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We use the generalized random phase approximation (GRPA), suggested earlier by us for 
calculating the dynamic magnetic susceptibility, to study the electronic states in the 
paramagnetic phase within the t-J model. We calculate the electron Green's function defined 
via the Hubbard X-operators and show that its self-energy and terminal parts are 
expressed in terms of the dynamic magnetic and dielectric susceptibilities. We show that near 
a ferromagnetic or antiferromagnetic phase transition point the contribution from 
quasistatic fluctuations dominates. Allowing for this contribution leads to the Green's function 
becoming incoherent, which means that the system undergoes a crossover from the Fermi- 
liquid behavior to that of strong electron correlations. This occurs at a concentration 
near the critical value n,, at which there also occurs a crossover from a purely collectivized 
magnetism to one with localized magnetic moments. The extent to which the electronic 
states are of a nonquasiparticle nature increases near magnetic phase transitions. We calculate 
the Curie and Nkel temperatures Tc and TN over a broad range of electron 
concentrations. We also show that TN decreases sharply near a half-filled state as the hole 
concentration grows and that antiferromagnetism vanishes at a certain concentration. 
Outside the antiferromagnetism region the magnetic correlation length decreases in inverse 
proportion to the square root of hole concentration and is weakly temperature 
dependent. Thus, we show that the magnetic behavior of the t-J model near a half-filled state 
qualitatively resembles the behavior of high-T, copper-oxide superconductors. 

1. INTRODUCTION 

In recent years there has been extensive research in the 
field of the t-J model, which is one of the main models in 
the theory of strongly correlated systems. The model as- 
sumes that electrons travel in the lattice by hopping from 
one site to a neighboring site (with the transition matrix 
element t ) ,  provided that each site can carry no more than 
one electron. At the same time the electrons at neighboring 
sites interact via exchange forces, characterized by the ex- 
change integral J of the antiferromagnetic sign. This model 
can be interpreted as the limiting case of the Hubbard 
model when the single-site Coulomb repulsion is large, U )  
t. Then, after states with two electrons at a site are ex- 
cluded, there emerges a strongly correlated electron system 
with an indirect exchange interaction J=$/u,  with J 4  t .  
It is in this sense that we interpret the t-J model, although 
there exists a broader interpretation as the fundamental 
model of strongly correlated systems with two independent 
parameters, t and J. 

It is assumed1 that the t-J model with J( t is the basic 
model for describing the electronic structure of copper- 
oxide high-T, superconductors. Hence, the main interest 
lies in studying this model in two-dimensions world and 
close to the situation of a half-filled band, that is, for an 
electron concentration n = 1, where n is the number of elec- 
trons per lattice site. The literature devoted to a thorough 
examination of the t-J model is vast. The interested reader 
can turn to Ref. 2 for a review. 

If our interest is not restricted to high-T, supercon- 

ductors, there emerges a general problem of studying the 
behavior of the t-J model within a broad interval of elec- 
tron concentrations 0 < n < 1. One of the main questions 
then is, at what concentrations does the electron system 
lose the properties of a Fermi liquid and go over to a 
strong-correlations mode? In Refs 3-6 we developed the 
generalized random phase approximation (GRPA) for the 
t-J model, similar to the random phase approximation 
(RPA) for the ordinary Fermi liquid, which enables study- 
ing the properties of the t-J model for arbitrary electron 
concentrations. It was found that near a certain critical 
concentration n,=i there is a crossover in the magnetic 

behavior of the system from purely collectivized magne- 
tism to magnetism with localized magnetic moments. For 
one thing, the magnetic susceptibility for n > n, contains 
two contributions: of the Pauli type, weakly depended on 
the temperature T, and of the Curie type, proportional to 
T-'. The latter indicates that localized magnetic moments 
have developed in the system. 

Note that describing the emergence of localized mo- 
ments in an ordinary Fermi liquid is extremely compli- 
cated. To tackle this problem many approaches have been 
used: the self-consistent spin-fluctuation theory,' the func- 
tional integration m e t h ~ d , ~  and the ordinary diagrammatic 
technique for Fermi systems with the small parameter 
U / t g  1 (see Ref. 9). In the t-J model the inverse param- 
eter is small, t / U (  1, and to effectively use this parameter 
it is convenient to employ the perturbation theory in the 
form of the diagrammatic technique with X-operators, first 
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formulated for the complete Hubbard modello and then for 
the t-J model.3 In terms of this technique, the GRPA con- 
sists in summing all loop diagrams with electron Green 
lines, which describe a strongly correlated system in the 
"Hubbard-I" approximation,11 similar to RPA for an or- 
dinary Fermi liquid, which consists in summing all elec- 
tron loops with free-particle Green's functions.12 

