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The properties of the pion subsystem that arises in the process of ultrarelativistic collisions of 
nuclei are studied. For this a model of the expanding pion fireball is used in which, 
right up to the time the fireball breaks up, it is assumed that local thermal quasiequilibrium 
is present but chemical equilibrium is absent. The properties of a pion system with a 
Bose condensate are studied in the approximation of an ideal relativistic pion gas. The value 
of the critical Bose-condensation temperature T, of the pions is estimated, and it is 
shown that this value apparently exceeds the characteristic value that determines the slope of 
the experimental pion spectra in ultrarelativistic collisions of nuclei. The yield of pions 
is found, and is shown to be enhanced in the region of small momenta. It is shown that if there 
is a condensate at the initial time it is also preserved during subsequent uniform 
isentropic expansion. Certain particular solutions of the hydrodynamic equations are found in 
the case of uniform and nonuniform expansion for T( T,. Specific properties possessed 
by a pion gas for T <  T,, analogous to the properties of a superhid system or a 
superconducting system are formulated. Collisions of the pion gas is taken into account 
by means of the Lagrangian approach. The excitation spectrum in the presence of a ?rO 

condensate, and also ?r+ and n- condensates, is found. It is shown that the low-lying 
branch of the excitations in the electrically neutral system corresponds to Goldstone 
oscillations. It is demonstrated that the photon acquires mass as a consequence of the 
interaction of the ?r+ and ?r- condensates with the electromagnetic vacuum. It is shown that 
the meson acquires a large additional mass as a consequence of the analogous effect. 
Arguments are given in favor of a substantial decrease in the yield of dileptons in the presence 
of a Bose condensate of pions. The properties of a system with a pion condensate at 
finite temperatures are studied. The specifics of Bose condensation of pions in the u-model 
are considered. It is shown that the nucleon mass decreases as the density of the pion 
condensate increases, and can even vanish for p >  p,-p,,, , where p,,,, is the density of the 
atomic nucleus. This decrease of the nucleon mass can manifest itself in an enhanced 
yield of N# pairs from the region of the pion fireball. 

1. INTRODUCTION 

In recent years the first experimental data on collisions 
of nuclei with ultrarelativistic energies have appeared.'.' 
They have shown that the rapidity characteristics of the 
pions differ substantially from those of the nucleons. 
Therefore, the pion subsystem can be considered indepen- 
dently of the nucleon subsystem (the so-called Bjorken 
model3). In addition, it has been found that the yield of 
pions is substantially greater than the yield of nucleons. 
For example, - lo3 pions emerge in central Au+ Au col- 
lisions at energy 10.6 GeV nucleon, and the ratio of the 
number of pions to the number of protons is N,,./Np- 5. In 
central O+Au and S + S collisions at 200 GeV/nucleon 
more than 300 pions emerge, corresponding to 
N,,/Np- 10. At the energies of the SPS, RHIC, and LHC 
accelerators we expect a yield of tens of thousands of 

Therefore, it is of central interest to describe the 
pion subsystem. 

Experiments on PT correlations6 indicate that the 
source emitting the pions has a large characteristic radius 
(Rb=4-7 fm), are substantially greater than the charac- 
teristic radius of the region of the initial overlap of the 

nuclei. The spectra of the large-momentum pions (hard 
pions) are approximately exponential. This makes it pos- 
sible to assume local thermodynamic equilibrium, to intro- 
duce the concept of a local temperature, and to use the 
hydrodynamic approach. In view of this, to describe the 
dynamics of the pion subsystem it is natural to develop an 
expanding-pion-fireball model analogous to the expanding- 
nuclear-fireball model used to describe the collisions of nu- 
clei in the region of energies lower than a few 
~e~/nucleon."* 

We shall assume that, in the characteristic collision 
time 7,1, a dense hot pion fireball, characterized by a cer- 
tain initial pion-density distribution p,(t=O,r) and 
transverse-temperature distribution T ,  ( t = O,r), is formed. 
It then expands into the vacuum until a certain stage 
("breakup") is reached, at which local thermal equilib- 
rium is violated and the momentum distributions of the 
pions become frozen and are characterized by the density 
pb[to(r)] and temperature Tb[tO(r)]. 

The available experimental data on ultrarelativistic 
collisions of nuclei indicate point to a substantial excess of 
small-momentum pions (soft pions) in comparison with 
the relative yield of soft pions in pp+nX reactions. To 
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explain this interesting fact, it was suggested in Refs. 9-1 1 
that chemical equilibrium is absent in the pion fireball. An 
estimate of the mean free path of the pion11 has shown that 
the pions have a large absorption mean free path, while 
they have a relatively small mean free path with respect to 
elastic collisions. This justifies assuming the presence of 
local thermal equilibrium and the absence of chemical 
equilibrium. Thus, it is assumed that the number of pions 
that were created in the initial stage of the collision of the 
nuclei, principally as a result of the decay of a large num- 
ber of resonances, subsequently remains fixed until the fire- 
ball breaks up. Therefore, the pions can be characterized 
by a nonzero value of the chemical potential p(t) .  The 
experimental pion spectra, including the enhanced yield of 
soft pions, are reasonably well described by a distribution 
of pions with chemical potential pb=p(tO) = 126 MeV and 
temperature Tb= 167 MeV for 0 + Au collisions, and with 
pb = 1 18 MeV and T b  164 MeV for S + S collisions, at 
200 ~ e ~ / n u c l e o n . ' ~  The values of p determined in this 
way are close to the value p=m = 140 MeV at which Bose 
condensation of pions with momentum k=O arises. 

