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Using the results of direct (real-time) studies of the kinetics of thermally-activated electron 
capture by DX centers in AlGaAs:Te, we show that the reason for the nonexponential 
nature of the capture process is motion of the quasi-Fermi level for metastable electrons, and 
in the case of a degenerate electron gas, additional broadening of the thermal activation 
barrier. We have devised a method for correctly determining the height of the thermally 
activated barrier, taking into account its dependence on the electronic Fermi energy. 
We propose a criterion for applicability of the kinetic equation used to describe the process. 
The results we obtain indicate that the DX center is in a negatively charged state. 

1. INTRODUCTION 

The term "DX center" refers to special states of a do- 
nor impurity in AlGaAs which give rise to so-called per- 
sistent photoconductivity. This photoconductivity is iden- 
tified by the following features. Let the semiconductor be 
cooled in the dark to a low temperature. If its conductivity 
increases upon subsequent illumination and then remains 
unchanged for a long time after the illumination is 
switched off, we call this phenomenon persistent 
photoconductivity.1 In a number of cases the change in 
photoconductivity can be orders of magnitude and last for 
an indefinitely long time. 

The state of the DX center is a deep trap. Under illu- 
mination this trap is ionized, and electrons metastably fill 
the conduction band, giving rise to persistent photocon- 
ductivity. The DX center differs fundamentally from a 
number of other traps by the fact that it does not include 
within itself any structural defects other than the donor 
substitution itself. At the present time we do not view the 
DX centers as some sort of structural complex, but rather 
as a donor state with special properties. It can be created 
by donors belonging either to group IV or group VI. In the 
lattices of GaAs or AlGaAs, the same substitutional donor 
atom can have both DX-center states and ordinary 
quasihydrogenic states. The term "DX center" itself has a 
historical origin. 

A commonly held opinion at this time is that a DX 
center is a donor state that is subjected to strong lattice 
r e l a ~ a t i o n , ~ ~  i.e., the donor atom and its nearest neighbors 
are displaced (reversibly) from their symmetric positions 
at the lattice sites. Therefore, free-electron states (in the r 
valley) are separated from the localized state (the DX cen- 
ter) by an energy barrier. Since overcoming this barrier 
requires a rearrangement of atoms in real space, tunneling 
between these states is negligibly small. Therefore, at low 
temperatures electrons can metastably fill the r valley over 
a long period of time. At higher temperatures it becomes 
possible for thermally activated capture of free electrons to 
take place at the DX center: that is, the persistent photo- 
conductivity undergoes relaxation. 

In contrast to many other aspects of the physics of DX 

centers, the kinetics of electron capture by these centers 
(i.e., the relaxation of the persistent photoconductivity) 
has been studied very incompletely up to the present. This 
process is strongly nonexponential, so that the concept of a 
relaxation time cannot be applied to it; in addition, its 
study by the standard indirect methods [e.g., deep-level 
transient spectroscopy, or DLTS (Ref. 5 ) ]  is extremely 
difficult. The use of these methods requires some initial 
assumption about the form of the kinetic equation used to 
describe the process, and the results obtained depend 
strongly on these assumptions. Experimental results from 
DLTS investigations of electron capture by DX centers are 
quite con t rad ic t~ ry .~~  

In principle, direct study of the relaxation of persistent 
photoconductivity in real time can give a great deal of 
information about the details of the process; however, here 
too the interpretation of the results is quite complicated. 
For example, the experimental relaxation curves presented 
by many in~esti~ators"'~ are well-described by a logarith- 
mic dependence on time. However, solutions of this kind 
can arise from very different kinetic equations. Therefore, 
the question arises of how to justify the use of some par- 
ticular kinetic equation; as a rule, there is no answer to this 
question. 

