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The results of computer modeling of intercenter exchange-interaction-mediated incoherent 
migration of electronic excitations in a disordered system of donor centers in doped 
crystals are presented. The long-term asymptotic migration process is studied. It is established 
that at long times the migration process in these systems considered is diffusive. The 
dependence of the diffusion coefficient on the concentration of centers and on the parameters 
characterizing the intercenter interaction is determined. 

1. INTRODUCTION 

Incoherent transport processes in disordered systems 
play an important role in diverse physical phenomena. In- 
coherent transport of electronic excitations in disordered 
systems is at the basis of a large class of energy relaxation 
and transfer phenomena, such as spectral migration, depo- 
larization, concentration quenching, and others.' Incoher- 
ent electron transport determines the hopping conductivity 
in doped semicond~ctors.~ Thus the study of transport pro- 
cesses is important for fundamental and applied physics. 

The incoherent character of transport processes means, 
first, that at each moment an excitation (or electron) is 
localized on a definite center (donor ion, impurity, and so 
on) and, second, that the probability of excitation transfer 
at a given moment does not depend on how and when the 
excitation arrived at a given center. It is well known that 
such an excitation transfer process is described by a system 
of rate equations. For a fixed configuration of centers the 
ith equation has the form 

dPi(t)/dt= [WjPj(t) - WijPi(t) I ,  (1 
J 

where P,(t) is the probability of finding an excitation on 
the ith center (occupation number of the center) at time t 
and Wij is the rate of excitation transfer from the ith to the 
jth center. In this paper we consider only completely re- 
versible migration of excitations, in which excitations are 
not annihilated and the rates of direct and reverse transfer 
between two centers are equal: 

w..= w... 
11 1 1  

For the most important types of excitations, the depen- 
dence of the excitation transfer rate on the intercenter dis- 
tance Rij is either an inverse power-law function for the 
electrostatic intera~tion~'~ 

where Wo is the amplitude and 1 is the radius of the inter- 
action. 

The experimentally observed characteristics of migra- 
tion in disordered systems with prescribed parameters 
(concentration, type of interaction, and so on) are de- 
scribed by the solutions of the system ( I) ,  averaged over 
all possible configurations of the centers. It is extremely 
difficult to perform this averaging correctly, and this is still 
an unsolved mathematical problem. For this reason, even if 
the elementary transfer mechanism is known, migration 
processes are still very difficult to describe theoretically, 
and this problem is still far from being completely solved. 

It has been found that the initial stage of migration can 
be described accurately by a small number of terms of the 
exact concentration expansion of the average delocaliza- 
tion radiusS or by the population kinetics of the initial 
siteG8 [the pair model, which has a simple and clear phys- 
ical meaning, is identical to the linear term of the cumulant 
(exponential) form of this expansiong]. However, the ex- 
isting theoretical models of the later stages of the migration 
process incorporate assumptions which are difficult to 
check, so that these assumptions must be checked indepen- 
dently in an experiment. 

Virtually all authors of theoretical works now agree 
(though this has not been rigorously proved) that at suf- 
ficiently long times, migration is of a diffusion-like charac- 
ter. This means that the mean squared delocalization ra- 
dius (3) of an excitation is directly proportional to the 
time 

(3)  = 6 Dt, (4) 

and the population kinetics of the initial site is described by 
the expression 

S W.. 11 = CDdR;, , (2) where Wd is the rate of migration at the diffusion stage and 
where CD, is the microefficiency of the interaction and S is is related to the diffusion coefficient D by the expression 
the degree of multipolarity (S=6, 8, and 10 for dipole 
dipole, dipole-quadrupole, and quadrupole-quadrupole in- wd = 4rn2I3 0 ,  (6) 
teractions), or an exponential function for the exchange 
interaction4 where n is the concentration of centers. The expression (6) 

is obtained from the seemingly obvious considerations of 
Wij = Wo exp( - R;,/l), (3) normalization of the solution of the diffusion equation aP/ 
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at= DAP in a volume corresponding to a single center, and 
can be proved rigorously with help of the averaging pro- 
cedure performed in Ref. 8. 

It is well known1' that the diffusion kinetics of the 
form (5) is obtained for disordered systems in the limit of 
very long times t- oo in the continuous random walk 
(CRW) In an earlier workI2 employing the 
CRW method, as well as in other theoretical approaches- 
percolation theory,I3 the coherent-potential method,14 and 
the self-consistent diagrammatic methodI5-the diffusion 
stage appears as a linear time dependence of the mean- 
square delocalization radius. 

