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A theory of the skin effect in a sample with strong geometrical and electric anisotropy is 
developed. The results are applied to an analysis of recent experimental data on AC absorption 
peaks in the mixed state of highly anisotropic high temperature superconductors. These' 
peaks are shown to be accounted for by a thermally activated resistivity behavior with an 
energy bamer U( B) a ln (Hc2/B). 

1. INTRODUCTION 

Recently a number of experiments on AC absorption 
in the mixed state of highly anisotropic high temperature 
superconductors were carried out, mechanical oscillator 
and AC response techniques being applied (see, for in- 
stance, Refs. 1 and 2). In these experiments, two peaks in 
the dissipation power were obtained. For a given sample, 
the position of the peaks depends2 on the temperature T 
and DC magnetic field component B parallel to the c-axis 
of the superconductor. Various attempts were made to at- 
tribute these peaks to microscopic changes in vortex struc- 
ture. In the paper,3 however, it was argued that these peaks 
correspond to diffusion modes due to penetration of the 
field along different axis of the sample, and thus it is not 
necessary to invoke any phase transitions associated with 
these peaks. 

It is essential that at the temperatures T 4 T, the peaks 
in AC absorption are situated in the region of thermally 
assisted flux flow (TAFF)~ where electric resistivity is 
ohmic and exhibits Arrhenius dependence on temperature 

The ohmic nature of the resistivity allows us to propose the 
following scheme for the explanation of the two peaks. 

At a given value of DC magnetic field B and temper- 
ature T, there exists an anisotropic resistivity tensor 
= diag(pab ,pab ,p,) which in fact is due to microscopic 

behavior of vortices in TAFF regime. We are interested in 
the response of the sample to a small alternating magnetic 
field. As mentioned in,5 this problem is analogous to that of 
AC magnetic field penetration into a normal metal. (The 
metal can be considered nonmagnetic, since for fields 
B) HCl, the magnetic permeability ,u E 1. ) 

We argue that the dissipation peaks have nothing to do 
with vortex phase transitions, but correspond to the max- 
ima of dissipation due to eddy currents. These peaks can 
appear to be very sharp due to the exponential dependence 
of resistivity on temperature ( 1 ) . 

In analyzing the behavior of a conductor in the mag- 
netic field H&xp(-iwt), it is convenient to introduce the 
field penetration depth 

which determines how deep the field penetrates into the 
sample. The peak in the imaginary part of the magnetic 
susceptibility occurs when the penetration depth is of the 
order of the characteristic dimension of the body. Straight- 
forward application of this simple criterion to real super- 
conducting samples is complicated by virtue of (i) large 
resistivity anisotropy ?= p ~ p a b )  1, and (ii) slab geome- 
try of samples (usually the ratio of dimensions of the sam- 
ple along the c-axis and in the ab-plane is €41). The 
former implies that one should be careful in what p to 
substitute into the definition of 6, and the latter poses a 
problem as to what is the characteristic length to be com- 
pared with 6. 

In the present paper these problems are solved; the 
results of the solution may appear useful in interpreting 
experimental data on linear AC response and mechanical 
oscillator measurements. 

Let us consider a superconducting slab with dimen- 
sions along the c-axis and in the ab-plane equal to a€ and a 
respectively, €41. With the skin depth (2) determined via 
resistivity pub, the maximum in dissipation power happens 
when 

These results were applied to analyze experimental 
data on linear AC response in order to extract values of 
electric resistivity from these indirect measurements. Val- 
ues of p obtained in this way are in good agreement with 
recent experiments on resistivity. 