The most detailed experimental studies of persistent 
photoconductivity relaxation were carried out by Mooney 
et al.lO'" In these studies, the relaxation curves, which are 
plotted at constant temperature, are approximated by the 
numerical solution to a kinetic equation, which is obtained 
by taking into account two important sources of nonexpo- 
nential behavior: shifting of the free-electron Fermi level 
during the relaxation process, and broadening of the ther- 
mally activated relaxation barrier. As fitting parameters 
these authors used the height and width of the barrier, 
which were the same for the entire set of curves plotted at 
different temperatures. It was found that the height of the 
barrier depended strongly on the content of A1 in 
A1,Gal-As, and that the results obtained were in good 
agreement with DLTS data given by the same authors in 
Ref. 6. However, it should be noted that the accuracy of 
the analysis in this case could not have been high, first of 
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all in view of the equivalence of certain fitting parameters, 
and secondly due to a possible contribution from addi- 
tional (parasitic) processes. 

In contrast to the authors of Ref. 11, Mosser et al.l4 
analyzed not the relaxation curves themselves but rather 
their time derivatives, giving them as functions of the 
Fermi energy of the electron gas. This allowed them to 
obtain a better match with the kinetic equation for relax- 
ation, and to better distinguish the parameters entering 
into it. Their investigations were carried out using 
A1GaAs:Si. 

The task of this paper is to study in detail the kinetics 
of relaxation of persistent photoconductivity in 
A1GaAs:Te; in it we develop an approach analogous to 
Mosser et al. We seek to identify the kinetic equation by 
starting from our measurements, i.e., to give its form an 
experimental basis rather than simply determining the pa- 
rameters entering into it. With this goal in mind we pro- 
pose a criterion that can verify the applicability of our 
approach. In previously published the relax- 
ation of a degenerate electron gas was considered. In this 
paper, we use isotropic pressure (which acts on the band 
structure of the sample; see Ref. 16) to investigate the 
relaxation of nondegenerate metastable electrons as well. 
Furthermore, we attempt to study the relaxation of persis- 
tent photoconductivity of a special "activated" form," in 
which high pressures cause the donor level X*, which be- 
longs to the lateral X-valley of the conduction band, to be 
located below the bottom of the r valley in energy. 

Finally, when speaking of DX centers, we cannot avoid 
touching on the question of their charge state. In past 
years, the assumption was made18 that a donor in the DX- 
center state is negatively charged (DX-), capturing not 
one but two electrons. At present, direct experimental con- 
firmation of this fact has been obtained only for Ge 
impurities.19 For other impurities, from both the IV- and 
VI-groups, the results of various indirect measurements 
argue in favor of the DX- mode1;14*2G22 however, because 
of a lack of unambiguous proof, the charge of the DX 
center remains a subject of discussion. Our results also 
indicate a negative charge state of the DX center. 

2. EXPERIMENTAL METHOD 

Our measurements were made on a sample of 
AlxGal-&:Te (with xA1=0.29), grown by the method of 
liquid-phase epitaxy on an insulating GaAs substrate. The 
sample was intentionally made with a large thickness-12 
pm-in order to decrease the influence of surface effects, 
which distort the picture of relaxation of the persistent 
conductivity. The concentration of Te in the sample was 
2 - 1018 cmP3, the electron mobility was - 500 cm2/V . s. 
The concentration of A1 was determined from the low- 
temperature photoluminescence spectrum. A Hall bridge 
was prepared on the sample using photolithography. 
Ohmic contacts made from In were annealed in vacuum 
over a period of 10 minutes at a temperature of 360 to 
380 "C. 

To create isotropic quasihydrostatic compression at 
low temperatures (4.2 to 100 K), we used an autonomous 

low-temperature fixed-pressure chamber with current 
leads.23924 The value of the pressure was determined based 
on the superconducting transition temperature of a Sn ma- 
nometer. The chamber with the sample was placed in a 
vacuum bottle, which in turn was placed in a helium cry- 
ostat inside a superconducting solenoid. To heat the cham- 
ber, a manganin-wire oven was wrapped around it. The 
sample was illuminated with a GaAs photodiode; temper- 
ature was measured using a TBA-brand calibrated ther- 
mistor. Both the photodiode and thermistor were placed 
within the chamber directly on the surface of the sample. 
This procedure ensured that the temperatures of the sam- 
ple and thermometer were equal. The current through the 
oven was regulated by hand. We succeeded in maintaining 
the temperature constant to an accuracy of 0.005 K when 
necessary; its absolute value was determined to an accu- 
racy of -0.1 K. 

