, at large r) l/pG a sort of the additive quark 
model is recovered, in which the (anti)quark of the dipole 
develops its own perturbative gluonic cloud, and the 
quark-quark scattering will be described by the multipe- 
ripheral exchange of massive vector mesons. The Green's 
function (28) shows the emergence of the Regge growth of 
the interaction radius in this limit. It also shows that the 
large-{ behavior of solutions of our generalized BFKL 
equation in this region will be similar to solutions of the 
Schrodinger equation 
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with the potential U(r) = -6(O), which is flat for r >  R,. 
The scaling limit of Eq. ( 11) does not have localized 

solutions [see the eigenfunctions ( 13)]. An important ob- 
servation is that Eq. (39) also does not have node-free 
localized solutions, which vanish at large r. Indeed, if such 
a solution had existed, then the 1.h.s. of Eq. (39) would 
have vanished at r- a,. For the same reason, we can ne- 
glect u(r)  and u(p2) in the integrand of the r.h.s. of (39) 
and will be left with the positive-valued and r-independent 
contribution from u(pl) .  This shows that (40) gives a 
complete set of solutions. Consequently, the BFKL equa- 
tion thus generalized only has the continuous spectrum, 
and the partial-wave amplitudes only have the branching 
point singularity (cut) in the complex-j plane. 

We wish to emphasize that none of the above conclu- 
sions change if K1 ( p g )  is replaced by any function which 
vanishes sufficiently steeply at large r. The only condition 
is that it must have the short-distance l/r behavior dic- 
tated by the l/k? ultraviolet behavior of the perturbative 
gluon propagator. 

5.3. Massless gluons with running and freezing coupling 

The second interesting case is of R,+ a,, i.e., the case 
of massless gluons, pG-0, but with the running coupling 
which freezes, as(r) =aSf')=aS(R f), for finite r>R f .  In 
this case the scaling invariance of the kernel X is restored 
on the infinite semiaxis log r > log R,, where the eigenfunc- 
tions E+ (iv,{,r) are again essentially identical to the 
BFKL set ( 13), the spectrum of eigenvalues will evidently 
be continuous, the intercept AIp will be given by the BFKL 
formula ( 15) with as=ap) and the partial waves of the 
scattering amplitude will have a cut in the j-plane identical 
to that for the original BFKL equation. Indeed, the corre- 
sponding "Schrodinger" Eq. ( 3 8 ) has a continuous spec- 
trum starting from E = - A (0), and this conclusion is evi- 
dently insensitive to the exact shape of the potential V(z) 
at z 5 z f .  Here we agree with Ross et al. 119'4 and disagree 
with ~ i ~ a t o v , ~  who concluded that introduction of the run- 
ning coupling is by itself sufficient for transformation of the 
continuous spectrum of the pomeron to a discrete one. 
Apparently, the origin of this conclusion is that ~ i ~ a t o v ~  
restricted himself to a very special form of the solution at 
large r, rather than using the continuum solutions (40). 

The continuation of the BFKL solutions (13) to the 
region of z < z =log R; poses no problems. Let us start 
with the quasiclassical situation when a(fr)(l,  so that 

a d z )  f )  [ 1 + (Bd4.rr)as(R f )  (zf -z) I-' 
is a slow function of z. In this case the slowly varying 
running coupling can be factored out from the integrand of 
Eqs. ( 10) and ( 1 1 ) . This suggests that to a crude approx- 
imation one may make a substitution of the fixed coupling 
as in Eq. ( 14) for the running coupling as(r). Conse- 
quently, Eq. (38) takes the form of the "Schrodinger" 
equation for a particle with the slowly varying mass 

in the potential 

which is slowly varying and monotonically decreasing in 
magnitude and flat, V(z) = - AIp , for z > z f .  Evidently the 
solutions E+ (iv,4,r) with A(&) > 0, i.e., with negative en- 
ergy &, will have a subbarrier decrease at z- - a,, whereas 
the solutions with A(iv) < 0  will be continued to z4zf as 
plane waves. This suggests that the eigenfunction uIP(r) 
for the rightmost singularity will decrease at r-0 faster 
than the solution ( 18) a r1 for the fixed-as scaling BFKL 
regime. The case of large values of the frozen coupling 
aSf') must be qualitatively the same. 

