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We investigate theoretically within the Luttinger model the tunneling of holes through a 
single heterobarrier in the GaAs-A1,Gal-As-GaAs structure. In view of the complexity of 
the valence band, hole tunneling is a multichannel process, that is, the holes can go 
from the light subband to the heavy one and vice versa. We find that in the event of new 
channels opening, the dependence of the hole tunneling coefficients on the energy and the 
momentum parallel to the heterojunction exhibits a behavior inherent in that of the 
scattering cross section near a reaction threshold. We also find that the energy dependence on 
the tunneling probability of heavy holes is nonmonotonic and exhibits sharp peaks. 
Finally, we demonstrate that by applying voltage to the heterobarrier a population inversion 
of the hole subbands in the collector can be created. 

1. INTRODUCTION 

This paper is devoted to a theoretical study of pro- 
cesses of holes tunneling through single heterobarriers in 
materials of the structure of diamond and zinc blende. 

In contrast to electron tunneling, hole tunneling has 
yet to be thoroughly studied. Fairly recently Esaki, Men- 
dez, Ricco, and ~ a n ~ l * ~  observed in experiments the res- 
onant tunneling of holes in a two-barrier structure, while 
Wessel and ,41tarelli3 and Chao and chuang4 performed 
the relevant calculations. However, hole tunneling through 
a single barrier exhibits peculiar features. As we shortly 
show, the tunneling of heavy holes through a single heter- 
obamer formed by two heterojunctions resembles resonant 
tunneling. For instance, the energy dependence of the 
transmission coefficient displays sharp peaks. This is due to 
hole buildup in intermediate states, similar to electron 
buildup in quasistationary states in resonant 
tunnelingS5 Here we interpret intermediate states as those 
that fall off exponentially far from the barrier, similar to 
the interpretation given in Ref. 6 when threshold phenom- 
ena are considered. 

In view of the complexity of the valence band, hole 
tunneling is a multichannel process, that is, in the course of 
tunneling the holes go from the light subband to the heavy 
one and vice versa. It appears that when channels open or 
close, the tunneling coefficients exhibit singularities similar 
to those that elastic scattering cross sections exhibit near a 
reaction threshold. 

When voltage is applied to the heterobarrier, the most 
intensive tunneling processes are from the heavy subband 
to the light one and from the light subband to the light one. 
Hence, light holes mostly find themselves behind the bar- 
rier. Below we show that by applying voltage to the barrier 
a population inversion in light- and heavy-hole subbands 
can be created. 

Note that suris8 examined hole tunneling through 
rectangular heterobarriers in Kane's isotropic model. 

FIG. 2. The kll-dependence of at a lixed energy. Curves I and 2 cor- 
FIG. 1. Section of the constant-energy surfaces of the light and heavy respond to a hole moving outside of the bamer, and curves 3 and 4 inside 
holes by the plane k,,=O. The arrows depict the velocity vectors. the barrier. 
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2. GENERAL PROPERTIES OF HOLE TUNNELING 

The Hamiltonian commonly used is describing the 
movement of holes in homogeneous semiconductors with a 
structure of diamond and zinc blende9 becomes non- 
Hermitian when used for inhomogeneous structures, since 
the constants A, B, and D determining the spectrum be- 
come coordinate-dependent. If A, B, and D depend only on 
the z coordinate, the simplest Hermitian Hamiltonian has 
the form 

FIG. 3. Hole tunneling coefficients vs kll for the symmetric 
structure depicted in the inset at (a) k,=O and (b)  k,= k,, . 
The hole energy is 25 meV. 

where Ev(z)  is the top of the valence band, i- =ix-iiy, 
4 = + $, ij= -i(d/drj), and mo is the free-electron 
mass. 

A hole whose motion is described by the Hamiltonian 
(1 )  has four constants of motion: the energy, the two 
wave-vector components perpendicular to the z axis, and 
the mirror parity." The last constant of motion has a sim- 
ple physical meaning for holes with an isotropic dispersion 
law: namely, parity under reflection in the plane in which 
the z axis and vector kll lie. 