The Hubbard-I approximation allows only for the nar- 
rowing of the electron band due to electron correlations, 
while the states themselves are of a propagator nature, that 
is, do not fade out. Here the variation of electron concen- 
tration from 0 to 1 inflicts no radical changes in the elec- 
tron spectrum even when the condition n > n, with local- 
ized magnetic moments is reached. The GRPA provided a 
method stepping outside the boundaries of this approxima- 
tion; we used it in Ref. 3 to study the magnetic behavior of 
the system. We began our study of electronic states with 
the GRPA in Ref. 6, where we arrived at general diagram- 
matic expressions for electron Green's functions and cal- 
culated the GRPA- correction in these functions. But these 
results were of a preliminary nature, since in Ref. 6 we 
considered only the limiting case U-., oo and allowed for 
fluctuations of only transverse components of spin, while 
the fluctuations of the longitudinal components of spin and 
charge fluctuations were ignored. Nevertheless, we estab- 
lished a fairly general structure of the electron Green's 
functions and showed that with strongly correlated sys- 
tems it is highly important to allow for corrections in the 
numerator of such a function, which leads to renormaliza- 
tion of the spectral density. These corrections always 
emerge in the diagrammatic technique for operators whose 
commutator is not an c-number (such a situation occurs 
for spin operators and X-operators) and correspond to 
what is known as terminal parts of diagrams.I3 

In this paper we calculate the electron Green's func- 
tion of the t-J model in the GRPA. We find that the self- 
energy and terminal parts are expressed in terms of the 
dynamical magnetic and dielectric susceptibility and de- 
scribe the interaction of electrons with spin and charge 
fluctuations. We study in detail the system's behavior near 
a magnetic phase transition to a ferromagnetic or antifer- 
romagnetic structure, when long-wave quasistatic fluctua- 
tions are important. In this situation the DC contribution 
to the magnetic susceptibility of the Curie-Weiss type 
dominates. Since this contribution exists only for n > n,, it 
is clear that as the point n, is passed, the processes of 
elastic scattering on static fluctuations of the Ornstein- 
Zernike type are incorporated fairly rapidly. This is the 
reason for the incoherent nature of the electronic states. 
Thus, in the neighborhood of the critical concentration 
n, the system crosses over from the Fermi-liquid mode to 
the mode of strong electron correlations, where the elec- 
tronic states do not represent quasiparticles. The scattering 
of electrons on dynamic fluctuations does not change its 
nature as the point n, is passed, with the result that the 
electron contribution, which varies monotonically with n, 
in the first approximation can be dropped. The closer to 
the line of the magnetic phase transition we are the more 
exact such an approach is. 

Since in the GRPA the magnetic susceptibility is de- 
termined by the loop diagrams constructed from electron 
Green lines, there is the problem of finding in a self- 
consistent manner the corrections to these loops caused by 
the scattering of electrons on quasistatic fluctuations. This 
problem as well is solved in this paper. 

We begin with a brief discussion of the main principles 
of the diagrammatic technique for the t-J model and the 
formulation of the GRPA, which although discussed in 
Ref. 3 are required here to calculate the electron Green's 
function. Although the diagrammatic equations may seem 
cumbersome, the analytical results obtained with their help 
are fairly neat and physically obvious. 

2. THE t-J MODEL IN TERMS OF THE HUBBARD 
OPERATORS 

So as not to explicitly take into account the conditions 
that exclude the possibility of two electrons appearing at 
the same site, it is convenient to represent the Hamiltonian 
of the t-J model in terms of Hubbard operators:3 

z = z ~ + z k i n + R e f f ,  

where 

zeff = J x (xi- +xj+ - -xi+ +X I .- - ) (2.3) 
ij 

is the single-site, kinetic, and exchange-correlation ener- 
gies, respectively. Here E,= -$ah-p is the energy of the 

state of a single electron at a site with spin o= +, - in a 
magnetic field (h=gp&, with H the magnetic field 
strength). The summation in (2.2) and (2.3) is over near- 
est neighbors. 

It is clear that the Hamiltonian of the t-J model is 
expressed in terms of eight X-operators, four of which ( 
~ " n d  e) are Fermi-like, two (Xi+- and X i + )  Bose- 
like, and the remaining two (x++ and Xiv-) diagonal. 
We define the Matsubara Green's functions on these oper- 
ators: 

D,(ir;jrl) = - (TNi(r)Nj(rl)) ,  

where M,=x;+ -Xi: -, and N~=X;+ +X;. Here 3, de- 
scribes the propagation of electrons, DL and Dl, are the 
Green's functions of the transverse and longitudinal spin 
components, and D, is the density-density Green's func- 
tion. All notation is standard.14 

We discussed the perturbation theory with the Hamil- 
tonian &41,, = Xkin +Zeff in detail in Refs. 3 and 6, so that 
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%kin 
namic susceptibility. Here we use it to calculate the elec- 
tron Green's function (2.4). The essence of the GRPA is 
the summation of all the diagrams containing electron -- ..-st-- .--(--. loops (similar to RPA in the theory of a Fermi liquid). For 