In Sec. 4 we have discussed the conventional DLLA 
solution of the GLDAP equation, which has a limited do- 
main of applicability. Besides this conventional DLLA so- 
lution, in the weak-coupling limit of as(r) (1 the GLDAP 
Eq. (24) has the new one-parametric family of solutions 
which have the Regge behavior a exp(A6). It can best be 
described in terms of the gluon density 

After we factor out as(r) from the kernel X, which we 
shall justify 6 posteriori, our generalized BFKL equation 
( 11 ) takes the form 

A posteriori, we can show that the last term a aS(r) G(6,r) 
can be neglected for as(r)  (1. Then Eq. (47) takes the 
form 

which has the one-parametric family of small-r, large- 
L (R,r) eigenfunctions 

where the exponent y is related to the intercept A by 

The corresponding dipole cross section equals 
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In contrast to the conventional DLLA solution (28) which 
sums the leading powers [L(R,r)an, our new solutions 
(48) and (50) do manifestly sum all powers L ~ ( R , ~ ) .  The 
accuracy of this solution can be understood by making use 
of (48) in Eq. (46): the neglected term aa,(r)G(C,r) 
gives the a as(r) correction to the solution (48). 

The small-r considerations alone do not fix the inter- 
cept A and the exponent y, they are determined from the 
matching the solution e- (y,g,r) with the large-r solution 
E+ (iv,{,r). 

5.4. The strong coupling freezes at R,- R, 

This realistic case of greatest interest is a combination 
of the two previous cases. It is convenient to start from the 
region r >  R,,Rf. The only change from Eq. (39) will be 
that the running coupling as must be absorbed into the 
integrand 

X [u , (p~)  +un(p2) --un(r) I .  (51) 

This equation has a continuum of solutions of the form 
(40) with the spectral parameter - co < p < + oo , and its 
large-r Green's function and the corresponding Schro- 
dinger operator will be similar to (41) and (42), respec- 
tively. Therefore, Eq. (5 1 ) has a continuous spectrum and 
the scattering amplitude will have a cut in the complex 
j-plane. Continuation of the large-r solutions to small r is 
no different from that discussed in Subsec. 5.3. Evidently, 
the intercept AIp of the rightmost singularity in the j-plane 
corresponds to the eigenvalue 6 ( P )  with p= 0, Alp = S (0), 
as the corresponding eigenfunction does not have a node. 
For this solution SIP((,r) =const vs r at large r, and de- 
creases faster than a r at r- 0. From Eq. (5  1 ) it is obvious, 
that the intercept Alp is mostly controlled by the contri- 
bution from r- R, . Also, repeating the considerations of 
Subsec. 5.1, we can exclude the node-free localized solu- 
tions of Eq. (51) with u(r)  vanishing at large r. This 
shows that our generalized BFKL equation only has a con- 
tinuous spectrum and the partial-wave amplitudes only 
have a cut in the complex j-plane. 

5.5. Can the pomeron have a discrete spectrum? 

The discrete spectrum of the pomeron, i.e., generation 
of isolated poles in the complex-j plane, occurs when lo- 
calized solutions of the generalized BFKL equation exist. 
The above elimination of localized solutions is rigorous in 
the framework of our minimal infrared regularization. 
Technically, it is based on the kernel 37 being finite at 
r- UJ [see Eqs. (39) and (51)], which gives rise to 
a ( r )  -const for r >  R, and to a continuum of solutions of 
the form (40). The interaction picture which emerges at 
r > R, has much intuitive appeal: each well separated quark 
of the beam (target) dipole develops a perturbative gluonic 
cloud of its own, and a sort of additive quark model is 
recovered. At first sight, the localized solutions with the 

vanishing perturbative total cross section for color dipoles 
of large size, u( r )  -0 at r- co , look quite unphysical. 

Here we we wish to present the qualitative arguments 
in favor of the possibility of localized solutions. The plau- 
sible scenario for the discrete spectrum of the pomeron is 
as follows: The kernel 3" is proportional to the probability 
for radiation of perturbative gluons [see Eq. (9)]. When 
the quarks of the color dipole are a distance r)R, apart, 
the nonperturbative color fields stretched between the 
quarks may strongly modify the vacuum and suppress the 
perturbative gluonic fluctuations on the nonperturbative 
background in the vicinity of quarks. Because the nonper- 
turbative background fields are strongly anisotropic, this 
suppression of the perturbative gluonic fluctuations also 
will be anisotropic. However, to a very crude approxima- 
tion this suppression can be modeled by the decrease with 
increasing r of the effective (nonlocal) perturbative cou- 
pling as(r,p) and/or the increase of pG with increasing r, 
resulting in the decrease of the kernel X with increasing r. 
In terms of the Schrodinger Eq. (42) this amounts to a rise 
of the potential U(r) toward large r. [One can draw a 
useful analogy with the asymptotic-freedom decrease of 
as(r) and the related rise of V ( z )  [Eq. (44)l in the Schro- 
dinger Eq. (38).] As a natural scale at which such a sup- 
pression of the perturbative fluctuations can take place one 
can think of the confinement radius R,,,, which is of the 
order of the diameter of hadrons, RConf- 1 - 2F. Evidently, 
the energy E of the lowest state will be higher than the 
bottom of the potential well, so that the intercept AIp of the 
rightmost singularity will be lowered than in the case of the 
minimal regularization. If with increasing r the potential 
U(r) flattens at the still negative value U( co ) = -A,, then 
the Schrodinger Eq. (29) will have a continuous spectrum 
starting with E = -A,, and in the complex j-plane there 
will be a cut from j = 1 +A, to j = - co and a certain 
number of isolated poles to the right of the cut, at 
l+A,<j<l+AIp.  If U(co)>O, then the cut in thecom- 
plex j-plane will start at j = 1. 