The resistance (or Hall resistance) of the sample was 
measured using a nonheating AC current (0.3 to 1 PA, - 180 Hz) in a four-point scheme and a PAR 5207 syn- 
chronous detector (lock-in amplifier) with a symmetric 
input. The voltage source we used was a low-frequency 
GZ-118 oscillator. The current was stabilized by a load 
resistance of 10 M a  (for a characteristic sample resistance 
of tens of ohms to a few kilohms). The signal from the 
lock-in was fed through a digital voltmeter to a universal 
input for a personal computer. 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

3.1. Relaxation of persistent photocurrent and charge state 
of DX centers 

The algorithm for our measurements consisted of the 
following. At a certain fixed temperature T we illuminated 
the sample until we obtained the maximum persistent pho- 
tocurrent possible for the available power and illumination 
geometry. After switching off the illumination, we mea- 
sured the sample resistance as a function of the real time 
R,(t) at constant T. The course of each relaxation curve 
lasted from 20 to 60 min. Before being used, the sample 
was calibrated by determining the Hall mobility of free 
electrons as a function of their concentration and temper- 
ature. Each relaxation curve was converted into a depen- 
dence of the Hall concentration on time, n, ( t). In practice 
each trace was plotted over a limited range of n, because 
the relaxation becomes too slow. In order to broaden the 
admissible limits of n,, in a number of cases we gently 
heated the sample after 50 to 60 minutes of plotting for a 
brief period of time (in this case the relaxation is acceler- 
ated) and then rapidly cooled it to the previous T; this 
allowed us to obtain additional points on the relaxation 
curve. The operating range of T was 50 to 100 K, with 
temperature steps of 1 to 2 K. 

The measurements were performed at pressures of 1 
bar, 4 and 8 kbar. At fixed pressure the entire range of the 
free-electron concentration, and accordingly the Fermi en- 
ergy, is specified by the band structure of the sample: the 
lower limit of EF is determined by the mutual positions of 
the l? valley and the DX level, while the upper limit is 
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FIG. 1. Characteristic examples of experimental c u m  for the relaxation 
of the Hall concentration of electrons, nH, in real tirne for a sample under FIG. 3. The same under a pressure of 4 kbar: 1 )  66.6 K, 2 )  71.1 K, 3 )  
a pressure of 1 bar for various temperatures: 1 )  63.0 K, 2 )  73.3 K,  3 )  79.6 75.4 4, 79.6 K9 5, 84.2 K. 
K, 4) 88.1 K, 5 )  99.8 K.  

determined by the positions of the r valley and the pinning 
donor level X* belonging to the X valley. For P= 1 bar and 
P=4 kbar, both levels (DX and X*) are in resonance with 
the r valley; for P= 8 kbar the DX level drops below the 
valley bottom. Therefore, in the first two cases we observe 
relaxation of a degenerate gas of metastable electrons, 
while in the last case a transition occurs from a degenerate 
to a nondegenerate electron gas during the relaxation. 

Figure 1 shows examples of experimental relaxation 
curves of nH(t), which are plotted at constant temperature. 
The function nH(t) is close to logarithmic. However, it is 
an extremely complicated task to extract any information 
about the parameters of the relaxation process from the 
simple curves nH(t) in view of the large number of equiv- 
alent parameters involved. To separate them, we used the 
following approach. The curves nH(t) we obtained were 
smoothed and differentiated. After this, we constructed the 
dependence of the relaxation rate dnH/dt on some partic- 
ular parameter of the electron gas (the Fermi energy, or 
temperature) for fixed values of the other parameters. 