,&?-,A R~ff  the t 4  model summation of loop diagrams is not a trivial 
problem, since there are four types of electron loops. This 
becomes quite obvious if we set up the Bethe-Salpeter 
equation for the particle-hole channel, 

FIG. 1. Elementary vertex parts for the interactions X~,, and Zef. 

here we give only the main elements of the diagrammatic 
technique, the ~ i e e n  lines and the "interaction" lines: 

Here 

with the initial four-leg diagram 

and CP, and DO are the Fermi and Bose Green's functions, Iterating (3.1 ), we see that exactly four loops emerge: 

with odd and even discrete frequencies. Summing the sim- 
plest diagram series,1° we go from single-site fermion 
Green's functions to the propagator Green's function: 

where k= (k,iwn) is the four-momentum, and (F*)E(~) is 
the electron energy in the lower Hubbard subband; 
* - P + X ~ ~ .  In the literature this approximation is F -  

known as the ~ubbard-lapproximation.' In what follows 
we assume that all the electron Green lines correspond to 
the propagator functions (2.8). 

The terms Xkin and Xeg in the Hamiltonian generate 
the elementary vertex parts as depicted in Fig. 1. They 
describe electron-electron scattering and processes of emis- 
sion and absorption of a single magnon. Generally speak- 
ing, there are also vertices involving two or more 
magnonsY3 but these are not considered here. 

Note that at all vertices containing no outgoing lines 
there is a cumulant. This is a feature of the diagrammatic 
technique for operators whose commutators are not 
c-numbers. Another common feature is the existence of 
vertices with three (fermion) lines. A similar situation oc- 
curs in the diagrammatic technique with spin operators.13 

This information about the rules operating in the dia- 
grammatic technique is sufficient for what follows. 

In the series generated by Eq. (3.1 ) all diagrams are chains 
in which the loops (3.3) are connected by wavy or dotted 
lines, with the result that the effective four-leg diagram is 
expressed in terms of the quantities (3.3) depending on 
one transfer momentum k. We therefore arrive at the fol- 
lowing expression:3 

+&(kl-k) [I-Q(k)l  

+&(k2+k) [ 1 -A(k) I 

+ W k )  +J (k ) l ,  (3.4) 

where 

3. VERTEX PARTS IN THE GRPA dO(k)=[l-A(kl)[l-Q(k)l - n ( k )  [@(k)+J(k>l,  

In Ref. 3 we suggested for the t-J model the general- 
(3.5) 

ized random phase approximation (GRPA) and used it to and the quantities n, Q, A, are expressed in terms of the 
calculate the spin Green's function from (2.4), the dy- electron Green's functions as follows: 

733 JETP 78 (5), May 1994 lzyumov et a/. 733 



In a similar approximation we must sum the series for with the initial vertex part 

effective three-leg diagrams. These are expressed in terms 
of the four-leg diagram found above via the following dia- 
gram relations: )( = + + >'+"'( (3.15) 

It is clear that now all the elementary vertex parts from a+.. = + 
(3.7) Fig. 1 are included. The last thing to take into account is 

the renormalization of the simplest three-point vertices. 
Within the GRPA, 

with the initial three-leg diagrams 
with the initial vertex part 

In exactly the same manner we must renormalize the ver- 
--+-= = --*.c + -++ .... ( tex for the other orientation of spin. 

(3.10) The vertex part determined by Eqs. (3.13)-(3.17) were 
calculated in Ref. 4 in connection with the problem of 

Substituting the result (3.4) into Eqs. (3.7) and (3.8), we superconductivity in the tJmode1. Here are the results for 
get the three-leg diagram: 

In addition to the four-leg diagram (3.1 ) describing the 
effective electron interaction in the singlet channel we must 
calculate the four-leg diagram for the triplet channel, 
which is needed to describe charge fluctuations and fluc- 
tuations of the longitudinal spin components. In the 
GRPA this four-leg diagram is determined by the follow- 
ing system of equations: 

where &(k) is defined by (3.5), and 

The quantities II, A, Q, and @ are loops of the form (3.3), 
but with the same spin at the electron lines. Since we con- 
sider the paramagnetic phase in the absence of an external 
field, the set of quantities entering into (3.18) and (3.19) 
coincides with that entering into Eqs. (3.4)-(3.6). Note 
that in all the analytical expressions representing the vertex 
parts (3.13)-(3.15) the denominator contains the factor 
e ( k )  together with &(k). As shown in Ref. 5, the factor 
&(k) is related to the denominator of the magnetic sus- 
ceptibility and the factor &(k) to the denominator of the 
dielectric susceptibility. 
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FIG. 2. Diagrammatic representation of the electron Green's function. 