Although the above considerations are very qualitative 
ones, we regard them as giving a sound correlation between 
the discrete spectrum of the pomeron and the nonpertura- 
tive suppression of the perturbative gluonic fluctuations in 
large color dipoles. (We do not suggest a dynamical mech- 
anism for such a suppression, though.) In Subsec. 5.3 we 
explained why we disagree with Lipatov's conclusion3 that 
the running coupling does by itself generate the discret 
spectrum of the pomeron (see Subsec. 5.3). Ross and 
  an cock" try to eliminate the contribution of the infrared 
region by a @-cutoff in the asymmetric form of the BFKL 
Eq. (22) and find a discrete spectrum of the pomeron for 
several models of the nonperturbative gluon propagator. 
The significance of their findings is not clear to us, since the 
Hancock-Ross procedure violates the symmetry of the cut- 
off of gluon propagators and its consistency with gauge 
invariance is questionable (for a critique of this procedure 
see Sec. 3). For this reason the correspondance between 
the Ross-Hancock cutoff and the above nonperturbative 
suppression of the perturbative gluon fluctuations is not 
evident to us. 
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FIG. 1. The pomeron dipole cross section qP(r )  for different 
i values of pG: 1 4 . 3  GeV, 2-4.5 GeV, 3 4 . 7 5  GeV, 4--1.0 
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6. THE EVALUATION OF Alp AND THE POMERON DIPOLE 
CROSS SECTION 

Equations ( 10) and (1 1) can not be solved analyti- 
cally for finite R, and with the running coupling, and we 
resort to the numerical analysis. We study the large-5 
behavior of numerical solutions of Eq. ( 11 ) and verify that 
o(5,r) has the same asymptotic behavior a(c,r) 
~uIp(r)exp(AIp()  (within the overall normalization) ir- 
respective of the boundary condition at {=O. Namely, we 
compute the effective intercept 

A,,(s,~) =a log ~ (g , r ) / a (  (52) 

and check that at large 5 the effective intercept Aeff(5,r) 
tends to the same limiting value AIp for all r. Flattening of 
Aeff(S,r) as a function of r and as a function of 5 takes 
place at about the same value of 5, and in all the cases the 
flattening was good to a few parts in a thousand. In Fig. 1 
we present the eigenfunction uIP(r) for several values of 
the gluon correlation radius Rc= l/pG [we keep the same 
running strong coupling as(r) which freezes at 
a5f"=0.8]. As anticipated above, uIp(r) flattens at large r 
and decreases toward small r faster than the BFKL solu- 
tion ( 18), but slower that 3. 

The physical interaction picture behind this emergence 
of the factorizing r and 5 dependences of the asymptotic 
cross section is as follows: Consider, for instance, the in- 
teraction of two small-sized dipoles r,., ,r,4 R, . Radiation 
of perturbative gluons by such dipoles is supprressed by the 
color cancellations and by the small coupling aS(r). How- 
ever, the perturbative gluons start sticking out of the ini- 
tially small dipoles at a distance r- R,. Consequently, after 
few steps of radiation and/or after few units in 5 the glu- 
onic cloud with size - R, builds up, the evolution of which 
is controlled by as(Rc) zaLfr), and whose interaction 
properties do not depend on the size of the initial beam and 
target dipoles. The size of the beam and target dipoles only 
controls the rate of the evolution of the limiting gluonic 
cloud (for more discussion on this point see below). 