In the representation of mirror-even ( + ) and mirror- 
odd ( - ) wave functions, the Hamiltonian ( 1 )  has the 
form of a block matrix: 

where 
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a,, a,,, and a, are the Pauli matrices, and 8 is the angle 
between vector kll and the x axis. In accordance with Eqs. 
(2), below we consider independent mirror-even and 
mirror-odd holes, whose motion is described by the 2-by-2 
Hamiltonians (H+ and H-, respectively). 

Let us now examine the restrictions imposed on the 
tunneling processes by the laws of conservation of the en- 
ergy and the two momentum components mentioned ear- 

k,. 100 k 

FIG. 4. The parts of Figs 3a and 3b corresponding to large kll on a greater 
scale. 

lier. For simplicity we start with the case where the A, B, 
D, and Ev are the same on both sides of the barrier. Then 
the z components of the initial and final states of a hole are 
located at the intersection of the straight line kll=const 
and the constant-energy surfaces of the light, 
El(kx,ky,kz) =E, and heavy, Eh(kx,ky,k,) =E, holes: 

where C2= d - 3 B2, and the values of A, B, D, and Ev are 
those outside the barrier. 

Figure 1 shows that for kll < kl the straight line 
k(l =const intersects the constant-energy surfaces of the 
light and heavy ions twice each (in Fig. 1 ky=O, but the 
pattern is the same for all directions of kll). At two inter- 
section points ( 3 in the light subband and 4 in the heavy) 
the hole states have positive velocity components along the 
z axis. In the event of tunneling of holes with such kll, the 
incident holes and the holes that have passed through the 
barrier can be in either state 3 or state 4. In other words, as 
a result of tunneling a hole either remains in the same 
subband (transitions of the 3-  3 or 4-+ 4 type) or trans- 
fers to the other subband (transitions of the 3-+ 4 or 4+ 3 
type). If we denote the ratio of the transmitted flux of holes 
of species j to the incident flux of holes of species i by 
Dij, the states I and 4 by the letter h, and the states 2 and 
3 by the letter 1, for such vectors kJJ  the coefficients Dl1, 
Dhh, Dlh, and Dhl are finite, and, hence, so are the reflec- 
tion coefficients Rll, Rhh, Rlh, and Rhl. 

For k, < kll < k2 the straight line kll =const intersects 
(twice) only the heavy-hole constant-energy surface. In 
this case outside the barrier there is only one state with a 
positive velocity. Hence only tunneling transitions from the 
heavy subband to the heavy subband are possible, with 
only Dhh and Rhh finite (we denote the states 5,6, 7, and 10 
by the letter'h', too). 

For kZ < kll < k3 the straight line kll =const intersects 
the heavy-hole constant-energy surface four times. Two 
states, 8 and 10, have a positive velocity. We denote the 
states 8 and 9 by the letter H. Then in this range the finite 
coefficients are DHH, Dhh, DHh, DhH, RHH, Rhh, RHh, 
and RhH. Note that the given range exists only if the 
heavy-hole constant-energy surface has concavities, that is, 
if there exists a cone of negative transverse masses. 

Below we give the expressions for k l ,  k2, and k3: 
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where &=2mo(~-E,)/#. -cos( [kZh - kZl]z--0, where { is a phase factor, and kzl 
These results can easily be generalized to incorporate and kzh the z components of the wave vectors of light and 

the case where the positions of the top of the valence band, heavy holes. 
E,, to the right and left of the barrier differ. Here kl,  k2, 
and k3 are different on the right and left of the barrier, so 
to distinguish the two values we use the superscripts R and 3. TUNNELING THROUGH RECTANGULAR BARRIERS 
L. To determine the possible values of the-first and second 
subscripts in Dii, we must find the ranges of kll within 
which the incident holes and the holes that have passed the 
barrier fall with respect to the values of kl,  k2, and k3. For 
instance, if an incident hole "fits" into the range 
k2L < kll< k3L and a hole that has passed the barrier into 
the range kll< klR, then Dhl , dhh , DH1, and DHh are finite. 