The existing experimental data are still too sparse for 
one to state with certainty that p, < m. They could also be 
explained by assuming p,2 m with slightly higher values 
of Tb. In addition, as already stated, we should expect a 
still higher yield of pions at the energies of the SPS, RHIC, 
and LHC accelerators. But with a large number of pions 
created as a result of decay of resonances, and with a com- 
paratively small initial volume and comparatively low tem- 
perature of the pion fireball, in the absence of dissipative 
processes some of the pions will be forced to go over to a 
Bose-condensate state. Therefore, in our view, it is of in- 
terest to admit the possibility of Bose condensation of pions 
and to study its consequences in the hope that specific 
distinctive features of the Bose condensation might be 
manifested in experiment in the future. In addition, the 
investigation of Bose condensation in relativistic dynamical 
systems is of interest in itself. 

The hypothesis of possible Bose condensation of pions 
in ultrarelativistic collisions of nuclei has also been put 
forward recently in Ref. 12, in which it was shown that the 
system cools faster in the presence of a Bose condensate 
than in its absence. In the present paper we shall investi- 
gate other consequences of the Bose condensation of pions. 

To avoid misunderstandings, we draw attention once 
again to the fact that we are concerned with a nonequilib- 
rium system for the important times t 5 to(rabs, where to is 
the time after which freezing of the momentum distribu- 
tions of the pions occurs, and rabs is the characteristic ab- 
sorption time. Only in this stage can it be assumed that the 
number of pions is approximately fixed and the pion gas is 
characterized by a chemical potential p H .  In the oppo- 
site limiting case tO)rabs the pion distribution would obvi- 
ously be characterized by the value p,=O. 

To describe the pion subsystem with a Bose condensate 
we shall use the model of an expanding pion fireball, i.e., 
we assume that the hydrodynamic approximation is appli- 
cable. The kinetics of the formation of a Bose condensate in 
nonrelativistic systems was studied in Ref. 13. A rough 

estimate indicates that, as in the nonrelativistic case, in the 
relativistic case the Bose condensate is formed in a char- 
acteristic time rcol- l/u,,p, where or,- l /mi is the rr- 
scattering cross section. But the approximation TCo14 to 
with to- 10m, (Ref. 1 1 ) appears to be fully applicable. For 
rco1( t < to the conditions for applicability of the hydrody- 
namic approach are also fulfilled. A detailed analysis of the 
kinetics of formation of a Bose condensate in relativistic 
systems is of interest in itself, but lies outside the scope of 
this paper. 

The paper is organized as follows: In Sec. 2 we study 
the BoseEinstein condensation in a model of an equilib- 
rium ideal relativistic pion gas. In Sec. 3 we study the 
hydrodynamic expansion of a pion fireball at T<T,. In 
Sec. 4, using the Lagrangian approach in the hp4 model, 
we consider the condensation of a nonideal pion gas. In 
Sec. 5 we determine the excitation frequencies of the sys- 
tem in the presence of a pion condensate. The masses of the 
photon and p0 meson are calculated. We discuss the pos- 
sibility of suppressing the yield of dileptons from the 
r-condensate region. In Sec. 6 we study the specifics of the 
Bose condensation of pions at nonzero temperature. In Sec. 
7 we consider pion condensation in the o-model. In Sec. 8 
we formulate possible experimental manifestations of the 
phenomenon considered, and make some concluding re- 
marks. 

2. BOSE CONDENSATION IN A RELATIVISTIC EQUILIBRIUM 
IDEAL PION GAS 

For simplicity we shall consider first an ideal pion gas 
in thermal quasiequilibrium with temperature T( t )  and 
density p(t), but in the absence of chemical equilibrium. 
The latter implies that the number N, of particles in the 
gas is fixed and the pion gas is characterized by a nonzero 
chemical potential ~ ( t ) .  

The pion density p, temperature T, and chemical po- 
tential p are related by the expression 

where, for simplicity, we have assumed that N,- = N,+ 
= N 8  = N/3 and T > T,. The critical temperature of the 
Bose condensation is determined from the condition p = m. 
For T < T, we have for the condensate density p (k = 0) : 

The momentum distributions of the emerging pions are 
characterized by the values Tb and Vb of the temperature 
and volume at the time fireball breaks up. For pions of a 
given kind we obtain 
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with the value pb=p(Tb)  < m for T > T,, and pb=m for 
Tb< T,. The distribution of pions of a given kind with 
k=O for TbgTc has the form 

For the soft-pion distribution ( k 4 m )  at T < T, we 
have, according to (2.3), 

instead of the distribution 

at zero chemical potential, corresponding to a nonfixed 
number of pions. It is obvious that the expression (2.5) 
corresponds to a substantially larger total number of pions 
and a larger relative number of low-momentum pions than 
does (2.6), and this agrees with the well known experi- 
mental data on ultrarelativistic collisions of nuclei. 

It should be noted that in a realistic formulation of the 
problem, corresponding to the dynamical problem, instead 
of the distribution (2.4), (2.6) we have a distribution with 
a finite, albeit narrow, peak at k=O. This circumstance 
must be taken into account when the theoretical distribu- 
tions (2.4) and (2.5) are compared with experimental 
data. 

Knowing the pion distribution, we can find all the 
thermodynamic characteristics of the system. As is well 
known, the specific heat Cy, entropy S, and pressure Pare 
determined by the particles with momenta k > 0. The Bose- 
condensate particles do not make a contribution to these 
characteristics. In addition, we draw attention to the fact 
that the pressure does not depend on the volume, so that 
the isotherms are straight lines. 

To represent the results in analytical form we turn to a 
consideration of the two opposite limiting cases of a non- 
relativistic and an ultrarelativistic gas. 