In Fig. 2 we present the intercept AIp for few values of 
pG=0.3, 0.5,0.75, 1.0 GeV. As we have emphasized above, 
this intercept is controlled by interactions of the semiper- 

turbative gluons at transverse distances r-R,, where the 
strong coupling is rather large, as(Rc) zap). For com- 
parison, with as=0.8 the BFKL formula (15) gives 
AIp(BFKL) =2.12. We recall that the BFKL formula is 
only valid in the scaling limit of Rc+ oo and obviously 
overestimates the intercept for the case of finite R,. In the 
literature one often cites the CK lower bound9 

This bound was derived in the model with the CK sharp 
cutoff k2> in the asymmetric form of the BFKL Eq. 
(22) with massless gluons, m2=0. For a closer comparison 
with the CK bound we substitute ap) in Eq. (53) for 
min{as(p&),0.8). The resulting bound is shown in Fig. 2 
and is not supported by our results. The significance of the 
CK bound is questionable though, since the derivation9 of 
the CK bound is plagued by violations of the symmetry of 
the BFKL equation; for a critique see Sec. 3. 

In terms of the exponent y of the small-r solutions 
(48),wehavey-1=1.19, 1.81,2.33,2.70atpG=0.3,0.5, 
0.75, 1.0 GeV, respectively. The smaller pc is the smaller is 
y - 1 and the steeper is the decrease of oIp(r) at small r, in 

FIG. 2. The intercept Alp for pG=0.3, 0.5, 0.75, 1.0 GeV (shown by 
triangles). The solid curve shows the Collins-Kwiecinski lower bound 
(53). 
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FIG. 3. The ratio of the porneron dipole cross section with the cutoff (54) 
of the large-r contribution to the pomeron dipole cross section without the 
cutoff. The cutoff radius is RConf= 1.5 F and the gluon correlation radius 
is R,=0.275 F. 

agreement with the results shown in Fig. 1 (for more dis- 
cussion on the relevance of solutions (48) to uIp(r) see 
below, Subsec. 7.3). 

In Subsec. 5.5 we discussed the possibility of generat- 
ing the discrete spectrum of the pomeron via the (purely 
hypothetical) mechanism of the nonperturbative suppres- 
sion of perturbative gluonic fluctuations in color dipoles of 
large size. Such a suppresion must lower the intercept of 
the pomeron. For a crude evaluation of the possible effect, 
we introduce in front of the kernel X the suppression 
factor 

We consider the case of pG=0.75 GeV, i.e., Rc=0.275 F, 
and take d=0.5 F and Rconf= 1.5 F, i.e., impose strong 
suppression of the perturbative gluonic fluctuations already 
at r of the order of the diameter of hadrons. In terms of the 
Schrodinger Eq. (42) this steep suppression factor corre- 
sponds to an abrupt rise of the potential U(r) at r--,RCmf. 
All this serves to enhance the discussed effect. We find a 
negligible change, less than one percent of AIp with respect 
to the case of Rmf= a. Such a small effect could have 
easily been anticipated: the intercept Alp is primarily sen- 
sitive to the behavior of uIp(r) at r-R,, and although we 
have enforced very dramatic suppression of the perturba- 
tive gluonic fluctuations, the effect on the intercept is small 
because of the strong inequality Rc(Rconf. This interpre- 
tation is confirmed by Fig. 3, in which we show the ratio of 
oIp(Rconf= 1.5F,r) to uIp(Rconf= co ,r), and this ratio is 
essentially unity up to r-5RCz 1.4 F. This result strongly 
suggests, that the intercept of the pomeron is a semiper- 
turbative quantity, insensitive to the truly large-distance 
effects. 

In this paper we only concentrate on the rightmost 
singularity, and we do not evaluate the gap between the 
poles in the discrete spectrum. We only comment that the 
convergence of AeR({,r) to the limiting value Alp becomes 

faster when the large-r cutoff (54) is imposed, which sug- 
gests that the rightmost singularity is a pole separated from 
other singularities by a gap. 

Consequently, with all the due reservations on the 
large-distance QCD, we conclude that the intercept of the 
perturbative QCD pomeron is significantly higher than the 
effective intercept AIp(hN) -0.1 as given by the phenom- 
enology of hadronic scattering.15 The plausible scenario, 
suggested by the observed slow rise of the hadronic cross 
sections, is that the exchange by perturbative gluons is only 
a small part of oto,(hN) at moderate energies (Ref. 5; for 
an early discussion of this scenario see Ref. 16). The de- 
tailed phenomenology of the hadronic cross sections will be 
presented elsewhere. 