Let us consider hole tunneling through a rectangular 
barrier. Suppose that the heteroboundaries lie in the planes 
z=0 and z=a, so that the range 0 < z  < a constitutes a 
barrier for the holes (see the inset in Fig. 3a). The wave 
function outside the barrier can be represented as a plane- 
wave expansion: 

Now we give the expression for the z component of the 4 4 

flux, which can be obtained in the usual manner7 by em- $= Z b,$j= ,;, c,ex~(-ik~z)$,, ,= 1 
(6) 

ploying (2b): 

+($II;~,~$))+D($I~~~-~~~I$)I, (5) 

where I $) is a two-component spinor, the wave function of 
a hole. 

Note that for a state that is a linear combination of 
light and heavy holes or states h and H with the same 
energies and kJI, the component jz  is the sum of the z 
components of the fluxes of the respective constituents, and 
an interference term is absent (both j, and j, have such 
terms). This can easily be understood if we take into ac- 
count the law of flux conservation (div j =0) and the law 
of variation of the interference term in space: 

where N = d m ,  V, = I ($, I ez 1 $,) 1 is the magni- 
tude of the mean value of the velocity component along the 
z axis, and A = 1 for mirror-even holes, and A = - 1 for 
mirror-odd holes. These normalization condition corre- 
sponds to j,= 1. Below we give the formulas for the four 
values of k,, : 

where R =A&- ( ~ 2 -  ~2-$2)k;i For kzl let us select the region, however, k, is purely imaginary if C=O, that is, the 

"+" sign in front of both radical signs. Then in the range holes obey an isotropic dispersion law. For C#O the kll- 

kll< kl, kZ1 corresponds to a light hole moving to the left dependence of k: is depicted in Fig. 2. The reader can see 

(state 2 in Fig. l ) ,  while in the range k2 < k(l < k3, kZl that for C#O and kll> kt above the barrier, k, acquires a 

corresponds to an H-hole moving to the right (state 8 in positive part! 

Fig. 1 ) . For kZ3 we select the " - " sign in front of the inner The matching conditions for the wave functions are 
radical sign and "+" in front of the outer. Then kz3 tor- obtained by integrating the Schrodinger equation with the 
responds to heavy holes moving to the left (states 1 , 5 ,  and Hamiltonian (2) near a heteroboundar~. If the heter- 
7 in Fig. 1). We put kB= -kzl and kz4= -kz3. Note that oboundary lies in plane z=0, the boundary conditions for 
in kl < kll < kz the imaginary part of kZl is positive. the spinor components $@ (here P is the spinor index) and 

Expansion (6) is valid above the barrier, too. In this their derivatives can be written as 

754 JETP 78 (5), May 1994 V. Ya. Aleshkin and N. A. Bekin 754 



0 20 40 60 80 100 120 

E. MeV 

E. MeV 

where i is a 4-by-4 matrix with the following finite ele- 
ments: 

FIG. 5. Hole tunneling coefficients vs en- 
ergy for the structure depicted in the inset 
at k,=O and kx=2.4X lo6 cm-I. The low- 
energy part of (a) is depicted in (b) on a 
larger scale. 

The expansion coefficients c j  in ( 6 )  on th: two sides of the 
barrier are related via a transfer matrix T (see Ref. 5): 

where M l j = q j ,  Mz j= ikdq j ,  M 3 j = ~ j ,  Mqi=ikzjxj,  and 
NIn = exp ( - ikz,,a)SIn, with 61, the 4-by-4 identity matrix. 
The M matrix establishes the transition from the represen- 
tation ( 6 )  to the representation ( 9 ) .  