On analyzing experiments of this type, it was found 
that in TAFF regime the resistivity obeys the Arrhenius 
dependence on temperature ( 1 ) with the activation barrier 
U a  Uo ln(HdB).  Several formulas with this dependence 
U( B) appeared elsewhere, but only the theoretical predic- 
tion in6 is in reasonable agreement with the values found 
for Uo and Ho. This gives extra support to the idea that the 
resistivity in TAFF regime is due to the motion of ther- 
mally activated dislocation pairs in a vortex lattice, and 
raises the problem of accurate estimation of the activation 
barrier for such motion. 
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2. SKIN EFFECT IN SLAB SAMPLES 

In this section we consider a conductor in an external 
magnetic field Ha exp( - iot) . We are interested in the case 
in which the conductor is a slab, i.e., its dimension a€ along 
the c-axis is much smaller than the dimension a in the 
ab-plane. The resistivity of the sample is a tensor 
jj = diag ( pab ,pub ,p,), where = p ~ p a b >  1. In this geome- 
try there are two essentially different situations. One of 
them corresponds to the field Hall c, and the other to the 
field HA c. Both of them will be discussed. 

The skin effect in conductors is governed by the Max- 
well equations, which for the case of an alternating field of 
frequency w and ohmic resistivity can be written in the 
form 

where 6 is the conductivity tensor, which vanishes in vac- 
uum. 

If the magnetic permeability of the body is p= 1, the 
boundary condition at the conductor surface r' takes the 
form 

~ ~ " l ~ = ~ ~ ~ l ~ ,  ( 5 )  

where indices "in" and "ex" designate the field inside and 
outside the sample. Far from the sample there is only ex- 
ternal field Ha : 

The system of equations (4)-(6) constitutes the problem 
to be solved. 

We'd like to remind some general features of skin 
effect.' 

The skin depth 6 defined in (2) determines the length 
scale at which the field penetrates into the sample. 

If 6 is smaller than all characteristic dimensions of the 
body, including its smallest radius of curvature, then the 
field penetrates into the conductor in a thin layer of thick- 
ness 6 cc u-''~ and thus at high frequencies full dissipation 
due to eddy current is proportional to o-'I2. The standard 
method of calculating X" involves the computation of dis- 
sipation rate by means of integration of time averaged 
Poynting vector over the surface of the sample 

and using the relation between Q and X" 

At high frequencies the field almost does not penetrate into 
the sample and the distribution of the magnetic field out- 
side the sample coincides with that one of the static field 
around the superconductor of the same shape.' 

In the opposite case of large 6 the field completely 
penetrates into the sample and one can calculate Q by 
integration 

E being determined by the equation 

W 
rot E=i-Ha.  

C 
(10) 

In this case X" appears to be proportional to o. 
If the sample has the only characteristic dimension a 

then no third regime exists and the crossover between these 
two occurs when 6-a. This corresponds to the peak in x". 

This is not the case for a very compressed sample at 
Hall C. We will show that in this situation the other regime 
with xf' cc o-' appears. 

From mathematical point of view we have to find the 
continuous field H, satisfying Laplace equation outside the 
sample and Helmholtz one inside. Generally speaking, this 
problem cannot be solved analytically for an arbitrary ge- 
ometry. 

The slab geometry we are going to discuss allows to 
eliminate some difficulties. First of all, in configurations 
with Hall c in effectively 2 0  (see subsection 2.1 below) or 
spheroid (subsection 2.2) geometry it is more convenient 
to work with electric field rather than with magnetic one 
because it is possible to choose the coordinate system 
where E has only one component E with respect to it. Then 
the mathematical problem is reduced to the following. 
There are Laplace-like operator LeX outside the sample and 
Helmholtz-like L'" inside. We are looking for the contin- 
uous function E, satisfying LeXE=O in vacuum and 
L'"E=O in the body, having continuous normal derivative 
on the surface and corresponding to constant magnetic 
field at infinity. 