Nonrelativistic pion gas 

In this case most of the pions have small characteristic 
momenta 

and small energies 

Substituting the latter value into (2.2), we can easily de- 
termine the critical temperature of the Bose-Einstein con- 
densation: 

According to (2.2), kCh - dmn and, taking (2.7) into 
account, we have the inequalities 

where pN=0.5m3 is the density of the atomic nucleus, for 
which the nonrelativistic approximation is valid. 
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From (2.2) we determine the density of the Bose- 
condensate pions: 

p(k=O)=p[l-  (g )3 /2 ] ,  T <  T , .  (2.10) 

For the thermodynamic characteristics when T < T, holds 
we have 

It follows from these expressions, for T <  Tc, that 

corresponding to a polytrope with exponent y = 5/3. 
In Ref. 14 it is argued that the initial distributions of 

the pions produced as a result of the decay of resonances 
are isotopically asymmetric. Therefore, in addition to the 
case considered above, with N,+ = N,- = N,+ = N/3, an- 
other limiting case, when there are only pions of one kind, 
is also of interest. In this case, the density of the Bose- 
condensate pions is related to the density p by the same 
expression (2. lo), but the quantity T, is 

The energy, pressure, free energy, and entropy differ by a 
factor of 1/3 from the corresponding expressions (2.1 1 ), 
(2.12). 

Ultrarelativistic pion gas 

In this case, for the characteristic values of the mo- 
menta of the pions we have 

~ = d w = k ,  kCh$m. (2.14) 

Taking this into account in (2.2), in the case N,+ 
= N,- = N,+= N/3 we obtain 

T,= 1.40~'". (2.15) 

For pions of one kind, instead of (2.15) we have 

T,= 2 . 0 2 ~ ' ~ ~ .  (2.16) 

The inequality kCh- T $ m used in the derivation of (2.15) 
and (2.16) implies that 

P > O . ~ P N  (2.17) 

in the case when N,+ = N,- = N,+, and 

P $ O . ~ P N  (2.18) 

for one kind of pion. Both conditions are apparently ful- 
filled for ultrarelativistic collisions of nuclei, even in the 
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stage when the pion fireball breaks up (p- pb). In fact, the 
radius of the pion source, as estimated from PP correla- 
tions, is Rbr4-7 fm (Ref. 6) when the number of emerg- 
ing pions is -300, corresponding to a pion density 
pb- ( 1-6) pN. However, even such a wide interval of pos- 
sible values of Rb and pb is not guaranteed, since in the 
treatment of the correlation data certain theoretical as- 
sumptions were used. 

We draw attention to the fact that the quantity T, is 
not so sensitive to the value of pb, since T, K rn R r l .  In 
the case N,+ = N,- = N,+, for Rb-4 fm (pbc6pN) we 
have T,- 2m,- 280 MeV, which is substantially greater 
than the characteristic experimental inverse slope coeffi- 
cients ( TP= 170 MeV), while for Rb=7 fm (pb- 1 . 2 ~ ~ )  
we have T,? F p .  In the case of pions of the same kind we 
obtain T,- 580 MeV for Rb-4 fm and T,- 240 MeV for 
Rb-7 fm. 

Thus, the above rough estimates are wholly encourag- 
ing for the possibility of Bose condensation of pions in 
ultrarelativistic collisions of nuclei. Nevertheless, in order 
finally to confirm or refute the hypothesis of Bose conden- 
sation we must formulate its consequences and compare its 
results with experiment. 

For a temperature in the interval m ( T 4 T,, accord- 
ing to (2.2) we have 

Putting T?0.8Tc in (2.19), we have p(k=O)/p-0.7, 
while from (2.10) we obtain p(k=O)/pe0.3. Thus, in the 
ultrarelativistic limit the Bose-condensate state fills up 
faster as the temperature decreases than in the nonrelativ- 
istic case. For the thermodynamic characteristics of the 
system when T < T, holds we obtain 

From this we have 

which corresponds to a polytrope with exponent y=4/3. 

3. HYDRODYNAMIC EXPANSION OF AN IDEAL PION GAS 

At T) T ,  the ordered motion of an ideal pion gas with 
a fixed number of particles is described by the hydrody- 
namic equations of an ideal liquid, i.e., by the continuity 
equation 

a,p+div(pu) =o, (3.1) 

the Euler equation 

and the entropy-transport equation 

where u is the velocity of the ordered motion of the gas or 
liquid, and s is the entropy per unit mass of the substance: 
s=S/M, M = mN. Equations (3.1 )-(3.3 ) hold for pions of 
each kind separately. If the initial profiles of the distribu- 
tions of the P+, P-, and PO mesons are the same, the 
system of equations (3.1 )-(3.3) describes the distribution 
of the total density and temperature of the pions. 

Note that Eqs. (3.1)-(3.3) are applicable only when 
the velocity u of the ordered motion and the characteristic 
thermal velocity v, of the particles in the gas are small in 
comparison with the speed of light. For u-c or UT-C, 
instead of the system (3.1)-(3.3) it is necessary to use 
the more complicated equations of relativistic 
hydrodynamics.15 

It is also of interest to consider the limiting case of a 
relativistic gas undergoing slow ordered motion. In this 
case the matter-continuity equation and entropy-transport 
equation coincide fully with (3.1 ) and (3.3), but the Euler 
equation is represented in the form" 

Equation (3.4) differs from (3.2) in that the thermal func- 
tion w, rather than the matter density p,, appears in the 
right-hand side. The passage to (3.2) in the limit is imple- 
mented taking into account that w =  p,+ w for vT(c, 
where G is the nonrelativistic thermal function. For an 
ultrarelativistic ideal gas, w -- 4P. 