7. THE GLDAP AND BFKL EVOLUTIONS IN DEEP 
INELASTIC SCATTERING 

7.1. Deep inelastic scattering and the dipole cross section 

The representation (3) is universal and also applies to 
deep inelastic The wave functions of the 
transverse ( 7') and longitudinal ( L )  virtual photon of vir- 
tuality @ were derived in Ref. 6 and read 

where 

In Eqs. (55)-(57) my is the quark mass and z is the Suda- 
kov variable, i.e., the fraction of photon's lightcone mo- 
mentum q- carried by one of the quarks of the pair (0  < z 
< 1). Then 

and the structure function is calculated as 

Making use of the properties of the modified Bessel func- 
tions, after the z-integration one can write 

Notice that the factor 1/@ in Eq. (60), which provides the 
Bjorken scaling, comes from the probability of having a qq 
fluctuation of the highly virtual photon. The ratio 
a({,r)/3 is a relatively smooth function of r, which slowly 
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rises toward small r. For the conventional DLLA behavior 
of a(&) see Eqs. (25) and (28); for the weak-coupling 
solution of our generalized BFKL equation see Eq. (50). 
Therefore, for the semiquantitative understanding of the 
transition from the GLDAP to the BFKL evolution we 
can concentrate on the r and f dependence of u(&r). 

7.2. The transition between the BFKL and DDLA regimes 

One usually discusses the low-x behavior of structure 
functions in terms of the DLLA solution of the GLDAP 
evolution equations. In Sec. 4 we already commented on 
the breaking of DLLA at large (=log(xdx). Here we 
wish to concentrate on a comparison of the (-dependence 
of the perturbative GLDAP and BFKL solutions for 
u(6,r). The question of whether there is a strong, experi- 
mentally observable, difference between the BFKL and 
GLDAP evolutions, has been discussed in the literature for 
quite a time (Ref. 17 and references therein). 

The DLLA solution to GLDAP evolution (28) gives 
the effective intercept 

which must hold at 7 2 1 and moderately large 62 1. The 
DLLA intercept (61) vanishes at large f. On the other 
hand, in the BFKL regime the effective intercept (52) 
tends to AIp irrespective of the radius r. This suggests a 
practical criterion: the DLLA approximation breaks at 
such values of f = (Jr), when ADLLA((,r) becomes 
smaller than A, : 

FIG. 4. Comparison of effective intercepts of 
the DLLA solution (64) to the GLDAP evo- 
lution (solid line) and of the solution of our 
BFKL equation (point line). Both solutions 
start with the same dipole cross section at 
x=3 .  lop2. The pomeron intercept A,,=0.4 
is shown by the horizontal line. 

Notice that since in expansion (28) the saddle point cor- 
responds to n - 6 ,  this criterion when combined with 
the effective intercept (61 ) essentially coincides with the 
DLLA breaking estimate (29). 

For a meaningful comparison of the GLDAP and 
BFKL evolutions, we must take identical initial conditions. 
For the sake of definiteness we take R,=0.275 F and con- 
sider scattering on the proton target, so that our initial 
condition for Eq. ( 11 ) is given by 

where R12 is the separation of quarks "1" and "2" in the 
proton (for the details see Ref. 6). Since the DLLA as- 
ymptotic form (28) holds for ( 2  1, we shall consider the 
cross section (63) as a result of the GLDAP evolution by 
go units from a lower energy, i.e., we take for the DLLA 
solution 

It satisfies uDLLA(gZO,r) =u(O,r) by construction, and we 
use it to evaluate the DLLA intercept in Eq. (61 ). The 
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same uo(r) is taken for the boundary condition for the 
BFKL Eq. ( 11 ). We assume this boundary condition to 
correspond to x = x o z  3 - lo-'. 

Notice, that Eq. (25), the leading-logarithm formula, 
defines L(R ,r) up to an additive constant c 5 1, which 
depends on the detailed form of the initial condition for 
ther GLDAP evolution, but which can be neglected in the 
DLLA limit of L( R ,r) ) 1. We compute AeR( f =O,r) 
from our BFKL Eq. ( 11 ) and make the readjustment 

such that ADLLA(f =O,r) of Eq. (61 ) gives a good approx- 
imation of A,,({=O,r) at small r. With go= 1.25 this is 
achieved by taking cz0.05. 

The results of such a comparison of the BFKL and 
GLDAP evolutions are shown in Fig. 4. At 
{=log(xdx) - 1, the DLLA and BFKL effective inter- 
cepts are both smaller than AIP at r R 0.2F and are larger 
than AIp at smaller r. The good agreement of the BFKL 
and DLLA effective intercepts at small r is not surprising, 
since our generalized BFKL Eq. ( 1 1 ) has the GLDAP 
equation as a limiting case at small r (also see a discussion 
in Ref. 5). The {-evolution of the DLLA and BFKL ef- 
fective intercepts is very much different, though: The 
BFKL effective intercept starts flattening as a function of r 
and tends to AIp, rising at large r and decreasing at small 
r. In the opposite to that, the DLLA intercept monotoni- 
cally decreases with 6 at all r, until the GLDAP breaking 
(62) takes place. 