The slab geometry of the sample helps to solve the 
inner problem. With given value of E 1, on the surface one 
can treat Helmholtz-like equation L'"E=O in adiabatic 
way, considering the derivatives along the c axis as large 
and thus neglecting derivatives in ab plane. (This treat- 
ment has its roots in analogy between equation L'"E=O 
and the Schrodinger equation for quantum motion inside 
the space bounded by the sample surface in which one can 
consider the motion along c axis as fast in comparison with 
slow one in ab plane.) The procedure discussed allows to 
express E in the bulk of the sample via the value of E on its 
surface. The solution of the inner problem being known, 
one can find its normal derivative on the surface and get 
boundary conditions for external problem. Thus using the 
slab geometry it is possible to reduce the solving of two 
coupled equations to one equation for the field outside the 
sample with the appropriate boundary condition. This ex- 
ternal problem is to be solved by means of eigenfunctions 
of the operator LeX or somehow else. 

2.1. Hall c skin effect in slab 

Let us consider the sample occupying the volume -a 
< x <a, -a€ < y < ar, - oo < z < oo with the axes x,y,z be- 
ing chosen along a,c,b crystallographic directions respec- 
tively. The applied ac field Ha has the only component 
along the y(c) axis. 

From the symmetry consideration it is evident that the 
electric field E (as well as the current j in the sample) is 
directed along the z axis. Thus the relation between E and 
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j is determined only by pab and is independent of the re- 
sistivity anisotropy y. One can rewrite the system (4)-(6) 
in terms of E=E,: 

Now we are going to solve this 2 0  problem. More pre- 
cisely, we are looking for imaginary part X" of magnetic 
susceptibility. The real one can be expressed via X" with 
the help of Kramers-Kronig relation. 

At low w ~ "  can be calculated as described above. 
From Eq. ( 10) [cf. Eq. ( 13)] one obtains 

The dissipation rate over unit length along z direction is 
given by 

Using Eq. (8) we get 

where we introduced a convenient quantity 

The result (16) is valid until the magnetic field pro- 
duced by the current flowing in the sample is smaller than 
Ha; only in this region it is possible to use the expression 
(14). The field produced by the current can be calculated 
according to Biot and Savart's law. In the middle of the 
slab one gets 

This means that the region of applicability of (16) is ex- 
tended up to K - E- 'I2. 

The computation of X" at high frequencies (large K) 
can be proceeded as follows. Let us suppose we know the 
electric field El , on the surface of the sample and try to 
find the solution of the inner problem. We can treat Eq. 
( 11) in a kind of adiabatic manner (see above) and write 

This approximation is correct while one can neglect x de- 
rivative in ( 1 1 ) in comparison with y one. We will consider 
the validity of adiabatic treatment ( 19) later in the section. 

The inner problem being solved, one can obtain the 
boundary condition on E for the external problem. Taking 
the normal derivative of Eq. (19) on the surface of the 
body we find 

Since the smallness of E had been already used one may 
consider this boundary condition as being set on the seg- 
ment [-a,a] of the x-axis. 

So the problem is to find harmonic function EX obey- 
ing ( 13) and (20). According to the theory of potential 
one can express EeX via function p defined on the segment 
[-a,a]: 

where I r- r' I 2= ( x  - x ' ) ' + ~ ~ .  In terms of p the boundary 
condition (20) can be rewritten as the integral equation 

At high frequencies K > E - " ~  numerical factor in this 
expression is large ( 1 ~ t h [ (  1 - ~)KE] I > 1 ) and neglecting 
LHS one can easily find the solution 

which corresponds to electric and magnetic fields on the 
upper surface of r given by 

There are three factors that restrict the applicability of 
simple expression (23) in the vicinity of the slab edges: (i) 
breakdown of adiabatic treatment ( 19), (ii) impossibility 
of neglecting LHS in (22), and (iii) impossibility of ne- 
glecting the thickness of the sample near its edges. We 
consider these restrictions in sequence. 