4. THE ELECTRON GREEN'S FUNCTION 

In analyzing the diagrammatic structure of the Green's 
functions defined by Eqs. (2.4) and (2.5) it must be kept 
in mind that when the commutators of the operators are 
not c-numbers, diagrams with terminal parts irrevocably 
emerge since there are several types of external vertices. 
For instance, for the electron Green's function 9, the sum 
of the diagrams in the GRPA transforms into a compact 
form (Fig. 2). Each heavy fermion and boson line here 
satisfies the Dyson equation with the self-energy parts 2, 
and 2, (Fig. 3). Finally, the double line connecting two 
heavy dots (corresponding to operators F* and F~") is 
the second-order total cumulant, which obeys an equation 
of the Dyson type with a matrix self-energy part 2,). (To 
exclude the possibility of allowing for terms in the dia- 
grammatic expressions for 9 ,  and 2, twice, some first- 
and second-order diagrams, not given here, must be sub- 
tracted). 

As Figs. 2 and 3 show, the terminal part of the Green's 
function 9, and all self-energy parts are expressed in 
terms of a common system of vertex parts calculated in 
Sec. 3 within the GRPA. The exotic form of the diagram- 
matic expression for 9, should not be surprising since it 
corresponds to the Green's function of physical electrons 
defined on X-operatorsrather than on Fermi operators. 
Terminal parts appear in the Green's functions for other 
models, too, if they are defined on X-operators (say, in the 
Anderson model), where the slave-boson representation is 
employed.15 Note that the expression for Y, was obtained 
from the general diagrammatic representation for the elec- 
tron Green's function6 in the GRPA for four-leg diagrams. 
We also note that in the diagrams in Figs. 2 and 3 all 
electron scattering processes are taken into account: 
electron+lectron scattering, scattering on transverse and 
longitudinal spin fluctuations, and scattering on charge 
fluctuations. 

FIG. 3. Self-energy parts for the elect rot1 pl.op,~g.t I C .  I 1 ) and the prop- 
agators of transverse (2) and longitudinal (Z , , , , .  ) \I)III tleviations. 

If into the diagrams in Figs. 2 and 3 we substitute all 
the vertex parts calculated in Sec. 3, after fairly involved 
calculations we arrive at the following simple result: 

where the expressions 

are the terminal and self-energy parts of the Green's func- 
tion. 

The quantities d(k)  and dc(k) are also the denomina- 
tors of the magnetic and dielectric susceptibilities, calcu- 
lated in Refs. 3 and 5: 

with 

and xO(k) and x;(k) the initial susceptibilities, 

In the last two formulas the factor no is a function of the 
parameter p/T: 

The amplitudes in Eqs. (4.2) and (4.3) are expressed in 
terms of II, Q, A, and @ as follows: 
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Two more expressions represent the first- and second-order 
diagrams and ensure that the contributions in the diagram- 
matic expressions for 9, and 2, are not counted twice: 

FIG. 4. The self-energy part of the fennion Green's function in the mean- 
Sx(k,kl) = ~ ( k ) ~ ( k + k l ) n ( k l )  + ~ ( k ) A ( k l )  field approximation. 

Let us now discuss the result (4.1 ) for the electron Green's 
function. In it the cumulant (Po) = 1 -n, is equal to 
1 -n/2 for the paramagnetic phase. If we ignore 2, and 
A, , expression (4.1 ) represents the Green's function in the 
Hubbard-I approximation with the spectrum 

The complete expression (4.1) allows for the corrections in 
the GRPA. Formally these corrections have the same 
structure as in the RPA for a Fermi liquid. In both cases 
they are expressed in terms of the dynamics magnetic and 
dielectric s~sce~t ib i l i t ies . '~ '~  Note that the corrections in 
the numerator and denominator of A, and 2, are of the 
same order of magnitude, which suggests the impossibility 
of ignoring the terminal contributions. While the self- 
energy part 2, determines a pole in the Green's function, 
the terminal part A, gives the residue at this pole and is 
extremely important in counting the number of states. We 
will have the opportunity to see this directly in what fol- 
lows. In the limit U+ co, if we ignore longitudinal spin 
fluctuations and charge fluctuations, Eqs.T4.1 b(4.3) 
transform into those derived earlier in Ref. 6. 

Note that the electron and spin Green's functions are 
expressed in the GRPA in terms of the four quantities 
II(k), Q(k), A(k), and @(k) defined in (3.6). The ferm- 
ion Green's function G(k) entering into these quantities 
obeys the Dyson equation and is given by 

where 2 ( k )  is given by formula (4.3) in which the spin 
index should be dropped. The quantity G(k) and the four 
loops II, Q, A, and @ depending on it must be determined 
self-consistently. 

5. MAGNETIC PHASE TRANSITIONS IN THE t-J MODEL 

The GRPA corrections to the self-energy are expressed 
in terms of the magnetic and dielectric susceptibilities and, 
therefore, become essential near magnetic or dielectric 
phase transitions. Since we wish to study electronic states 
near a magnetic phase transition, we begin by studying 
magnetic phase transitions in the t-J model (more exactly, 
we calculate the Curie temperature Tc and the Ntel tem- 
perature TN as functions of the model parameters and es- 
tablish the nature of the phase transitions) and then return 
to studying the electronic states of the system near ferro- 
magnetic and antiferromagnetic phase transitions. 