For T < T, Eqs. (3.1)-(3.3) [or (3.4)] no longer de- 
scribe the motion of a pion gas, since some of the pions fall 
into the Bose condensate, and for the pions of each kind we 
must use the equations of a two-component liquid. The 
Bose-condensate particles form one component (s), and 
the particles above the condensate (thermal excitations) 
form the other (n) .  In the case of an ideal gas for T < T, 
these equations can be derived starting from microscopic 
considerations. In the nonrelativistic approximation 
(u(c,vT(c) they have the formI6 

where ps and us are, respectively, the density and velocity 
of the Bose condensate, p, and u, are the density and 
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velocity of the particles above the condensate, and the 
quantity p plays the role of the chemical potential of the 
nonuniform nonrelativistic pion gas: 

P= -A 6 s  (3.10) 

In a uniform nonrelativistic gas with a Bose condensate we 
have p=O (the chemical potential is reckoned from the 
mass as origin). 

Because of the presence of the term (3. lo), the stresses 
in an ideal Bose gas at T < T, are anisotropic, and this 
leads to violation of Pascal's law. 

We now proceed to solve the hydrodynamic equations 
in certain limiting cases. 

Uniform expansion at T< T, 

We shall assume that the initial distribution of pions is 
characterized by uniform densities p, and p,, equal veloc- 
ities u, and us, and a spatially constant entropy. Then the 
dynamics of the system is also determined by constancy of 
the entropy. Using the expressions (2.11) and (2.20), we 
have 

in the case of a nonrelativistic pion gas, and 

for an ultrarelativistic gas. Here, in both cases, 

Thus, in the course of the isentropic expansion, not only is 
the total number of pions conserved, but so too are the 
numbers of condensate pions and above-condensate pions 
separately. From this we can draw the important conclu- 
sion that if T, < T, holds and there is already a condensate 
initially ( T = T,, V= V,), it remains present throughout 
the whole period of the isentropic expansion. 

In order to determine the explicit dependences p,(t), 
ps(t), un(t), and u,(t) at T <  T,, we shall consider the 
case of spherically symmetric uniform nonrelativistic ex- 
pansion of the gas. Setting u , = u , = r ~ / ~ ,  from the system 
(3.5)-(3.19) we easily obtain 

where PO,, poD Ro, and v are constants determining the 
initial distributions. As can be seen from (3.14), uniform 
isentropic expansion corresponds to a finite initial velocity. 
The dependence T(t) is determined by the constancy of 
the entropy. In the case of a nonrelativistic pion gas, 
setting N,+ = N,- = N,,n we have 

In the ultrarelativistic case, 

Nonuniform expansion 

In a system that is not too large, finite-size effects can 
play an important role and the initial density and temper- 
ature profiles can be substantially nonuniform. In this case, 
the solution of the equations of two-fluid (and even one- 
fluid) hydrodynamics is a complicated problem. Therefore, 
below, we shall find only certain particular solutions for 
initially nonuniform distributions. For simplicity we shall 
consider the case when the temperature is close to critical 
and the density of the Bose condensate is small. In this case 
we can assume that p,=O, and the normal component for 
nonrelativistic expansion obeys Eqs. ( 3.1 )-( 3.3 ) [or 
(3.411. 

According to (2.12), a nonrelativistic Bose gas at 
T < T, corresponds to a polytrope with exponent y=5/3. 
As is well known, a nondegenerate nonrelativistic Bose gas 
( T )  T,) also corresponds to a polytrope with the same 
exponent y. For the equation of state corresponding to a 
polytrope with an arbitrary exponent y there is a whole 
class of particular solutions of the system of hydrodynamic 
equations (3.1 )-(3.3). For spherically symmetric expan- 
sion we have17 

where B(x) is the Heaviside step function, a is an arbitrary 
constant, and po and Ro determine the initial distributions: 

The constant b is found from the relation 

Using these expressions, for a nonrelativistic pion gas 
( y  = 5/3) we obtain 

Then, for a nondegenerate Bose gas ( T $ T,), with equa- 
tion of state P=pT, we have 
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while for a Bose gas at T < T,, for N,+ = N,- = N#, using 
(2.12) we obtain 

2/5(a+l) 
T t )  = T 1 - B(r-R), Toeconst, 

As already stated, for T < T,, instead of the system of 
equations (3.1)-(3.3) we must use the system (3.5)- 
(3.9). Therefore, the solution (3.20) holds only for T -- T, 
( T < T,), when the density of the Bose condensate is suf- 
ficiently small. Imposing the requirement T(t,r) -- T,(t,r) 
and using the expressions (2.8), (3.17), and (3.20), we 
find a = 3/2. After this, the final distributions acquire the 
form 

As can be seen from the expressions (3.17) and 
(3.20)-(3.22), the solution (3.23) holds not only for 
T Z  T, but also for T)  T,. Therefore, it can be used as a 
good interpolation in the entire range of temperatures 
T 2 T c .  

In the general case for T < T, we must use the system 
of equations (3.5)-(3.9) of two-fluid hydrodynamics. If at 
the initial time the s- and n-components of the Bose liquid 
have different velocities, the fountain effect should arise, as 
in 4 ~ e .  

A system described by the equations (3.5)-(3.9) of 
two-fluid hydrodynamics also possesses a number of other 
specific properties. For example, for T > T, there is only 
one type of acoustic excitations, corresponding principally 
to density oscillations, while for T < T, first- and second- 
sound waves can propagate. For motion with a velocity 
greater than the first-sound velocity a density discontinuity 
arises, while for motion with a velocity greater than the 
second-sound velocity a temperature discontinuity arises. 