Let us assume that a hole is incident on the bamer 
from the region z < 0. Irrespective of the type of hole inci- 
dent on the barrier, behind the barrier (in the region z > a )  
there can be heavy holes moving to the right. On the other 
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hand, the region behind the barrier can contain light holes 
moving to the right only if klR > kll (if kll > kZR, there can 
be H-holes moving to the right). If klR < kll < kzR, the re- 
gion behind the barrier contains light-hole states that decay 
as z+ oo . The absence in this region of holes moving to the 
left (or states exponentially growing as z+ rn for 
klR < kll < kzR) leads to the vanishing of two expansion 
coefficients cj(a +0): namely, c3(a +0) =O for all k and lk c,(a+O) =O for kll < klR or cz(a+O) =O for kll> kl . 

Let us now examine the wave functions of holes in 
front of the barrier. If a unit flux of light holes (heavy 
H-holes) is incident on the barrier, c2( -0) = 1 
(cl(-0)=1), and c4(-0)=0 since there are no 
h-holes incident on the barrier. If a unit flux of heavy 
h-holes is incident on the barrier, c4(-0) = 1 and 
c2 ( - 0) = 0 for kll < klL, since there are no heavy H-holes 
incident on the barrier. But if klL<kll  <kzL, we have 
cl ( -0) =0, since within this range there can be no states 
growing with z+ - a,. Thus, in front of the barrier one of 

FIG. 6. Hole tunneling coefficients vs k(l for the slightly asym- 
metric structure depicted in the inset for (a) mirror-even and 
(b) mirror-odd holes at k,=O. The hole energy is 25 meV. 

the coefficients cj is equal to unity and another is zero. 
Bearing in mind what was said earlier, we see that Eqs. 

( 10) and ( 11) lead to a system of four inhomogeneous 
linear equations for determining the four unknown coeffi- 
cients c, . The tunneling coefficients are expressed in terms 
of the cj(a+O) and the reflection coefficients in terms of 
the cj(-0). 

Figures 3a and 3b show how Dl, depends on kll at 
8=0 and 8=?r/4, respectively, for the structure depicted 
in the inset. For symmetric barriers the tunneling coeffi- 
cients of mirror-even holes, Di, , are equal, respectively, to 
the coefficients Dji of mirror-odd. This property is not 
present in asymmetric barriers. 

Figures 3a and 3b clearly demonstrate the following 
three specific features of hole tunneling. First, hh assumes 
its maximum value at kJI =kl rather than at klJ =0, as is 
the case with electrons. Second, the kll-derivative of Dhh 
becomes equal to a, at kll = kl ,k2. And, finally, within 

s nonmono- the range kll > kl the kll-dependence of & i 
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tonic ( Dhh has a peak in the range kl < kll < k2 and a sec- 
ond peak in the neighborhood of kll=k2). 

The reason why Dhh increases with kll is that there are 
two tunneling channels under the barrier; one corresponds 
to light holes, and the other to heavy holes. Clearly, the 
"light" channel is more transparent since in it the damping 
of the wave function in the barrier is greater. At kll =0 the 
heteroboundaries do not mix the states of light and heavy 
holes (the H ,  are diagonal), and therefore the "light" 
channel is closed for heavy holes. As k(l increases, the 
"light" channel becomes more and more open for heavy 
holes, and Dhh increases. 

For k2> kll> kl only the motion of heavy h-holes is 
infinite, while the states of light holes and of heavy H-holes 
decay exponentially far from a heterobamer (an interme- 
diate state). Strictly speaking, dividing holes in an inter- 
mediate state into heavy and light is purely nominal be- 
cause the values of kz for both lie on the same loop of the 
kZ(&,kl() dependence (see Fig. 2). The cloud of light holes, 
whose spatial distribution is proportional to 
exp{21m(kzl)z} to the left of the barrier and to 

FIG. 7. Hole tunneling coefficients vs kll for the highly asym- 
metric structure depicted in the inset for (a) mirror-even and 
(b) mirror-odd holes at k,,=O. The hole energy is 25 meV. 