The boundary between the BFKL and DLLA regimes 
is given by our Eq. (32). The intercept AIp is numerically 
small, AIp=0.4 at pG=0.75, and the large numerical factor 

emerges in the r.h.s. of Eq. (32). Consequently, the 
DLLA-to-GLDAP evolution, and the GLDAP evolution 

FIG. 5 .  Test of the DLLA identity for the solution of our general- 
ized BFKL equation: I-x= lo-', 2-x=3. 3-x=3. 
The gluon correlation radius is RC=0.275F. 

itself, may remain numerically viable in quite a broad 
range of {, relevant to the kinematical range of HERA. 

Closer inspection of Fig. 4 reveals a certain regularity: 
AD,,,(&) decreases with f faster than AeN(f,r), and the 
rate of the divergence is higher the larger the radius r. 
Hence, we look at the combined r and dependence of 
u({,r). 

7.3. Testing the DLLA identity for the gluon distribution 

In the DLLA, the gluon structure function G({,r) sat- 
isfies the equation (we consider Nf=3 active flavors) 

We shall refer to the equality K(&) = 1 as the DLLA iden- 
tity. One can easily evaluate ~({ , r )  for the experimentally 
measured gluon distributions, and it is tempting to con- 
sider the departure from the DLLA identity as a measure 
of the accuracy of the GLDAP evolution. In this section 
we apply such a test of the DLLA identity to the above 
solution of our generalized BFKL equation ( 11 ) subject to 
the boundary condition (63 ). 

The results of such a test are shown in Fig. 5. We find 
that our BFKL solution produces K(&) z 1 in a very 
broad range of f and r of practical interest. Remarkably, 
the DLLA identity holds to within 20-305'0 even at large r, 
up to 25 1/2 Rf, and to a few percent accuracy at 
r 5  1/3 R,. Notice the somewhat oscillatory r-dependence 
of the A,({,r) for our BFKL solution. These oscillations 
die out at large 6. They have an origin in the presence of 
harmonics with large 1 v 1 and/or large I f3 I in the expan- 
sion of the boundary condition (63) in terms of eigenfunc- 
tions of the kernel 3"- (for instance, see Eqs. ( 16) and 
(17). These eigenfunctions give the oscillating contribu- 
tion to u(c,r), see Eqs. (16) and (40). We have checked 
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that the DLLA identity ~ ( f , r )  = 1 is satisfied by solutions 
of our generalized BFKL equation to a very good accuracy 
in a broad range of R, and AqcD. 

The obvious conclusion from this observation is that 
the DLLA solution (28), which is only valid at moderate 
values of f ,  evolves at larger f into our new solution (50). 
These new solutions satisfy our BFKL equation to -as(') 
and also satisfy the DLLA identity, although it was not 
obvious that uIp(f,r) necessarily belongs to this new fam- 
ily of GLDAP/BFKL solutions (50). The exponent y is 
uniquely fixed by the pomeron intercept AIp via Eq. (49). 
We have checked that the pomeron dipole cross sections 
uIp(r) shown in Fig. 1 do indeed accurately satisfy the 
property 

up to r 5  1/2Rc. 
This observation shows that, as matter of fact, there is 

no real clash between the GLDAP and BFKL evolutions if 
as(r) is running. To his end, an important point to note is 
that the discussion of the BFKL effects in the current lit- 
erature concentrates upon the fixed -as approximation 
(for a review and references see Ref. 18). We have found 
that the effect of the running coupling constant is quite 
substantial. Firstly, the pomeron cross section (50) dra- 
matically differs from the BFKL scaling solution a r at 
fixed as (see also Fig. 1). Secondly, one can define the 
counterpart of the DLLA identity for fixed as too, making 
the substitution 

Then, the BFKL scaling pomeron solution ( 18) gives 

which also emphasizes the dramatic difference between the 
cases of the fixed and running strong coupling. Hence 
matching the fixed-as BFKL regime at small x with the 
GLDAP regime at larger x is doomed to inconsistencies, 
and such considerations are not appropriate for the phe- 
nomenology of deep-inelastic scattering. 