The simplest way to describe a system with spontane- 
ously broken symmetry is to employ the mean-field ap- 
proximation. Let us set up a self-consistent equation for the 

fermion Green's function G, that obeys the Dyson equa- 
tion with a self-energy part 2, shown in Fig. 4. A similar 
diagrammatic expression can be written for 2, by changing 
the "color" of the arrows in the expression for 2,. Each 
diagram in Fig. 4 is independent of four-momentum. The 
heavy line in the second diagram in Fig. 4 corresponds to 
a refined Green's function G, . The heavy dots in the first 
and third diagrams in Fig. 4 correspond to the cumulants 
(F+') and (F-'), for which we must also write self- 
consistent equations by adding diagrammatic series for 
(X++) and (X-) with the same diagram elements that 
define 8, and 2, (Fig. 5). Here each external vertex cor- 
responds to operator X++. Note that the series for 
(X++) contains "heavier" Green lines; hence, the equa- 
tions for G, and G, and the series for (X++) and 
(X--) constitute a system of coupled self-consistent equa- 
tions. An analysis of the series of Fig. 5 shows that it is a 
Taylor series for the function represented by a zero- 
approximation diagram. 

We begin with the ferromagnetic phase. We write the 
Green's function in the form 

where A, satisfies the equation 

Here f ( 0  is the Fermi function. We have allowed for the 
fact that (r) =n, is the mean number of electrons with 
spin a at a site, and 

the energy of an electron in the ferromagnetic phase in the 
Hubbard-I approximation. 

We set up the equations for the order parameters 

+- I aft . . . +  
21 

8-0 
FIG. 5. The sum of diagrams for the cumulant in the mean-field approx- 
imation. 
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namely, 

A-me(k) 
+ 2 ] - f [5(k) 2 1, (5.5) 

where 

transforms into formula (4.9) for no at A =0, that is, in the 
paramagnetic phase. 

We linearize Eqs. (5.4) and (5.5) in A and m. Then 
they can be written as 

[ l  -A(O,O)]A= - [@(0,0) +zJ]m, 

where we have introduced the notation 

(f'(6) is the derivative of the Fermi function with respect 
to the argument). Note that the quantities specified in 
(5.8) are particular values of the quantities (3.6) at zero 
momentum and frequency. Equations (5.7) lead to the 
following equation: 

which specifies the line of the phase transition into the 
paramagnetic phase. It coincides with the equation deter- 
mining the condition for the divergence of the DC mag- 
netic susceptibility (4.4) of the paramagnetic phase at 
k=O. The fact that these equations coincide indicates a 
second-order phase transition. Equation (5.9) leads to an 
expression for the Curie temperature: 

no 
T -  

@(O,O) +zJ 
'--T [ l  -A(o,o)]~--II(0,o) (@(o,o) +d) ' 

(5.10) 

From (5.8) it is clear that the denominator in (5.10) is 
positive and @(0,0) < 0. Thus, Eq. (5.10) shows that fer- 
romagnetic ordering is of a kinetic nature and that the 
effective exchange interaction inhibits it. 

Now let us study the antiferromagnetic phase with the 
wave vector Q =  (.rr,.rr,.rr)/a. The order parameter m is de- 
fined by the condition 

(x,?+)- -(xi-)=mpi, (5.11) 

where pi = exp(-iQ . Ri) assumes two values, + 1 and - 1. 
This leads to a situation in which the Green's function 
GJk) determined by mean-field equations (Figs 4 and 5) 
is a 2-by-2 matrix: 

iak+p+C(k) a [  --A-fmdk)] 

U[ -A+ime(k) I i0lk+p-{(k) 

(5.12) 

where 

The order parameters m (the magnetization of the sublat- 
tice) and A (the gap in the electron spectrum) can be 
found from the following equations: 

m 
A=- Z e2(k) 

f [E(k) I -f [ -E(k) I 
E(k) 

+ b ~ m ,  
4N k 

(5.14) 

1 f [E(k) I -f [ -E(k) I 
m = - A - x  

N k E(k) 

Linearization of these equations leads to the equation for 
the boundary of the antiferromagnetic phase, 

which also coincides with the condition for the divergence 
of the DC magnetic susceptibility of the paramagnetic 
phase at k=Q. From this we can find the NCel tempera- 
ture: 

where 

In view of the fact that II (Q,O) < 0 and @ (Q,O) > 0, the 
denominator in (5.17) is positive, and from (5.17) it fol- 
lows that the nature of antiferromagnetic ordering in the 
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t-J model is entirely different from that of ferromagnetic 
ordering. The reason lies in the indirect ferromagnetic ex- 
change, while the motion of electrons only inhibits such 
exchange. 