exp{-2 Im(kzl)z) to the right, spreads over ever growing 
distances as kll approaches kl from above, since 
Im (kzl)=O at kll=kl. Such "inflation" leads to hole 
buildup in intermediate states in the neighborhood of a 
barrier, similar to electron buildup in a quasistationary 
state in resonant tunneling.5 The greater fraction of holes 
in an intermediate state lies to the left of the heterobarrier, 
that is, on the side of the incident flux. The holes in an 
intermediate state can leave this state and transform into 
heavy holes. Here the reflected flux of heavy holes inter- 
feres with the flux from the intermediate state. When in- 
terference is switched on (kll =kl)  or of (kll =k2), the 
kll-dependence of Dhh changes drastically, as a result of 
which Qh exhibits peaks at kll =kl and in the neighbor- 
hood of kll =k2. Note that for holes obeying an isotropic 
dispersion law (C=O), when there are no H-states, 
Dhh(kll ) decreases monotonically for kll> kl . 

Since tunneling in the k2 < kJI < k3 range is weak, for 
the structure depicted in the inset in Fig. 3a the behavior of 
the tunneling coefficients are shown in Figs. 4a and 4b on 
a magnified scale. 
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The presence of peaks in h h ( k l l )  leads to two peaks in 
the energy dependence of the transmission at constant kll 
(Fig. 5). The peak at low energy appears at kll =k2. The 
second peak corresponds to kll= kl. 

Reasoning in the same manner as Landau and 
~ifshitz' did in connection with the energy dependence on 
the elastic scattering cross section near the reaction thresh- 
old, we can show that in the neighborhood of k1,2, 

where are constants. Clearly, the kll-derivative of 
Dhh( kll 1 has branch points of order 2 at kll = klP2 and, if the 
imaginary part of is finite, experiences a discontinuity 

FIG. 8. Hole tunneling coefficients vs kll for (a) mirror-even and 
(b) mirror-odd holes for a structure to which voltage is applied. 
The hole energy is 25 meV, and k,=O. 

cients Dlh and Dhl vanish at different values of kll owing to 
the different values of k,, kZ, and k3 to the right and to the 
left of the heterobarrier. This also explains the increase in 
the number of singularities in the transmission coefficients 
and in the derivatives of the coefficients, since the hole 
buildup in intermediate states to the right and to the left of 
the bamer now occurs at different values of kg.  Fig. 7 also 
shows that if the barrier is highly asymmetric, the areas 
under the Dl1 vs k(( and Dhl vs k(l curves are considerably 
greater than those under the Dhh vs kll and Dlh vs kll 
curves, that is, mostly light holes find themselves behind 
the barrier. 

at these points. 
HOLE TUNNELING THROUGH A HETEROBARRIER IN AN Figures 6a, 6b, 7a, and 7b demonstrate the behavior of 

the tunneling coefficients for (a) mirror-even and (b) w . . . . 
mirror-odd holes in their passage through asymmetric het- The above method of finding the tunneling coefficients 
erobarriers, depicted in the insets. Clearly, here mirror-odd can be applied to heterobarriers in an electric field. HOW- 
holes tunnel better than mirror-even. Moreover, in contrast ever, now the matrix linking Jti and dJti/dz in the planes 
to the case of symmetric bamers, the off-diagonal coeffi- z= +0 and z=a-0, equal to the matrix product 

758 JETP 78 (5), May 1994 V. Ya. Aleshkin and N. A. Bekin 758 



M( +O)NM-I (0-0) in Eq. (1 1) for a rectangular bar- 
rier, must be found by numerically solving the Schrodinger 
equation with the Hamiltonian (2b). 

Figures 8a and 8b depict the behavior of the transmis- 
sion coefficients for the structure in the inset in Fig. 8a. 
Qualitatively, the behavior of Dij is similar to that depicted 
in Fig. 7. Note that if the voltage drop on the barrier is 
5 mV, the transmission coefficients for all practical pur- 
poses coincide with the respective coefficients depicted in 
Fig. 6. 