We should also draw attention to specific features of 
the hydrodynamics of an ideal gas. For an ideal gas the 
pressure and chemical potential are not related by the ther- 
modynamic relation that holds in the general case of an 
interacting gas. For a nonideal gas the relationship (3.10) 
is not present in the equations of Landau two-fluid 
hydrodynamics,15"6 and for T < T, the stresses remain iso- 
tropic and Pascal's law is obeyed. The excitation spectrum 
of the ideal Bose gas at T < T, is given by the relationship 
w e  k2/2m (for k-0), and does not satisfy the Landau 
criterion for superffuidity. At the same time, even a weak 
interaction between the particles of the gas is found to be 
sufficient for the quadratic dispersion law w=p/2rn to be 

replaced by a linear dispersion law w a k (see below, in Sec. 
5). Because of this, a nonideal Bose gas with a fixed num- 
ber of particles at T < T, possesses a number of specific 
hydrodynamical properties. 15'16 

Thus, when the velocity of the medium is low 
[u < ucl -ln(R/R,)R-', where R is the size of the system 
and R, is the correlation length], the Bose-condensate com- 
ponent and normal component do not interact. When the 
velocity of the medium is greater than ucl vortex filaments 
and rings are formed in the Bose-condensate component, 
as a result of which friction is established between the 
normal and condensate components. There also exists an 
upper critical velocity (uC2), at which the condensate dis- 
appears completely. The vortices are solitons possessing a 
nonzero topological quantum number. The discovery of 
such pion solitons in relativistic collisions of nuclei would 
be of undoubted interest. There are also other specific 
properties of the hydrodynamics of a P-condensate system. 
Here, however, we shall not go into details, but confine 
ourselves to the above list. The detailed description of the 
hydrodynamics of a P+,P-,?TO liquid at T < T, is of inter- 
est in its own right. 

To conclude this section, we note that we have delib- 
erately not used the terms "superffuidity" and "supercon- 
ductivity," since in the relativistic region at temperatures 
T 2 m  there are always dissipative processes associated 
with the creation and annihilation of particles. Over the 
time interval that we are considering (t(rabs) we can ne- 
glect these processes and assume that the number of par- 
ticles is approximately fixed. Only to this accuracy can we 
speak of the absence of interaction between the normal ( n )  
and condensate (s) subsystems. 

4. PION CONDENSATION IN THE rta4 MODEL AT T=O 

Lagrangian and equations of motion 

The Lagrangian density of the pions in the model with 
interaction H' =A(p4/4, with (p = ( pl ,p2 ,q3), has the form 

where A is the coupling constant and the fields of the P+, 
- 

P , and PO mesons are given in terms of the isotopic vector 
~ = ( ~ 1 , ~ 2 @ 3 ) :  

In the general case the field operator of the pions is repre- 
sented in the form 

where ri, is the n--annihilation operator, ik is the 
P+-annihilation operator, gk is the PO-annihilation oper- 
ator, and ck and & are certain time-dependent coefficients. 
Here, the processes of creation and annihilation of pions 
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are included in the analysis. We note that the r0 meson has 
a one-component wave function, since the ?rO coincides 
with the anti-.no meson. This certainly excludes the possi- 
bility of superfluidity of a ro subsystem with a nonfixed 
number of TO mesons, since the velocity of the superfiuid 
motion is determined by the gradient of the phase of the 
complex wave function. 

As already stated above, when the pion system is con- 
sidered over times t(rabs the processes of particle creation 
and annihilation can be assumed to be suppressed. This 
implies that cross terms of the type dkik+ appear in the 
Hamiltonian with small coefficients. Taking this into ac- 
count, as a simplification for t(rabs we may set, approxi- 
mately, 

Then all three fields are represented by complex wave func- 
tions, and, in the semiclassical approximation, are de- 
scribed by the equations of two-fluid hydrodynamics. 

In the more general case we shall start from a certain 
Lagrangian describing an interacting pion gas with a fixed 
number of particles of each kind. In the model with /IF4 
interaction we have 

where we have introduced the notation q,- = q-e-'~-', 
q# = qoe-ih: qr+ = q+eciP+', andp- ,po, andp+ arethe 
chemical potentials of the ?r-, TO, and ?r+ mesons, deter- 
mined from the conditions for fixing the numbers of the 
corresponding particles: 

The fields q - ,  q+ , and qo are found from the equa- 
tions of motion obtained by variation of the Lagrangian: 

In the mean-field approximation, from (4.7) we obtain 

whence it follows that p- =p+  =po=p. 
From (4.6) and (4.8), for the density of particles of a 

given kind we have 

Hence, for p 44m3/;1, 

while for p)2m3/;1, 

As well as the mean field we must also take into ac- 
count the contribution of quantum and thermal (for 
T#O) fluctuations. The former introduce unimportant 
changes. Therefore, for T=O we can confine ourselves to 
the mean-field approximation. In this case the free energy 
coincides with the energy and is given by the expression 

In the limiting case of a low pion density [Eq. (4. lo)] we 
have 

while in the high-density limit [Eq. (4.1 1 )] we obtain 

5. EXCITATION SPECTRUM IN THE PRESENCE OF A BOSE 
CONDENSATE 

The Goldstone boson 

For simplicity we shall consider the case when there 
are only pions of one kind. Let these be ?rO mesons. We 
shall describe the excitations superposed on the Bose con- 
densate by introducing real, small-amplitude fields pf(t,r) 
and xf(t,r) such that 