One interesting feature of the DLLA identity is worthy 
of mention. We have calculated ~ ( f , r )  for solutions of our 
generalized BFKL equation for various boundary condi- 
tions, including the completely unphysical u(f=O,r) 
which has the form of two Gaussian peaks with large spac- 
ing in r. Because of the diffusion in the radius r, the dip 
between the two Gaussians fills in very rapidly. As soon as 
such a u(f,r) becomes a relatively smooth function of r, 
this is followed by a rapid approach of ~ ( f , r )  to unity. We 
find 5 1&15% departure of ~ ( f , r )  from unity even for 
f 2 2 - 3 and 5 5% departure for f 2 5. This fulfillment of 
the DLLA identity takes place when u(f,r) has the 
r-dependence still very different from the typical DLLA 
solution and/or the asymptotic pomeron cross section 
uIp(r). One plausible interpretation of this observation is 
that, apart from the solution for the rightmost singularity 
at j = 1 + AIp , the (approximate) DLLA identity holds for 

FIG. 6. One of the diagrams of the driving term of the rising dipole cross 
section. 

other solutions in a relatively broad range of j 5 1 + AIp . 
The corresponding analysis goes beyond the scope of the 
present paper. 

We conclude this section with a prediction of the uni- 
versal scaling violation at asymptotically large {. Namely, 
making use of (50) in Eq. (60), we obtain 

The results of Fig. 4 suggest, though, that the onset of this 
universal scaling violation is well beyond the kinematical 
range of the HERA experiments. 

8. THE BEAM-TARGET SYMMETRY AND THE BOUNDARY 
CONDITION 

In the above discussion we have suppressed the target 
size variables rB but, evidently, it is the generalized energy- 
dependent dipoldipole cross section a (  f ,rA ,rB) which 
emerges as the fundamental quantity of the lightcone 
s-channel approach to the diffractive scattering. The 
lowest-order dipoldipole cross section has the obvious 
beam-target symmetry property uo(rA,rB)=uo(rB,rA). 
This beam-target symmetry is but a requirement of the 
Lorentz-invariance and one has to have it extended to all 
energies. Thus, the beam-target symmetry emerges as an 
important constraint on the admissible boundary condition 
for the BFKL equation. In the derivation of our general- 
ized BFKL equation we have treated the s-channel gluon g, 
of Fig. 6 as belonging to the beam-dipole A. The gluon- 
induced correction to the total cross section was reinter- 
preted in terms of the generalized dipole cross section 
u(f,rA,rB) [see Eq. (9)]. Alternatively, we could have 
treated the same s-channel gluon g, as belonging to the 
target dipole, and the result would have been the same. The 
two descriptions differ in that in the former the perturba- 
tive t-channel gluons gl and g1t enter the kernel X A ,  
which we label with the subscript A as it acts on the beam 
variable rA of the dipoldipole cross section u(f,rA ,rB), 
whereas the gluons g2 and g2t are the exchanged gluons in 
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the dipole-dipole cross section ( 1 ). In the latter description 
gz,g21 enter the kernel X B ,  which now acts on the target 
variable rB of the dipole-dipole cross section u((,rA,rB), 
and g, ,gl1 will become the exchanged gluons in the input 
dipole-dipole cross section. The beam-target symmetry 
constraint essentially implies, that the boundary condition 
for the BFKL evolution must be calculable in the same 
perturbation theory as the one used to construct the gen- 
eralized BFKL kernel X Eq. ( 10). [To this end we recall 
that the K,(x) in the kernel X is precisely the derivative 
of the gluon propagator (correlation function) Ko(x).] 
This kernel-cross section relationship is crucial for having 
the beam-target symmetry, which will be violated with the 
arbitrary choice of the boundary condition for the dipole- 
dipole cross section cr((= O,rA ,rB). 

9. RESTORATION OF FACTORIZATION AT ASYMPTOTIC 
ENERGIES 

It is well known that in the conventional Regge theory 
the isolated poles in the complex-j plane give rise to fac- 
torizing scattering amplitudes. Even if the factorization 
holds for separate singularities in the j-plane, the scatter- 
ing amplitude, which is a sum of contributions from many 
close-by singularities, does not factorize. For instance, the 
lowest order dipole-dipole cross section ( 1 ) manifestly 
breaks the factorization relation. It is interesting to notice 
that the factorization of the total cross sections restores at 
asymptotic energies. 

Specifically, for the rightmost singularity in the j-plane 
the beam-target symmetric dipole-dipole total cross sec- 
tion will have the factorized form 

U I P ( ~ , ~ A , ~ B )  = u ~ p ( r ~ ) u ~ ~ ( r ~ ) e x p ( { A ~ p ) .  (72) 

By virtue of Eq. (2) this implies that at asymptotic ener- 
gies 

(73) 

which has the manifestly factorized form. From the point 
of view of the phenomenology of the total cross sections, 
this factorization will be broken by the unitarization cor- 
rections needed to tame too rapid a rise of the perturbative 
bare pomeron cross section. The above universal scaling 
violation in deep inelastic scattering is a particular case of 
this factorization restoration. 