Figures 2 to 4 show examples of the dependence of 
dnH/dt on EF (at various pressures) on a logarithmic 
scale. Its important feature is the presence of a clearcut 
linear portion over a wide range of EF. This implies that 
dn/dtaexp(aEF/kT), which is characteristic of a ther- 
mally activated process. We assume that one process 
dominates-thermally activated capture of electrons by 

DX centers-in the range where the process is linear. The 
deviations of the dependence from linear (at the beginning 
and end of relaxation) indicate the presence of additional 
processes. Near the lower limit of EF (at a specific pres- 
sure), there is an obvious increase in the contribution from 
emission of electrons from the DX center. The origin of the 
additional relaxation process observed immediately after 
switching off the illumination is not entirely clear. Perhaps 
it may be connected with, e.g., recombination of spatially 
separated carriers with different signs.9v25,26 

Thus, only demonstrably linear portions of the exper- 
imental curves ln(dnH/dt) a EF correspond to a single re- 
laxation process. If we assume that capture of electrons by 
DX centers takes place in a thermally activated fashion via 
an intermediate "barrier" which in thermody- 
namic equilibrium is filled along with all the other electron 
levels (except the DX center), and neglect possible broad- 
ening of the barrier, the kinetic equation has the form": 

Here NA is the number of ionized donors and EB is the 
barrier height measured from the bottom of the conduction 
band. At each instant of time, capture takes place through 
an effective thermally activated barrier a = EB - aEF, 
which has a completely specified height for a given EF. 
Because a is always much larger than kT, the occupation 
of the "barrier" state obeys Boltzmann statistics. 3 in- 

/ 
E,. meV 

-16 
-20 -10 0 10 20 

E,. meV 
HG. 2. Examples of the dependence of the relaxation rate for free elec- 
trons, dn,/dt (on a logarithmic scale) on the Fermi energy of the elec- 
tron gas under a pressure of 1 bar for various temperatures: 1 )  73.3 K, 2 )  FIG. 4. The same under a pressure of 8 kbar: 1 )  71.4 K, 2 )  78.0 K, 3 )  
79.6 K, 3 )  88.1 K, 4) 99.8 K. 81.7 K, 4) 90.0 K. 
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FIG. 5. Values of the coefficient a as a function of temperature for 
various pressures; a/kT is the slope of the linear portion of the functions 
in Figs. 2 4 .  Each point corresponds to a single relaxation curve. *-I 
bar, 0 4  kbar, L 8  kbar. 

creases appreciably within the relaxation time, which de- 
termines the strong nonexponential character of the pro- 
cess. 

The coefficient a in Eq. ( 1) reflects the charge of the 
DX center, and accordingly that of the "barrier" state.14 
For negatively charged DX centers (DX- ), when two elec- 
trons are trapped on a single donor level, a=2.  The expo- 
nential term in ( 1) corresponds to equilibrium filling of the 
two-electron donor state for the case of B statistics. For a 
neutral DX center ( D P ) ,  a= 1. The factor N z  in (1) 
changes within a relaxation time, although considerably 
more slowly than the exponent. Therefore, the slope of the 
linear portion of the dependence ln(dnH/dt) a EF should 
be close to the value a/kT. This makes it possible to de- 
termine the coefficient a experimentally. 

Values of a found at various temperatures are shown 
in Fig. 5 (each point corresponds to a single relaxation 
curve). At a pressure of 8 kbar, a =; 2 for all T. When P= 1 
bar and P=4 kbar, the value of a turns out to be larger; in 
both cases there exists a range of Tin which a=2.9*0.2. 
We recall that at P= 8 kbar, relaxation of a nondegenerate 
electron gas is observed, while at P<4 kbar it is a degen- 
erate electron gas that relaxes. 