Substituting qo into the equation of motion (4.7) and sep- 
arating the real and imaginary parts, we find in the linear 
approximation in the fields p' and X' 

Hence, setting 

we have 

From (5.2a) we obtain the excitation spectrum 
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Substituting into (5.3) the value q, (4.8) obtained in the 
mean-field approximation, we obtain 

The upper branch of the spectrum corresponds to excita- 
tions with mass [2(3p~-m2)]"2, and the lower branch 
corresponds to gapless oscillations. For k(po the latter are 
given by the expression 

Hence, for an ideal gas we have a quadratic dispersion law 
(w --k2/2m). For a nonideal gas, for small values of the 
coupling constant (Apo<4m3), according to (4.10) we 
have 

while for large values of A (Apo%4m3), taking (4.9) into 
account, we have 

Thus, in the case of a nonideal gas there are Goldstone 
excitations (o a k) in the spectrum. Therefore, according 
to the Landau criterion, a nonideal ?rO gas with a rigorously 
fixed number of particles ought to possess superfluidity. 
But in the case of the ideal gas (w a k2) the property of 
superfluidity is absent. 

The massive photon 

Since the ?r+ and .rr- meson are charged particles, to 
determine the spectrum of the P* excitations we must take 
into account the interaction with the electromagnetic field. 
For this it is necessary to perform the gauge replacement 

Suppose that there are only ?r- mesons. Their La- 
grangian, with allowance for the interaction with the elec- 
tromagnetic field, has the form 

Since the charge of the ?r- system is not neutralized in any 
way, the distribution of the T- mesons over the volume 
is, generally speaking, nonuniform. However, for 
p- I eA, I - N - ~ ~ / R  this nonuniformity can be neglected. 
Thus, for a not too large number of pions (N- (Rp-/e2) 
their distribution can be assumed to be approximately uni- 
form. 

Representing the field q,- in the form 

- p--m2 
q,-=@(l+p')ei~',  cp= --- 

{ ' A  
, p->m,  (5.9) 

where p' and X' are small-amplitude real fields, we obtain 

Here we have introduced the new field A;=A, 
- a,,f/e. Since the quantity F,, is gauge-invariant it can 
also be expressed in terms of the field A;, i.e., F,, 
= F;, = a&: - ad;. AS a result, the Goldstone field X' is 
absorbed by the gauge transformation. Taking this into 
account and varying the Lagrangian with respect to the 
remaining fields A; and p', in the linear approximation we 
obtain the equations 

We note that in the equation for the field A; we have 
discarded the term - 1 6 ~ e p  -?Spo , which is responsible 
for the spatial nonuniformity of the distribution of ?r- me- 
sons. As already stated, this nonuniformity can be ne- 
glected for N- 4 Rp-/e2, p- >m. 

The equations (5.11) determine the spectrum of the 
excitations about the "new" Bose-condensate vacuum. 
There are three branches of excitations: 

The lowest mass 

is possessed by the "magnetic" excitations, a larger mass 

is possessed by the "electric" excitations, and a still larger 
mass 

is possessed by the meson excitations. Here, only the "mag- 
netic" oscillations are independent. Therefore, our separa- 
tion of the branches is rather arbitrary. 

Thus, the Goldstone field X' has been absorbed by the 
gauge transformation. As a consequence of this, the photon 
has acquired an additional polarization and a nonzero 
mass. 

We draw attention to the fact that in the presence of 
charged pions of only one kind the characteristic absorp- 
tion time rabs is considerably longer than in the case when 
both ?r+ and ?r- mesons are present. Because of the con- 
servation of electric charge, the absorption in the former 
case is determined entirely by weak processes. 

We shall consider now the case when there are both 
?r+ and ?r- mesons, and, for simplicity, N,+ = N,- and 
N,+J = 0. In this case the Lagrangian has the form 
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The pion distributions are uniform, since the total charge is 
equal to zero. Analogously to (5.9), we represent the fields 
q- and q+ in the form 

Introducing the new field A; = A, - ( a g '  + a$; )/2e, 
we easily see that only a dependence on the fields p', 
p;, A;, and j f = $ ( X ~  - x;) remains. Varying the La- 

grangian with respect to these fields we can determine the 
excitation spectrum. 

As a result, for k+O there are gap excitations with 
masses 

and also one Goldstone oscillation 

An entirely analogous treatment can also be carried 
out for T#O, and also in the general case, when there 
are P+, 7r-, and 7r0 mesons. As a result, for 
p+ = p- = po= p/3, for the mass of the "magnetic" exci- 
tations we obtain 

where p(k=O) is given by the expression (2.10) in the 
case of a nonrelativistic gas and by the expression (2.19) 
for an ultrarelativistic gas. Setting p(k=O) = pb - (0.5-3)mi (see Sec. 2), and assuming A( 1 and T & T,, 
we obtain my- (25-60) MeV. The nonzero value of the 
photon mass could, in principle, be manifested experimen- 
tally in a certain suppression of the yield of soft photons 
(w < my) by a factor exp( - m JT). In ultrarelativistic col- 
lision of nuclei, however, it is likely that T > m, holds, and 
this factor is approximately equal to unity. An excess yield 
of soft photons could be explained by nonequilibrium ef- 
fects. 