10. MEASURING THE BFKL POMERON AT HERA 

The experimental determination of the pomeron inter- 
cept A,, requires isolation of the BFKL pomeron cross 
section, which is not an easy task because of the close 
similarity of the BFKL and GLDAP solutions, discusssed 
in detail in Sec. 7. The GLDAP evolution is a special 
limiting case of the BFKL evolution. Not every solution of 
the BFKL equation satisfies the GLDAP evolution and the 

DLLA identity. Our remarkable finding is that the small-r 
pomeron cross section (50), which is a solution of the 
BFKL equation, satisfies the GLDAP evolution equation 
to within correction terms -as(r). Consequently, one 
may expect that GLDAP evolution with the proper bound- 
ary condition can be a good approximation to the BFKL 
evolution. The GLDAP considerations can not by them- 
selves fix this boundary condition, though. Inspection of 
Fig. 4 shows that the DLLA and BFKL effective intercepts 
are close to each other and to the Alp in a broad range of 
x of practical interest at 

Consequently, choosing boundary condition G((,ro) 
a x - A ~ ~  at r z r o ,  one will obtain the GLDAP solutions, 
which for r 6 ro will be indistinguishable for all practical 
purposes from the BFKL solution. Eq. (60) shows that the 
proton structure function receives contributions from the 
broad range of r in which the effective intercept Aef(r) is 
substantially different from AIp . For this reason, studying 
the x-dependence of F,(x,@) is not suitable for accurate 
determination of the pomeron intercept. 

Figure 4 suggests that by zooming in to rZO. 15 -0.2 F 
one can determine the pomeron intercept Alp even at the 
moderately large l/x of the HERA experiments. This can 
be achieved by measuring either the longitudinal structure 
function FL(x,@) or the scaling violations in the trans- 
verse structure function aFT(x,@)/alog(@). Making 
use of the wave functions (55) and (56) one can easily 
show that these quantities are local probes of a((,r) at 

where for the longitudinal and transverse structure func- 
tions we have B L z  12 and BT= 5. Consequently, experi- 
mentally AIp can best be estimated as 

A - 
1 8 l o g ~ T ( x , @ )  

IP- -FT(X,eZ) a log xa log Q2 

at @ = &= 5-8 G ~ v ~ .  Our prediction is that these deriv- 
atives must be x-independent already starting with 
x 5 lop2. The above difference between @L and pT by a 
factor ~ 2 . 5 - 3  is an important consequence of the wave 
functions (55) and (56). Purely kinematically, the smaller 
@ implies the broader range of l/x, and for this reason the 
second determination (77) may prove the more accurate 
one. A comparison of the two determinations (76) and 
(77) is an important consistency check. We conclude that 
from the point of view of measuring the pomeron intercept, 
the HERA experiments must concentrate on accurate mea- 
surements of F,(x,@) and F,(x,@) in the region of mod- 
erate @ 6 30 G ~ v ~ .  
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11. CONCLUSIONS 

The purpose of this paper has been to understand the 
spectrum of eigenvalues of the generalized BFKL 
equation4*' for the dipole total cross section. Our emphasis 
was on the realistic case of finite correlation radius for the 
perturbative gluons and of the freezing strong coupling. 
The advantage of our generalized BFKL Eqs. (10) and 
( 11 ) is an easy introduction of the finite gluon correlation 
radius in a manner which is consistent with the gauge in- 
variance constraints. 

We have shown that our generalized BFKL Eqs. ( 10) 
and ( 11 ) has a continuous spectrum which corresponds to 
the QCD pomeron described by the cut in the complex 
j-plane. We have determined the dependence on the size r 
of the dipole for the rightmost singularity in the j-plane 
and found the corresponding intercept AIP. It is much 
smaller than that given by the BFKL formula ( 15) and 
even smaller than the lower bound cited in Ref. 9, but is 
substantially larger than the phenomenological value 
AIp(hN) -0.1. We have investigated the transition from 
GLDAP to the BFKL evolution in the limit of large l/x, 
and have shown that the two equations have an overlap- 
ping asymptotic solution in the weak-coupling limit. The 
phenomenologically important implication is that the 
GLDAP evolution with the correctly posed boundary con- 
dition remains a viable description of deep inelastic scat- 
tering well beyond the kinematical range of the HERA 
experiments. Nonetheless, the pomeron intercept can be 
determined already from the HERA data on deep inlastic 
scattering, and we have suggested practical methods of 
measuring AIp . 

The last two authors (B.G.Z. and V.R.Z.) are grateful 
to J. Speth for the hospitality at IKP, KFA Jiilich. 
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