With the given po(x) one can obtain that (19) is cor- 
rect as 

On analyzing (22) it can be shown that simple solution 
(23) is valid while 

The boundary I' can be considered as a segment [-a,a] at 
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Performing the integration of the Poynting vector over 
the surface of the sample [cf. (7)] we get 

where according to (26)-(28) the cutoff of divergent in- 
tegral is 

Calculating the integral to logarithmic accuracy we find for 
E - ~ / ~ ~ K ( E - '  

and for E- ' 4 ~  

Summarizing, we may write 

2.2. Ha[[ c skin effect in oblate spheroid 

We consider now the behavior of a conducting spher- 
oid in alternating magnetic field. Let us choose axes x,y,z 
along a,b,c crystallographic axes of the sample. The bulk of 
the ellipsoid is bounded by the surface 

We again discuss the sample with €41. The largest semi- 
axis of the spheroid is a( 1 + 8 )  1/2za,  according to this 
definition a is the distance between the center of the spher- 
oid and the focus of the ellipse in xz section. The problem 
is to get the solution of (4)-(6). 

As one deals with spheroid geometry it is convenient to 
introduce the coordinates u,r,# of oblate spheroid 

This is an orthogonal system, the element of length is given 
by 

The introduced coordinates vary in the regions O(a< 00, 

- l ~ r ( 1 ,  0~#<217;  relation O=E corresponds to the 
boundary of the spheroid. 

Our purpose is to calculate X" as a function of the 
value K defined by ( 17 ) . 

For low frequencies this calculation is analogous to the 
one described in the previous subsection and one obtains 

Now from Eq. (8) we find that 

This result is exact, it is valid for any oblate spheroid at 
sufficiently small K. For €4 1 one can estimate the magnetic 
field H' created by the current [cf. (18)] and find the cri- 
terion of applicability of this result by comparing H' and 
Ha.  This had been already done in the similar situation in 
previous subsection and performing here the same estima- 
tion we come to the conclusion that for compressed spher- 
oid (small E) at K(E- ' /~  X" is given by 

In the opposite case of high frequencies the magnetic 
field on the surface coincides with the field on the surface 
of the superconductor of the same form: 

sin 8 
Hr(c=s=Ha- 1-nZ9 

where 8 is angle between z axis and the external normal to 
ellipsoid at point (u,r,#). n, is z-component of demagne- 
tizing tensor, for small E n , ~  1 -1~/2~.  

Performing the integration over the surface we find the 
rate of energy dissipation 
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For the case of the sphere of radius R E= m ,  ae=R, 
n,=1/3 and from (43) we obtain a well known result7 
X" =9/16d/R. 

Our main interest is in compressed samples so we ex- 
pand Eq. (43) and find at small E 

Results (40) and (44) are rather trivial, they are ob- 
tained by means of standard perturbative approaches for 
low and high frequencies. 

The way of obtaining X" at E - ' / ~ ~ K < E - ~  is less trans- 
parent. As the problem of skin effect in slab was solved 
(see above), one would expect a similar behavior X" a w - ' 
in the region in question. 

It is convenient to introduce a new unknown function 
$, connected to electric field E by the condition 

where E4 is the only nonzero component of E in this co- 
ordinate system. Comparing with (37) we see that 
$a rE4; ( r  = .I=). If one excludes magnetic field 
from (4), the system (4), (5) can be rewritten in terms of 
Il, as follows 

The scenario of solution of (46)-(48) was discussed in 
the beginning of this section. The inner problem will be 
solved in adiabatic way, whereas the outer one-by means of 
eigenfunctions of Eq. (47). 

The function $(E,T) on the boundary of the spheroid 
being known, one can find the solution of the inner prob- 
lem using the smallness of E and treating Eq. (46) in adi- 
abatic approach. This means that we are looking for the 
solution of inner problem given by 

with function v(r )  to be determined. If K E ( ~  then r de- 
rivatives of ch in (49) can be neglected and we obtain by 
substituting (49) into (46) 

FIG. 1 .  Real ( x ' )  and imaginary ( x " )  parts of magnetic susceptibility of 
oblate spheroid (with axes ratio c(104). The maximum x:,, 
= 0.02006- ' at K= 1.77~-'I2. Completely diamagnetic X (  m ) = - 1/2dc. 