Application of voltage to the heterobarrier can pro- 
duce population inversion between the subbands of light 
and heavy ions within a certain range of momenta. The 
reason is not that primarily light holes find themselves 
behind the barrier; rather, the heavy holes that have passed 
through the barrier have a wave vector differing from that 
of light holes. Moreover, when the applied voltage is high, 
a situation may emerge in which the momentum of the 
light holes that have passed the barrier is much higher than 
the characteristic momentum of equilibrium holes in the 
right junction (the collector). Thus, in the momentum- 
space region corresponding to the light holes that have 
passed through the barrier there may be no heavy holes, 
that is, population inversion is established. This could lead 
to generation of radiation at the respective frequency. 

A hole that has undergone scattering after tunneling 
contributes nothing to generation of radiation. Hence, for 
the sake of an estimate we can assume that the ratio of the 
luminescence power to the scattered power is approxi- 
mately equal to the ratio of the frequency of spontaneous 
photon emission to the scattering rate. The frequency 
(rate) of spontaneous photon emission via a hole in the 
transition from the light subband to the heavy subband can 
be written as 

where c is the speed of light, and K is the high-frequency 
dielectric constant of a narrow-gap semiconductor. If 
I El - Eh I = 0.2 eV, for GaAs we have W- 10' Hz. The fre- 

quency of spontaneous emission of an optical photon is 
roughly 1013 Hz. Thus, no more than one millionth of the 
power liberated in the structure will go into light in spon- 
taneous transitions of holes from the light subband to the 
heavy subband. 

In conclusion we note that in examining hole tunneling 
we ignored the charge of the intermediate-state holes, 
which leads to a change in barrier shape. It is a well-known 
fact that in resonant tunneling the buildup of electrons in a 
quasistationary state leads to a hysteresis loop in the 
current-voltage characteristic. l2  Similarly, hole buildup in 
intermediate states can lead to a hysteresis loop in the 
current vs voltage dependence. 

The authors are grateful to Yu.A. Romanov for fruit- 
ful discussions. 

The work was sponsored by the Russian Fund for Fun- 
damental Studies under Grant Number 93-02-1.1721. 

'E. E. Mendez, W. I. Wang, B. Ricco, and L. Esaki, Appl. Phys. Lett. 
47, 415 (1985). 

'w. I. Wang, E. E. Mendez, B. Ricco, and L. Esaki, J. Vac. Sci. Technol. 
B 3, 1149 (1985). 

'R. Wessel and M. Altarelli, Phys. Rev. B 39, 12 802 (1989). 
4 ~ .  Y. P. Chao and S. L. Chuang, Phys. Rev. B 43, 7027 (1991). 
'B. Ricco and M. Ya. Azbel, Phys. Rev. B 29, 1970 (1984). 
6 ~ .  I. Baz', Ya. B. Zel'dovich, and A. M. Perelomov, Scattering, Reac- 

tions, and Decay in Non-relativistic Quantum Mechanics, NASA Techn. 
Transl. F-5 10, 1969. Mechanics: Nonrelativistic Theory, 3rd ed., Per- 
gamon Press, Oxford, 1977. 

'L. D. Landau and E. M. Lifshits, Quantum Mechanics (Nonrelativistic 
Theory), Nauka, Moscow, 1989, p. 767. 

'R. A. Suris et al., Samicond. Sci. Technol. 7, 347 (1992). 
9 ~ .  L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in 
Semiconductors, Wiley, New York, 1974. 

'OV. Ya. Aleshkin and Yu. A. Romanov, Zh. Eksp. Teor. Fiz. 87, 1857 
(1984) [Sov. Phys. JETP 60, 1068 (1984)l; Fiz. Tekh. Poluprovodn. 
20, 281 (1986) [Sov. Phys. Semicond. 20, 176 (1986)l. 

"I. M. Tsidil'kovskii, Electrons and Holes in Semiconductors, Nauka, 
Moscow, 1972 [in Russian]. 

"v. J. Goldman et al., Solid-State Electron. 31, Nos. 3-4, 731 (1988). 

Translated by Eugene Yankovsky 

This article was translated in Russia. It is reproduced here the way it was 
submitted by the translator, except for stylistic changes by the Translation 
Editor. 

759 JETP 78 (5), May 1994 V. Ya. Aleshkin and N. A. Bekin 759 