The extra contribution to the mass of the meson 

The p meson is a vector particle, described by the field 
pp= (P: ,Pz , p i  ), p=O, 1, 2, 3. Therefore, the interaction 
of the meson with the 7r+- and T--meson fields is anal- 
ogous to the y.rr'7r- interaction. Thus, the P.rr+7r- inter- 
action is implemented by the replacement18 

To determine the excitations in the presence of condensates 
of 7r+, 7r-, and TO, we must represent the corresponding 
fields in a form analogous to (5.9). The difference from 
photons lies in the fact that in the p-meson case the Gold- 
stone field X' cannot be absorbed into the gauge transfor- 
mation of the field, since the latter (because of the 
nonzero pO-meson mass m;#0) is not gauge-invariant. 
However, the field X' can be absorbed into the gauge trans- 
formation of the electromagnetic field, since the interaction 
of and the photon field A, with the 7rf fields is imple- 
mented by the general replacement 

As a result, as above, we find that the photon acquires a 
nonzero mass (5.16), and the initially massive meson 
acquires extra mass. For p+ = p- = po=p/3 we have 

Setting p (k=O) - p,,,, , T = 0, and p -- m for the esti- 
mate, we obtain m - 6.5m,, , while for p(k=O) -- 6p,,,, we 

p: 
find m -lorn,, whtch is considerably greater than the 

8- bare p -meson mass ( -- 5.5m,). 
As is well known, by virtue of vector dominance the 

yield of dileptons is principally determined by the chan- 
nel of the reaction: 

Because of the excess mass of the meson the probability 
of this reaction in the presence of Bose condensation of 
pions should be reduced (by a factor y-exp[-(m, 
-mi)/T]). Thus, we may expect substantial suppression 
(y-0.14.3) of the yield of dileptons from the region of 
the pion fireball in the presence of a developed pion con- 
densate within it. 

6. INTERACTING PION GAS AT NONZERO TEMPERATURE 

For simplicity we shall consider the case when there 
are only TO mesons. Then q+ = q- =O holds, and qo has 
the form (5.1) with quantities p' and X' given by (5.2a). 
Taking this into account and expressing the amplitude Bk 
in terms of A k  by means of (5.2c), from the Lagrangian 
(4.5) we obtain 

where 
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Taking (6.2) and (6.2a) into account, we have 

The quasiparticle density pq is determined by the ex- 
pression 

The quantity GR(w,k) plays the role of the retarded 
Green's function of the excitations. Its pole determines the 
excitation spectrum (5.3). Near its poles the Green's func- 
tion GR has the simpler form 

where oi(k) is the corresponding branch of the excitation 
spectrum (5.3), and (6.9) 

For T ) m' - 4- the characteristic values 
of k in the integrals (6.7)-(6.9) are of order T. Therefore, 
taking (6. la)  and (5.3) into account we have 

The quantity 

shows the weight with which the given branch of the ex- 
citation spectrum is populated by real mesons. According 
to (5.3)-(5.6), we have r1=r2= 1/2 for k+ 00, i.e., as 
they merge at high momenta the two branches of the ex- 
citation spectrum are represented with the same weight. As 
k-0, for the lower branch the weight T1 -0, and for the 
upper branch the weight r2 + 1. 

The thermodynamic potential R(p,T) is obtained by 
averaging the Lagrangian over the Gibbs distribution. Ac- 
cording to (6.1 ) we have 

where the quantity T, is given by the expression (2.16). 
The quantity p(k=O) =2pq,2 is the density of condensate 
particles. We note that the expression (6.10a) coincides 
with the expression (2.19) obtained for an ultrarelativistic 
ideal gas. The quasiparticle density pq differs from the par- 
ticle density p because of the presence of the two branches 
in the quasiparticle spectrum, populated by real particles in 
proportion to the weight factors ri. 

The classical field q, is obtained from the equation of 
motion obtained by variation of the thermodynamic poten- 
tial 0 ( p , T )  with respect to 9,. Taking (6.4), (6.la), and 
(6.10) into account, we can show that for T)ml and 
i l g m d / ~  the dependence q,(p) has the same form (4.9) 
as for T=O. 

The momentum distribution of free pions in the model 
of sudden breakup of the firebal18'19,20 has the form 

where the quantity (qi2) is19 

The chemical potential p and the density of free pions 
are related by 

where the quantity (q'2)T is determined in terms of 
(qi2)T by means of the expression (6.5) 

It is this distribution, and not the distribution of quasipar- 
ticles, that must be compared with the experimental distri- 
bution. Here we must keep in mind that in the dynamical 
system we are considering the Bose-condensate pions are 
spread over small momenta. Therefore, instead of a 
S-function distribution of them there is in fact a narrow but 
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finite peak at k=O. In this way it would be possible to 
explain the excess yield of soft pions that is observed 
experimentally. l2  

Only quadratic fluctuations were taken into account 
above. It is possible to do this only if q$) (qf2) T, whence 
we obtain the estimate 

Thus, there is a narrow fluctuation region 1 T - T ,  1 <, m/6 
in which the fluctuating field is so large that it cannot be 
treated using perturbation theory. 

Using the expressions (6.4) and (6.5) one can estab- 
lish other thermodynamic characteristics of the system. 
Thus, for the energy we have 

(6.14) 

Using (6. la), we obtain 

Here the first term is the contribution of the condensate, 
and the second is the contribution of the quasiparticles 
superposed on the condensate. 

Above, we considered the case when there are only a0 
mesons. In an analogous way we can also consider the 
general case, when there are pions of all three kinds. Here, 
however, we must bear in mind that, as a consequence of 
the interaction with the electromagnetic vacuum, the spec- 
tra of the a+ and a- mesons differ from the spectra of the 
a0 mesons. It is obvious that some changes of the spectra 
arise also as a consequence of the interaction of the a + ,  
- 

a , and a0 excitations with each other. 