Taking the derivative of (49) with this v with respect to u 
at the surface a = E  one gets 

and since ~ 4 e - l  

Equation (52) represents the boundary condition for 
the outer problem (47). It was reduced to the solution of 
the infinite system of linear equations on coefficients of 
expansion of $ over eigenfunctions of Eq. (47) (see Ap- 
pendix). This system was solved numerically in the region 
of K < E - ' .  

The results of computation are shown in Fig. 1. The 
dissipation maximum x:,, = 0 . 0 2 0 0 ~ ~ ~  occurs at 
~=1.77~- ' / ' .  For K < E - " ~  X" is given by (40); for 
€-1/24~46-1 

The ratio X;,,/)X'( co ) I = 0.395. 

2.3. HA c skin effect in oblate elliptical cylinder 

Finally, let us consider the situation of an oblate ellip- 
tical cylinder with the axis y parallel to the axis of the 
cylinder, the bulk of the body is bounded by the surface 

x2 v" z+== 19 

z coincides with the c axis. The cylinder is immersed in 
alternating magnetic field directed along y axis, i.e. Hal c. 

In the geometry considered the current in the sample 
has components both in ab plane and along the c axis. Thus 
in this case anisotropy y will be significant. 
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At low frequencies it can be shown that the distribu- 
tion of current in xz section is given by 

The calculation of the mean dissipation gives 

and we obtain 

Here 6 is determined via resistivity px= pub. 
The usual way of computation at high frequencies 

when penetration depth is small is to consider the surface 
as locally flat and use the expression for dissipation power 
at a flat surface. In this case we do the same, but first it is 
necessary to discuss the penetration of the field H,, into the 
semispace x sin 8 +z cos 8 < 0. The resistivity in xz plane is 
anisotropic. It can be easily shown that the calculation of 
total dissipation can proceed in the conventional way for 
skin effect at high frequencies, but one should substitute 
resistivity p in formulas by the quantity 

8 being the angle between the normal to the surface and the 
z axis. Performing the standard integration we obtain the 
dissipation per unit length in y direction 

C UP, 2 a=,,, i X 4  9 \icos2 8+ J sin 8dl. 

Proceeding from integration over the boundary of the el- 
lipse dl to integration over 8 and using (8) one finds 

Expressions (56) and (59) take simple form in two 
limit cases. 

If ~ 4 y - l  then 

If y - l g ~  then 

So we see that if geometrical compression is stronger 
than electric anisotropy ~ ( y - '  then the peak in X" hap- 
pens at 6-a€; in the opposite case of strong electric an- 
isotropy y - ' ( ~  the peak occurs at 6-ay-'.  (Here S is 
determined via pub.) This means that if anisotropy is 

strong enough then the effective compression of the sample 
in configuration Ha l  c is determined by electrical anisot- 
ropy rather than geometrical dimensions. 

3. APPLICATION TO THE ANALYSIS OF EXPERIMENTAL 
DATA 

The results obtained in the previous section can be 
straightforwardly applied to analyze the experimental data 
on AC response and mechanical oscillator technique in 
TAFF regime. Within the point of view considered the 
existence and relative position of the two dissipation peaks 
usually detected in such types of experiments can get a 
simple and clear explanation. In these experiments it ap- 
pears that for not too small angles between the external dc 
magnetic field and ab-plane of the sample, angles between 
the external dc magnetic field and ab-plane of the sample, 
the position of the peaks depends only on the temperature 
and the component B of the field parallel to the c-axk2 In 
interpreting such data, points where peaks occur are usu- 
ally plotted in coordinates B,T. So, one gets two lines in 
B,T diagram, each corresponding to one of the peaks. The 
problem is how to interpret these lines. 

Our point is the following. In TAFF regime at a given 
temperature and dc magnetic field the behavior of vortex 
structure gives rise to ohmic resistivity. Alternating mag- 
netic field being applied to the sample, distinct absorption 
maxima appear due to the penetration of different compo- 
nents of the field into the sample. If the sample has a slab 
form then these maxima will be well separated. Certainly, 
the relative amplitudes of the peaks depend on the angle 
between the external alternating field Ha and the c-axis of 
the sample. In the two limit cases of Hal( c and H a l  c only 
one peak is detected. The position of the peaks itself does 
not depend on the orientation of the ac field with respect to 
the sample and is determined by relations (3). 