In order to explain the difference in values of a ,  let us 
consider how a is affected by broadening of the relaxation 
energy barrier, which may be due, e.g., to fluctuations in 
the A1 content of the sample. In the kinetic equation ( 1 ), 
broadening may be introduced by assuming a distribution 
of the density of "barrier" states with respect to energy1': 

Here, nAx+ (E) is the density of "barrier" states at energy 
E. Each "barrier" state corresponds to a single specific 
donor atom. nAx(E) evolves nonuniformly with time be- 

FIG. 6. Evolution of a model density of "barrier" states in the process of 
relaxation. The shape of the bamer is described by a Gaussian distribu- 
tion n(E) = (Nd/ d2pA)exp[-- ( E - E ~ ) ~ / ~ A ~ ]  at the initial time, where 
Nd=2. 10" cm-' and A=20 meV. The curves (from left to right) cor- 
respond to values of the parameter n~x(Eo,t)/n&(Eo,t) (for Eo 
= EB- 10 meV) of 1.0, 0.99, 0.9, 0.5, and 0.005 respectively. 

cause relaxation occurs primarily through states that are 
lowest in energy; the relaxation will occur roughly once 
through each particular "barrier" (donor) state. Integra- 
tion of Eq. (2) gives the relaxation rate dn/dt. 

It is impossible to solve Eq. (2) analytically, because 
EF is time-varying. However, (2) does allow a certain sim- 
plification. Assume we have a certain fixed value of the 
energy Eo. Let nzx(E,t0) be the density of "barrier" states 
at the initial time to. Then from Eq. (2) it follows that 

=[n;x(E~,t)/n;x(E~,t~)lex~(-(E-E~>/kT). ( 3 )  

This implies that the evolution of nAX(E) is determined by 
its form at time to and temperature, while the position of 
the Fermi level affects only the rate of that evolution, not 
its form. We call the reader's attention to the fact that Eq. 
(3) implies a very strong dependence on energy. 

In Fig. 6 we show a model example of such an evolu- 
tion. The initial distribution nAx(E,t0) is Gaussian here, 
which is reasonable for the case of DX centers if the width 
of the relaxation barrier is associated with fluctuations in 
the A1 content of the sample. We can in practice include 
the shift of the left boundary of the distribution nix(E) as 
an additional effective dependence of the barrier height EB 
on the Fermi energy. To each value of EF there corre- 
sponds a new effective height E,, which depends weakly on 
temperature for a given EF; therefore, the thermally acti- 
vated character of the relaxation is not disrupted. 

Numerical calculations using Eqs. (2) and (3), and 
the model of the evolution of the barrier shape (Fig. 6), 
show that for degenerate electrons the dependence of EB on 
EF should be very close to linear, as before. The relaxation 
equation ( 1 ) retains its form, but with an increased value 
of a: for DX-, a = 2 + 6, while for DP a = 1 + 6. In order 
of magnitude, A equals the ratio of the width of the barrier 
AEB to the maximum value of the Fermi energy. Estimates 
of this ratio give values of no more than 0.6 to 0.8; the 
value of a found from experiment, i.e., in the limits 2.9 
h0.2, suggests the representation DX-, but not DP. Judg- 
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ing by all the evidence, only this range of values of a 
corresponds to a single relaxation process; when a goes 
outside these limits, we have more than one process. Val- 
ues of a that are too large at low temperatures are associ- 
ated with the fact that we cannot distinguish two different 
relaxation processes in this state, while at large T we can- 
not distinguish the processes of capture and emission. 

Broadening of the barrier should have a much weaker 
effect on the relaxation of nondegenerate electrons. Actu- 
ally, whereas the evolution of the barrier shape reflects an 
absolute change in the concentration of metastable elec- 
trons, the coefficient a reflects a shift of their Fermi level. 
However, for nondegenerate electrons, this shift in the 
Fermi level is responsible for a much smaller change in n~ 
and, consequently, a much smaller change in the density of 
"barrier" states. In other words, the entire relaxation takes 
place through barriers with the same height: the contribu- 
tion of barrier broadening (i.e., the correction 6) is found 
to be negligibly small, a d  values of the coefficient a = 2  
found at P= 8 kbar are in good agreement with the picture 
of capture of nondegenerate electrons by a DX- center. 

Thus, the experiment shows that the rate of relaxation 
of persistent photoconductivity depends exponentially on 
the Fermi energy of the metastable electrons: 
dnvdt ,  exp ( a ~ F / k T ) ,  where a = 2 for nondegenerate 
electron gas and a = 2 + S for a degenerate electron gas in 
the same sample; the number 2 is due to the negatively 
charged state of the DX center, while A reflects the broad- 
ening of the thermally activated barrier. The reason for the 
nonexponential nature of the process is the change in the 
effective barrier height within a relaxation time. 