Equation (5.17) determines the dependence of TN on 
n. For a half-filled band (n = 1 ) , 

(the factor ln2 appears because in the quantity @(Q,O) in 
Eq. (5.17) we allowed for the term linear in T). When 
there are few holes ( 1 -n 4 1 ) 

Because of the large coefficient of 1 -n, the decrease in 
TN with an increasing hole concentration occurs very rap- 
idly. At the electron concentration 

the Niel temperature TN vanishes. Near n~ this tempera- 
ture is a linear function of n: 

Thus, near n = 1 there is antiferromagnetic ordering in the 
interval n~ < n < 1. The ferromagnetic state exists in the 
interval n, < n < n ~ ,  where np is defined by the equation 

These intervals can overlap, but near n = 1 a purely antif- 
erromagnetic state is realized. In the overlap region, TN 
may be much higher than Tc for fairly large K. It can also 
be demonstrated that for low temperatures T 4 TON and for 
n ~ z  1, the correlation length of antiferromagnetic fluctua- 
tions, 

is determined by the hole concentration and depends 
weakly on temperature. 

Let us now examine the magnetic phase transitions 
occumng because of temperature variations. According to 
(4.4), the DC magnetic susceptibility of the paramagnetic 
phase in the vicinity of the wave vectors k=O and k = Q  
can be represented in the form 

with fl and BA positive, and a and aA change sign at the 
phase-transition point: 

The magnetic correlation length near a ferromagnetic or 
antiferromagnetic phase transition is determined by the fol- 
lowing formulas: 

with fl and PA of the order of Tc and TN, respectively (the 
explicit expressions are not given here). 

6. THE ELECTRON SYSTEM NEAR A MAGNETIC PHASE 
TRANSITION 

Let us now return to Eqs. (4.1)-(4.3) for the electron 
Green's function in the paramagnetic phase and consider 
them near a magnetic phase transition. In Eq. (4.3) in this 
case the quasistatic contribution from magnetic fluctua- 
tions dominates. Retaining only this contribution, we can 
write Eq. (4.3) as 

(From now on we deal with the retarded Green's function. 
The transformation is done via an analytic continuation 
iw, -+ o+ is onto the real axis). A similar expression in the 
Hubbard model for U 4 t  was derived in Ref. 16, and for 
U )  t in Refs. 17 and 18, where it was used to study the 
metal-insulator phase transition in the U -  t region. 

In the same approximations, from Eq. (4.2) we find a 
simple relationship between A and 8: 

In the integral equation (6.1 ) it is sufficient to concentrate 
only on integration over a small neighborhood of the 
kl-space near the point kl =0 in the case of ferromagnetic 
instability and the point kl  =Q in the case of antiferromag- 
netic instability (Q is the wave vector of the antiferromag- 
netic structure). We start with ferromagnetic instability. 
Taking the slowly varying function G(k) outside the sum 
in (6.1 ), we go from Eq. (6.1 ) to the following: 

where we have introduced the notation 

(Summation in (6.4) is done over the neighborhood of the 
vector kl =0.) When writing (6.3), we change the energy 
reference point: 

The solution to Eq. (6.3) yields an explicit expression 
for the Green's function: 
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FIG. 6. The real part (light curve) and the imaginary part (heavy curve) 
of the Green's function near a ferromagnetic phase transition. 

where 

The frequency dependence of G is depicted in Fig. 6. We 
see that owing to ferromagnetic fluctuations the Green's 
function is of a nonquasiparticle (incoherent) nature. The 
quantity b, the measure of fluctuations, also determines the 
extent to which Gis incoherent. Since wl + w2 as b+O, the 
imaginary part of G is a narrow delta-like peak, and we 
have returned to the quasiparticle nature of electronic 
states, described by the Hubbard-I approximation. 

Near antiferromagnetic instability we must set up 
equations for two quantities, 

The general expression (6.1 ) then yields the equations for 
Z and 2': 

Excluding Z', we arrive at a quadratic equation for Z sim- 
ilar to the equation for the case of ferromagnetic instabil- 
ity, where in the latter we must do the substitution 

Thus, for G we arrive at a result similar to (6.5): 

where 

The fluctuation measure b is determined by the same ex- 
pression (6.4) but with summation now over the neighbor- 
hood of vector k=Q. In the expression for the Green's 
function there are two frequency regions in the neighbor- 
hood of w =  &{ where the imaginary part of G is finite. 
The width of each is of the order of b. As b +0, the peak in 
the density of states near a={ degenerates into a delta 
function and the peak at w = -5  disappears, so that we 
again arrive at the quasiparticle structure of the Hubbard-I 
approximation. The presence of two ranges in Im G is an 
indication of the two-pole expression for the Green's func- 
tion of the future antiferromagnetic phase. If we introduce 
the quantity 

formula (6.10) for oo(k) coincides with the expression for 
the spectrum of electrons in the antiferromagnetic phase, 
where only one order parameter, the sublattice's magneti- 
zation m, is taken into account. In exactly the same way 
formula (6.6) coincides with the expression for the spec- 
trum of electrons in the ferromagnetic phase for two ori- 
entations of spin. Thus, there is a certain correspondence 
between the electron spectra of the ferromagnetic and an- 
tiferromagnetic phases and the characteristic frequencies 
(determining the boundaries for incoherent states) of the 
electron spectrum in the paramagnetic phase near mag- 
netic phase transitions. According to the definition (6.1 I) ,  
m must be interpreted as the value of magnetization (of the 
sublattice) in a region of the order of the correlation 
length. 