First we will analyze data of [2]. In this experiment 
double peaks in dissipation power were detected in ac re- 
sponse measurements performed on the crystal of 
BiSrCaCuO. Positions of the peaks were plotted on the 
diagram log B,T. We will discuss the T A W  region 20 
K < T < 50 K and 0.1 T < B < 5 T of the diagram. Geomet- 
rical compression of the sample was E =  

Criterion (3) can be directly applied to Hull c case, 
whereas it is necessary to compare E and y-' for a correct 
application of to H d  c case. The paper [2] however does 
not supply us with the value of y. An estimation of resis- 
tivity anisotropy can be extracted from the paper8 where 
direct resistivity measurements were carried out on a sim- 
ilar BiSrCaCuO sample. This gives us a reasonable esti- 
mate - lo5. 

According to our result (3) this implies that one of the 
two curves corresponds to constant value of pub and the 
other to constant p,, these values are given by 

in configuration with Hull c, and 
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in configuration with Hal c. 
Electrical anisotropy y is certainly a function of B and 

T. But this dependence is negligible when compared to 
exponential dependence of resistivity on temperature. So 
we will take J ( B, T) = = lo5 in the region involved. 
This fact allows us to rewrite (61) in terms of pab 

In the region considered one can clearly see that the 
lines of constant resistivities in [2] can be fitted with a high 
accuracy by straight lines in coordinates log B,T. Conse- 
quently, the activation barrier U in Arrhenius dependence 
(1) is logarithmically dependent on dc magnetic field B 
and the expression for p takes the form 

Thus we argue that the two lines in log B,T plane are 
lines of constant value of the same quantity pab. Taking 
into account (63), it can be the case only if the two straight 
lines, formally expanded to low temperatures, intersects at 
T=O. In the paper considered they really cross at T =O. 
This proves the correctness of our treatment and supplies 
the value of Ho=200 T. Now using formulae (60) ,  (62) 
we can find two other unknown parameters in (63). The 
computation gives 

So, starting with the data of paper2 and using our an- 
alytical results we obtained that the resistivity pub in the 
region considered obeys the relationship (63) with the set 
of parameters listed in (64), i.e. we managed to get resis- 
tivity from measurement of ac absorption. 

It is interesting to compare this result with direct mea- 
surements of electric resistivity. Taking, for instance, the 
value of pub from [8] for T =40 K, B= 5 T and comparing 
it with our result we find discrepancy by a factor of 2, 
which is negligible as compared with an overall scale of 
resistivity variations in the region considered. 

There is another way to relate experimental data with 
the formula (63). It can be rewritten in the form 

So if a power dependence p a  Ba at constant temperature 
T is detected in resistivity measurement experiment in 
TAFF regime then it follows that the parameter Uo in (63) 
is given by Uo=aT. 

The values of a at different temperatures are a(40 
K )  =2.3 (see [8]); a(33 K )  =3.2, a(20 K )  =6 (see [9]), 

FIG. 2. Magnetic field dependence of the activation energy U of 
BiSrCaCuO. Data from 191 are replotted in coordinates log B,U. 

which corresponds to the magnitude of the activation bar- 
rier of - 100, 100 and 120 K respectively and is in fine 
agreement with the values above. 

The Eq. (63) describes the general behavior of resis- 
tivity in TAFF regime. Within our approach we can pro- 
vide a new interpretation of the data obtained in [9]. In 
that paper log U was plotted as a function of log B and the 
authors obtained two regions with Ucc B-'I6 at 0.1 
T <  B < 3  T and U K  B-"~ at 3 T <  B <  10 T. But if one 
plots the same graph in coordinates log B,U it will be 
clearly seen that the dependence is linear for all B consid- 
ered (Fig. 2) and thus pab satisfies (63) with 

po -- lo5 pIR cm; 

In the region discussed T- 30 K and dependencies (63) 
with the set of parameters (64) and (66) actually do not 
significantly differ from each other. 