In speaking of the charge state of the DX center we 
should, of course, keep in mind that this method of deter- 
mining it resembles several indirect methods. Although 
these results are an indication that the DX center is nega- 
tively charged, which agrees with the results of investiga- 
tions by other methods, it is not a conclusive proof. 

FIG. 7. Examples of Arrhenius plots constructed for electron relaxation 
rates dn,/dt at fixed values of the F energy: *-P= 1 bar, EF=60 meV; 
0-P=4  kbar, EF= 18 meV; A-P= 8 kbar, EF=O meV. 

an Arrhenius plot of the relaxation time, i.e., T versus 1/T. 
In our case, the nonexponential character renders the con- 
cept of a relaxation time meaningless. 

Therefore, we chose the following approach. Let us 
pick some value of EF, and take points that correspond to 
this choice from an isothermal experimental dependence of 
dnH/dt on EF. We then construct the Arrhenius plot using 
these points, ln(dnH/dt) versus 1/T. If it is correct to 
assume that the relaxation is thermally activated in char- 
acter, then the slope of the plot should be the physical 
value of 3, i.e., the effective height of the thermally acti- 
vated barrier corresponding to this Fermi energy for the 
electron gas. This procedure can be carried out for various 
EF , thereby giving the experimental dependence of % on 
EF, which should correspond to % = EB - aEF when the 
kinetic equations ( 1 ) and (2) are applicable. 

Figure 7 shows examples of Arrhenius plots con- 
structed in this way for various EF and P. The plots are 
linear over a wide range of the relaxation rate. This shows 
that the process has a thermally activated character, and 
that the concept of an effective barrier can be applied to it 

3.2. Thermally activated relaxation barrier. Criterion for for a given 
applicability of the kinetic equation 

In Fig. 8 we show the values of @ obtained as a func- 
The usual method for finding the height of a thermally tion of EF for pressures of 1 bar and 4 kbar. It is clear that 

activated barrier for an exponential process is to construct % can change by as much as 100 meV; in the range of 

FIG. 8. Values of the barrier for relaxation 
g found as a function of the Fenni energy 
of the electrons: (a) P= 1 bar, d g / d E F  
=-3.2; (b) P=4 kbar, d g / d E F  = -2.5. 
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FIG. 9. Examples of Arrhenius plots for electron relaxation rates dnH/dt 
constructed for fixed values of the ratio of the Fenni energy to tempera- 
ture EF/kT. *-P= 1 bar, EF/kT=6.25; 0 -P=4  kbar, EF/kT=2.75; 
A-P=8 kbar, EF/kT=0.25. 

characteristic temperatures for the relaxation kT-5-10 
meV; this leads to a very strong nonexponential behavior 
of the rate. The functions g ( E F )  are linear to good accu- 
racy; their slopes 4 g / d E F  (3.2 when P= 1 bar and 2.5 
when P=4 kbar) are close to +e values of the coefficient 
a=2.9*0.2 found above, but do not coincide with them. 
It is probable that the rather small difference reflects pe- 
culiarities of the kinetic process that we did not include. 

Another method of constructing an Arrhenius plot is 
to specify that at each relaxation curve we take the value of 
dnH/dt for fixed values of EF/kT. In this case the slope of 
the Arrhenius plot should give the height of the barrier EB 
measured from the bottom of the conduction band. In con- 
trast to the effective height s, the value EB has one well- 
determined value, which does not depend on the parameter 
EF/kT. Therefore, constancy of the value EB SO obtained 
for various EF/kT (at fixed pressure) can serve as a crite- 
rion for applicability of the kinetic Eqs. ( 1) and (2), and 
of our entire approach. 