7. PION CONDENSATION IN THE ocMODEL 

As is well known, in strong interactions chiral SU(2) 
xSU(2) symmetry is well fulfilled. Its simplest realization 
is the linear a-model, the Lagrangian of which is usually 
represented in the form (see Ref. 2 1 ) 

where f,=93 MeV is the pion-decay constant. For gener- 
ality we have introduced an interaction with initially mass- 
less nucleons, and A and g are constants. The vacuum is 
realized in a spontaneously broken mode corresponding to 
one of the roots a= + f ,  and 2 = 0 .  As a result, the nu- 
cleon acquires the mass 

The constants A and g are chosen in order to obtain the 
value of the mass of the nucleon in the vacuum, and, for 

the a meson, to obtain a mass in the region of 700 MeV, in 
agreement with the phase-analysis data. This can be 
achieved with g ~ 1 0  and A ~ 2 0 .  The term YsB corre- 
sponds to weak breaking of the chiral symmetry, as a con- 
sequence of which the pion acquires mass. It is usually 
chosen either in the form 

or in the form 

In the case we are considering, for characteristic times 
t<rabS, the number of a+ , a-, and 2 mesons is approxi- 
mately conserved. To take this circumstance into account, 
we shall start from a modified Lagrangian, just as was done 
Sec. 4. From (7.1 ) we obtain 

where Y N ,  Y T N ,  and TUN are terms corresponding to 
the free nucleon field and its interaction with the a and a 
mesons. Unlike the pions, the o mesons are heavy particles 
(m,21700 MeV). Therefore the probability of their pro- 
duction as a result of decay of resonances in the initial 
stages of the collision of nuclei can be much smaller than 
the probability of production of pions. Thus, the initial 
number of a mesons is much smaller than the number of 
pions, and the a mesons can be neglected. To this accuracy 
we can set p,=O. 

Next, for simplicity, we shall consider the case when 
there are only pions of one kind, say a-. Varying the 
Lagrangian (7.4) with respect to the o and a- fields, and 
taking the term TsB in the form (7.3), we obtain the 
equations of motion 

From this, in the mean-field approximation, we obtain two 
possible solutions: 
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We note that the second solution holds only for 
p- <m2f$ 

To make a choice between these two solutions we must 
compare the energies corresponding to them. According to 
(7.5), the energy is represented in the form 

where we have taken into account that IT- and a are con- 
stant fields. Substituting the solution (7.7) into (7.8), we 
obtain 

Taking into account that, for large values of A, according 
to (7.7), 

we have 

For the second solution (7.8) we obtain 

Comparing the expressions (7.12) and (7.13), we easily 
see that for p < f :m -- p,,,, the second solution holds, 
while for p > p, the first solution holds. Thus, for p > p, a 
chiral phase with a vacuum average u=O is realized. For 
this reason, the nucleon mass, determined by (7.2), van- 
ishes for p> p, . 

The vanishing of the nucleon mass should be mani- 
fested experimentally in a significant increase in the yield 
of NN pairs from the region of the pion fireball. In fact, in 
the model of sudden breakup of the we have 

where SpN (6pfi) is the density of nucleons (antinucleons) 
created in the region of the pion fireball, 

is the factor by which the quasiparticle branch of the spec- 
trum in the pion fireball (@-- k)  is populated by free nu- 
cleons, and the factor 4 takes into account the spin-isospin 
degeneracy. It is obvious that the contribution (7.14) must 
be added to the corresponding expression for the density of 
nucleons and antinucleons emerging from the region of the 
nuclear fireball. In addition, the excess yield of resonances, 
which subsequently decay into nucleons, antinucleons, and 
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pions, must be taken into account in an analogous way. 
The estimate (7.14) for T b g  mN gives for the number of 
nucleons and antinucleons 

For Rb- 4 fm we have SNN-SNm- lo2. An excess yield of 
nucleons and antinucleons from the region of the pion fire- 
ball would be evidence in favor of the substantial nucleon- 
mass decrease predicted by the chirally symmetric models. 

CONCLUDING REMARKS 

Thus, Bose condensation of pions leads to a number of 
specific distinctive features that, in principle, can be man- 
ifested in experiment. For example, in the presence of a 
condensate (or in the case of proximity to the critical con- 
densation point) the yield of soft pions is substantially 
enhanced. Such an enhancement has indeed been detected 
experimentally. In the presence of a condensate the hydro- 
dynamic description of the system changes because of the 
presence of two weakly interacting subsystems-the nor- 
mal and the condensate subsystem. The excitation spec- 
trum is greatly softened, and this has an effect on the equa- 
tion of state of the system. These features should be 
manifested in the description of the dynamics of the pion 
liquid. In the presence of a condensate, pion vortices (soli- 
tons) are formed, the detection of which would be of un- 
doubted interest. In the presence of a pion condensate the 
photon acquires mass and an extra polarization, while the 
p meson acquires a large additional mass, and this can lead 
to substantial suppression of the yield of dileptons. The 
nucleon-mass decrease that has been demonstrated in the 
framework of the a model can be manifested in an increase 
of the yield of NN pairs. Finally, the presence of long- 
range order in the condensate may be responsible for the 
large pion-source radius measured in experiments on a, 
correlations. 

Many questions related to Bose condensation in the 
dynamical problem require further analysis. For example, 
it is necessary to take explicit account of effects associated 
with the possible absorption of pions, starting from the 
fundamental Lagrangian (4.1 ) . It is of interest to describe 
the kinetics of the transition of a relativistic system to a 
quasiequilibrium state with a Bose condensate. In analyz- 
ing the hydrodynamic stage one must take into account the 
anisotropy of the expansion of the pion fireball. 
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