Finally, we'd like to mention the case of strong varia- 
tion of resistivity anisotropy in narrow regions of temper- 
ature and field. At high magnetic fields and temperatures 
an effective Josephson coupling between superconducting 
layers can vary substantially with T and B," thus leading 
to a steep variation of effective resistivity p,. So it may 
appear for a slab sample that there exists a region where 
anisotropy drops from y - ' < ~  to y - '>~ ,  which corre- 
sponds to the sudden increase of effective compression of 
the slab in configuration Hd c [cf. (3)] and consequently 
to the drastic change in the position of ac absorption peak. 

4. CONCLUSION 

The two peaks in AC absorption in TAFF regime were 
discussed from the point of AC penetration into a normal 
metal with anisotropic resistivity. Criteria (3) were found, 
governing the position of the peaks in superconductors of 
slab geometry. Applied to the analysis of experimental data 
they allow to extract the value of resistivity corresponding 
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to the dissipation maxima from measurements of linear AC 
response or from mechanical oscillator experiments. It is 
shown that resistivities obtained in this way are in good 
agreement with direct resistivity measurements. 

On analyzing resistivity data in TAFF regime it ap- 
peared that the resistivity obeys the general behavior given 
by (63) in the region in question. 

Rigorous calculation of resistivity in TAFF regime is 
still not available, moreover there is no agreement in the 
nature of resistivity itself. Since parameters Ha and Uo in 
the activation barrier Uo In H d B  appears to be close to the 
upper critical field Hd ( -- 100 T for BiSrCaCuO) and the 
energy scale of edge dislocations interaction 
E ~ - -  @ 2 / 6 4 d ~ ~  ( - 60 K for BiSrCuCaO ) respectively, 
we propose after [6] that the resistivity in TAFF regime is 
due to the thermally activated motion of dislocation pairs. 
The appearance of logarithm in the activation energy is 
originated in the interaction of vortex lattice with disorder 
[6]. The problem of accurate computation of activation 
banier in this case is to be solved. 
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APPENDIX 

Here we present the solution of the outer problem 
(47), (19) with the condition at infinity 
$(a+ CQ ; r)  = ( 1 + 0') ( 1 - ?), corresponding to the con- 
stant external field Ha, at ~ ( 6 - l .  

There are two types of eigenfunctions of (47) 

@,, grows as a+ CQ, whereas qn vanishes at large o. Ex- 
plicit expressions for functions f ( r ) ,  @(o) and q ( u )  are 
listed below: 

m!(m+l)! 8m(1-?)2m+1 
f ~ m ( ~ ) = ( - l ) *  (2m)!(2m+ l)! d g m  9 

Obviously, the choice of numerical coefficients in these def- 
initions is somewhat arbitrary. As defined above, functions 
f ( r ) ,  @(u), q ( u )  satisfy the relations 

Function $ as well as E accepts equal values at bottom 
and top semisurfaces of the spheroid. Thus, only even func- 
tions with respect to r make contribution into expansion of 

$ over eigenfunctions (67). Functions f , , ( ~ )  with odd in- 
dex n are odd, that's why we are not interested in them. 

The magnetic field outside the sample may be viewed 
as consisting of two parts: external magnetic field Ha and 
induced H' which vanishes at infinity. So, the most general 
expansion of $ over (67) takes the form 

The problem is to find {Ck). 
Taking a derivative of (72), equating it to the result 

(52) and substituting 0 for E in arguments of function q, 
one finds in the region considered 

(73) 
where 

Functions fk are orthogonal with respect to scalar 
product 

(75) 

Expanding (73) over fin with the help of (75) and 
auxiliary relations 

one can get an infinite system of linear equations on coef- 
ficients Ck. The matrix of this system turns out to be trid- 
iagonal. It was solved numerically. 
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