The Arrhenius plots obtained using this method of 
construction are shown in Fig. 9. It is clear that they are 
linear to good accuracy. In Fig. 10 we show the height of 

I . ,  , , 

-2 - 1  0 1 t ; / k T  

FIG. 10. Height of the relaxation barrier EB found from the slope of 
Arrhenius plots (Fig. 9) constructed at fixed values of the parameter 
EF/kT as a function of the value of this parameter. (a) P= 1 bar, (b) 
P=4 kbar, (c)  8 kbar. 

1 0 0 1  
0 4 8 12 

P, kbar 

FIG. 11. Height of the relaxation barrier measured from the bottom of 
the conduction band as a function of applied pressure. 

the barrier EB obtained from the Arrhenius plot for various 
pressures and values of the parameter EF/kT (the specific 
value of this parameter does not have any special meaning 
in itself). It is clear that for a given P, EB is independent of 
the parameter EF/kT to an accuracy of 3 to 4%; this 
rather small deviation could be random in origin. Further- 
more, the values of EB we find coincide within limits of 
errors with the extrapolation of (EF) to EF=O. 

The constancy of EB for various values of the param- 
eter EF/kT indicate that the kinetic equation (1) can be 
used to describe capture of electrons by DX centers. Note 
that until now there have been no reports in the literature 
regarding experimental criteria for determining whether 
this description of the relaxation of persistent photocon- 
ductivity is adequate. 

Figure 11 shows the dependence of the height of the 
thermally activated barrier EB on applied pressure. The 
dependence is found to be very strong: the derivative 
dE# is --20 meV/kbar, which greatly exceeds the rate 
of change of other characteristic energies in the conduction 
band, the largest of which-the rate at which the I? and X 
values approach one another-is almost two times smaller 
(11-12 mev/kbar).I6 There is a natural explanation for 
this result: if the center is a DX-, the bamer height EB 
should be computed for two electrons. 

Previous values of dE,JdP reported in the literature 
differ greatly: from - 17 meV/kbar (Ref. 14), which is 
close to our result, to values an order of magnitude 
~maller."~ The occurrence of this scatter in the data is not 
surprising, since the resulting height of the (effective) bar- 
rier can vary over very wide limits when the accuracy of 
the data processing methods is inadequate. 

Thus, our new method of determining the height of the 
thermally activated barrier allows us to determine both the 
value of the effective barrier as a function of the Fermi 
energy and its absolute height measured from the bottom 
of the conduction band for the case of a nonexponential 
relaxation process. At the same time, we have found a 
criterion that allows us to decide whether our approach is 
adequate and whether the kinetic equations are applicable. 
We have shown that the change in the barrier height under 
pressure exceeds by a factor of two the rate of convergence 
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FIG. 12. Examples of dependence of the electron relaxation rate dn,/dt 
(on a logarithmic scale) on the Fermi energy of the electron gas under a 
pressure of 11.5 bar at various temperatures 1-59.6 K, 2-67.3 K ,  
3-72.0 K ,  6 7 6 . 8  K .  

of the r and X valleys, which can be explained within the 
framework of a picture involving negatively charged DX 
centers. 

3.3. Relaxation of activated persistent photoconductivity 

We attempted to use our approach to describe the re- 
laxation of the activated type of persistent photo- 
condu~t iv i t~ . '~  In a sample under a pressure P= 11 kbar, 
both the DX level and the donor level X* belong to the X 
valley, which is located below the bottom of the r valley in 
energy. Illuminating the sample leads to metastable filling 
of the X* level (in this case, no conductivity is observed at 
4.2 K). As the temperature increases, electrons from the 
X* level are thermally activated into the r valley, and 
simultaneously relax into a state of the DX center. 

We found that the relaxation process for activated per- 
sistent photoconductivity differs considerably from that 
observed at lower pressures. Figure 12 shows plotted ex- 
amples (on a logarithmic scale) of the dependences of the 
relaxation rate for electrons dnH/dt on their Fermi energy 
at constant temperature. On these curves, we observe a 
linear portion as before; however, its slope turns out to be 
very large, implying a value of the coefficient a that lies 
between 4 and 15, which clearly has no physical content. 
Furthermore, when we constructed Arrhenius plots for 
dnH/dt at fixed values of EF/kT, the barrier height EB we 
found varied within the range 100 to 250 meV for various 
values of EF/kT, which naturally is physically meaning- 
less. Consequently, this criterion indicates that the kinetic 
equation ( 1) cannot be used to describe the relaxation in 
this case. 