Let us now calculate the parameter b. According to the 
definition (6.4) and the first formula in (5.24), for the case 
of ferromagnetic instability we have 

where ko is the cutoff parameter. 
In formulas (5.10) and (5.17) the quantities cP, A, and 

II depend on the temperature directly and through the 
parameter b. Hence, these formulas must be considered 
equations for finding Tc and T N .  Let us now calculate cP, 
A, and ll, which are expressed in terms of the Green's 
function G, via Eqs. (3.6). In the case of ferromagnetic 
instability, to calculate ll (0,0), A (0,0), and (0,O) we 
must sum over discrete frequencies in TZ,G' (q;io,), 
where the Green's function is given by (6.5). To this end 
we consider the following integral in the complex z plane: 
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FIG. 7. The integration contour in Eq. (5.20). 

where 

and the contour r consists of a circle CR with a large 
radius R and the contour bypassing two branch points, 

~1,2(q) = r 2 Ji; ~ ( q ) ,  (6.14) 

as shown in Fig. 7. 
Using the residue theorem and taking into account the 

dual-sign nature of the square-root function, we reduce the 
summation over discrete frequencies to integration along a 
real-number interval: 

X f  [z+S(q) 1 (6.15) 

For b( 1 the expression can be expanded in a series: 

where the primes denote the derivatives off (z). Substitut- 
ing (6.16) into (3.6), we arrive at the following expres- 
sions for the loops: 

where 

1 1  
{~ , ,A , ,Q , )=- -  C { E ~ ( C ~ ) , & ~ ( C ~ ) , E ~ ( Q ) } ~ " ' [ C ( Q )  I .  

3 %  
(6.19) 

If we ignore the temperature dependence of the coefficients 
of b in (6.17), the quantities n l ,  A1, and Q1 can be ex- 
pressed in terms of the density of states p o ( ~ )  in the initial 
spectrum E (q) : 

where F=p( l (  1 -in). Now substituting (6.17) into 

(5.10), we find the correction to the Curie temperature 
caused by the quasistatic spin fluctuations: 

Here PC is the Curie temperature defined by Eq. (5.10) 
without allowing for these fluctuations (i.e., for b+O). We 
see that the fluctuations narrow the range for a magneti- 
cally ordered phase, which is a manifestation of the general 
tendency in the theory of cooperative phenomena of the 
effect of fluctuations on the results of the mean-field ap- 
proximation. Theoretically, a similar calculation could be 
done for the case of antiferromagnetic instability, although 
the computation of sums over discrete frequencies is cer- 
tain to be much more complicated. Let us return to b. Note 
that this quantity is proportional to the factor no specified 
in (4.9), which for T 4p behaves like a unit step function: 

As shown in a detailed discussion in Refs. 3 and 4, the 
region p < 0 corresponds to the collectivized-magnetism 
mode and the region p > 0 to magnetism with localized 
magnetic moments. Thus, in the neighborhood of point 
p=O there is a crossover from one mode to the other. The 
parameter b is finite only in the localized-magnetism re- 
gion. Since it is this parameter that is responsible for the 
appearance of nonquasiparticle states, we can conclude 
that in a strongly correlated system with electron concen- 
trations n > n,, where n, is the critical concentration at 
which p=0, the Fermi-liquid pattern is disrupted near 
magnetic phase transitions and the electronic states cease 
to be quasiparticle. The physical explanation for this is the 
scattering of electrons on quasistatic fluctuations of the 
order parameter, which near the transition point dominate 
over inelastic scattering processes. The latter do not change 
their qualitative behavior in the transition through point 
n,. Superposed on the nonspecific action of inelastic scat- 
tering processes over a broad range of electron concentra- 
tions n (these are determined by the dynamic contributions 
to the magnetic susceptibility), the scattering on quasis- 
tatic fluctuations switches on abruptly for n > n, and there- 
fore must be noticeable. 

In conclusion we note that the validity of the approx- 
imate reduction of Eq. (6.1 ), an integral equation in mo- 
menta, to an algebraic equation has been analyzed by di- 
rectly studying Eq. (6.1). Integration over the angle 
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FIG. 8. Electronic-state density near a ferromagnetic phase tran- 
sition (heavy curve). The light line represents the model density 
of states for electrons in the Hubbard-I approximation. 

between vectors k and kl yields the logarithmic term in the 
integrand, which gives rise to no poles in the Green's func- 
tion. For this reason the procedure of taking the Green's 
function at the point of peak magnetic susceptibility out- 
side the sum in Eq. (6.1 ) provides a good approximation to 
the solution of the initial equation, and the closer we are to 
a magnetic phase transition the better the approximation. 