For the case of activated persistent photoconductivity, 
the Hall concentration nH is only a small part of the overall 
concentration of metastable electrons, the majority of 
which are localized at the donor level X*. If we start from 
the general picture of thermally activated relaxation 
through an energy barrier, we can expect that an additional 
preexponential factor will appear in the kinetic equation 
( 1 ); however, the exponent retains its form, with a coeffi- 
cient a-2. From our results, however, it follows that the 

4 8 16 $', arb units 

FIG. 13. "Relaxation barrier height" Eb found through various methods 
of constructing Arrhenius plots for dn,/dt. The value of dn,/dt was 
taken for fixed values of the parameter nTS: 0-n/T3", *-n, W - ~ T " ~ ,  
U-n  T. 

kinetic equation can change its form in a more fundamen- 
tal way. 

A more general form of the equation for thermally 
activated relaxation can be written as follows: 

dnH/dt = KF exp ( - E d k T  + G), (4) 

where F and G are functions of the parameters of the 
electron gas, i.e., its concentration, temperature, etc. The 
preexponential function F has only a weak influence on the 
accuracy to which EB is determined. Therefore, in order to 
find the barrier height EB it is necessary to construct 
Arrhenius plots for dnH/dt at fixed values of the function 
G. Previously we set G=aEF/kT. 

We made an attempt to find some combination of n 
and T that could serve as the argument of the function G. 
Constancy of the barrier height EB for various values of 
this argument could be used as such a criterion, and Fig. 13 
shows the results of using it in this way. The "barrier 
height" is found from the slope of the (linear) Arrhenius 
plots, which are plotted at fixed values of the argument 
n ~ ~ ;  this was done several times for various values of B. 
For nondegenerate electrons the condition EF/kT=const 
used previously is equivalent to n / ~ ~ ' ~  = const (8=-3/2). 

It is clear from Fig. 13 that the "barrier height" is 
unchanged if the Arrhenius plot for dnH/dt is constructed 
at fixed values of n ~ " ~ ,  i.e., this product can be a suitable 
argument for the function G. The results of this plotting 
procedure differ markedly from the results of plotting these 
curves for fixed values of, say, n or nT. The "barrier 
height" (determined under the condition n T''~ = const) is 
- 150 meV, which is smaller than the value found by ex- 
trapolating the function EB(P) ( -200 meV, Fig. 11); 
however, the agreement may be considered satisfactory. 

Figure 13 shows that the choice of the argument of the 
function G has a very strong influence on the resulting 
value of the "barrier height". Therefore, if a function of the 
argument n ~ " ~  appears in the kinetic equation (2), it will 
also appear in the exponent, although not in the preexpo- 
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nential factor. The origin of the additional term in the 
exponent remains unclear within the kinetic equation. 

Most of the assertions in this section are tentative. As 
a conclusion we can state that the kinetic equation, which 
adequately describes relaxation of the usual persistent pho- 
toconductivity, loses its usefulness for the case of persistent 
photoconductivity of activated type. 

4. CONCLUSION 

We have thus camed out a detailed investigation of the 
(nonexponential) relaxation of persistent photoconductiv- 
ity in A1GaAs:Te. We have shown experimentally that it is 
thermally activated in nature. The reason for its nonexpo- 
nential behavior is the dependence of the height of the 
effective energy barrier for relaxation on the Fermi energy 
of the electron gas. This dependence reflects the charge 
state of the DX center and broadening of the barrier. We 
have developed a method for correctly determining the 
bamer height, which is at the same time a criterion for 
applicability of a kinetic relaxation equation of specific 
form. We found that the relaxation barrier measured from 
the bottom of the conduction band depends strongly on 
pressure. Its rate of decrease is roughly double the shift of 
the I? valley under pressure. 

The results of this paper indicate a negative charge 
state for the DX center. 
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