Now let us study the density of single-particle elec- 
tronic states 

If we allow for Eq, (21), which links A with B for the 
paramagnetic phase, the expression (4.1 ) for the electron 
Green's function assumes the form 

from which we obtain the expression for the imaginary 
part of the Green's function: 

Due to the specific form (6.24) of the function 9 ( 9  ) 
X (k;w), its imaginary part acquires a weight factor 
o / ~ ( k ) ,  by which the behavior of a strongly correlated 
system is distinguished from that of a Fermi liquid. 

In the case of ferromagnetic instability, we must sub- 
stitute the expression for B obtained from Eq. (6.3) into 
(6.25). After integrating with respect to ~ ( k )  in the ex- 
pression (6.1 ) for the model of a constant density of states 
po, we arrive at the following: 

p ( o )  =po [ j+; arcsin (:::A) 

is 4 4 tz, that is, is determined by & (Fig. 8). Similar 
broadening in an interval of the order of 2btz occurs in the 
event of antiferromagnetic instability. 

7. CONCLUSION 

We have shown that in a strongly correlated system 
near a magnetic phase transition the electronic states are 
not of the quasiparticle nature due to the scattering of 
electron on quasistatic magnetic fluctuations. This is obvi- 
ous from the analytical [Eq. (6.5)] and diagrammatic (Fig. 
6) expressions for the Green's function in the case of fer- 
romagnetic instability and the similar expressions in the 
case of antiferromagnetic instability. The parameter con- 
trolling the nonquasiparticle behavior is 6. According to 
the definition (6.4), this quantity is actually the root mean 
square of the magnetic moment localized at a lattice site. 
What is remarkable is that a similar parameter appears in 
the self-consistent theory of spin fluctuations in an ordi- 
nary Fermi system;' it leads to a contribution of the Curie 
type to the magnetic susceptibility. 

In the expression (6.5) for G (and in all the expres- 
sions that follow) there is a transition to the limit 6-0 in 
the Hubbard-I approximation, and this corresponds to a 
quasiparticle description. The broadening of the delta func- 
tion into a band for the spectral density of the function 
G(k;w) is of a static nature rather than a dy~:amic (which 
usually leads to damping of the quasiparticle state), and in 
this sense resembles the nature of a quasilocal level in the 
impurity problem. The width of the band of incoherent 
states near the energy c(k) is of order 4 for ferromag- 
netic instability and of the order of b for antiferromagnetic. 
To estimate the qtent  to which a state with a given mo- 
mentum k is nonquasiparticle these quantities must be 
compared with the factor 1 --in. The parameter b is at its 

maximum at the phase transition point but evidently is 
small compared to unity. 

The incoherent nature. of the electronic states in the 
Hubbard model in the situation of a half-filled band was 
discovered long ago. In Refs 19-21 it was found that near 
n = 1 (low hole concentration) in the region of antiferro- 
magnetic ordering a hole becomes self-localized owing to 
the formation of a magnetic polaron, and, naturally, such 

(6.26) nonpropagator states are described by an incoherent 
Green's function. 

Here all the quantities with the subscript m represent the The mechanism for forming nonquasiparticle states 
respective peak energies; for instance, &,=tz, studied here is, apparently, not the only one in a strongly 

1 l,= (1 -?n)tz, etc. The width of the spectrum broadening correlated system. We considered effects of quasielastic 
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scattering of electrons on magnetic fluctuations near a 
magnetic phase transition. Similar effects must also mani- 
fest themselves near the dielectric instability of the system. 
Moreover, for some electron concentrations there obvi- 
ously exist other mechanisms (operating far from the mag- 
netically ordered phase) that disrupt the Fermi-liquid pat- 
tern. These, of course, are not easy to study by analytical 
methods because they are related to processes of inelastic 
scattering of electrons on fluctuations. 

Another result is the study of magnetic phase transi- 
tions in the t-J model in the mean-field approximation. 
Using it we obtained equations for the order parameters in 
the ferromagnetic and antiferromagnetic phases for a 
broad range of electron concentrations. The equations re- 
flect the dual nature of magnetism in a strongly correlated 
electron system, manifesting features of collectivized and 
localized magnetism simultaneously. What is remarkable is 
that the linearized equations for the order parameters lead 
to values of Tc and TN coinciding with those found from 
the conditions for the divergence of the DC magnetic sus- 
ceptibility of the paramagnetic phase. This indicates a 
second-order magnetic phase transition. The formulas for 
Tc and TN illustrate the opposite nature of ferromagnetic 
and antiferromagnetic ordering in the t-J model: ferro- 
magnetism is caused by the motion of electrons in the lat- 
tice and effective exchange only inhibits it, while antiferro- 
magnetism emerges because of effective exchange and the 
motion of electrons inhibits it. In the situation of a half- 
filled band and fairly strong exchange interaction antifer- 
romagnetism dominates in the system. 
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