A system with multipole interactions is characterized 
by only two dimensional parameters (the concentration n 
and the microefficiency CDD of the interaction), so that all 
theoretical models give the same concentration dependence 

which is confirmed by rea1I6'l8 and numeri~al '~ experi- 
ments. The difference between the experimental and theo- 
retical kinetics appears only in the magnitude of the nu- 
merical factor a ,  and it can indicate how accurately the 
theory takes reversibility of the transfer process into ac- 
count (see Ref. 18). 

The situation becomes more complicated for the ex- 
change interaction. Because there are three dimensional 
parameters-the concentration n, the amplitude Wo, and 
the interaction radius I--even the very form of the func- 
tional dependence is different in different theories. 

In percolation theory and the coherent-potential the- 
ory, the dependence of the migration rate Wd at the diffu- 
sion stage in a system with an exponential potential on the 
parameters of the system is described [taking into account 
Eq. (6)] by the e ~ ~ r e s s i o n ' ~ ~ ~ ~  

where z=k/l= 1/1n'/~ characterizes the slope of the inter- 
action potential at the average distance between centers 
k= (n)-'I3, the parameter @= 1.15 for both methods, and 
K is a dimensionless parameter. In percolation theoryI3 K 

has the concentration dependence K = K ~ Z - ~ . ' ~ ,  and in the 
coherent-potential method K is a constant. Expressions 
similar to Eq. (8) but with different values of /3 were also 
obtained in Ref. 10 (P= 1.61 ) on the basis of very simple 
approximate considerations and in Ref. 19 (@= 1.28) by a 
diagrammatic method first proposed in Ref. 15. 

The CRW methodZ0 yields a diffusional migration rate 
with a concentration dependence that is different from Eq. 
(8). According to Ref. 20 this dependence has the form 
[using the expression (6)] 

where b=0.19 and the function ~ ( z )  is a weak function of 
z (the explicit form of this function is not given in this 
work). A concentration dependence similar to Eq. (9) is 
derived for the diffusion coefficient in Ref. 21, where the 
relation obtained by a diagrammatic method in Ref. 15 
between the population kinetics at the initial site and the 
diffusion coefficient is employed. We note that although the 

leading-order exponential terms for large z in Eqs. (8) and 
(9) have a significantly different form, due to the specific 
choice of the parameters @ and b and the preexponential 
factors K(z), these z dependences will be similar over some 
range of z. 

2. MODELING METHOD 

Due to the significant experimental difficulties that 
arise in the investigation of the population kinetics P(t) of 
the initial site at great depth P5 lov2 (Refs. 9, 18, and 22) 
and the impossibility of choosing the form of the interac- 
tion potential a priori, we used computer modeling to in- 
vestigate incoherent migration of excitation. 

Our modeling method was initially proposed in Refs. 9 
and 23. In Ref. 18 we determined the method's limits of 
applicability and accuracy, which are associated with 
the finiteness of the number N of centers in the model 
system. We modeled migration owing to multipole inter- 
action between the centers in three-dimensional18 and 
two-dimensional" impurity crystals. In the present work 
the computer modeling was extended to migration of exci- 
tations in three-dimensional systems with an exponential 
dependence of the excitation transfer rate between centers. 
Our method consists of constructing a random configura- 
tion of centers, distributed randomly among the sites of, in 
our case, a simple cubic lattice with spacing Ro and fixed 
specific concentration c, i.e., having the concentration 
n =C/R;, and calculating the kinetics on a computer as the 
arithmetic mean of the time dependences of the popula- 
tions of the initially excited site with excitation of each site 
in a given ~ o n f i ~ u r a t i o n : ~ ' ~ ~  

Here @i)(t) is the solution of the system (1) for a given 
configuration of centers with the ith site excited initially, 
i.e., with the boundary conditions <!)(o) =ai j .  

As we have shown previously in Ref. 18, the range of 
initial-site populations accessible to investigation is deter- 
mined mainly by the finiteness of the number of centers in 
the model system. By comparing the initial-site population 
kinetics in systems with different numbers of centers, we 
found that the error introduced by the finiteness of the 
number N of centers in the model system is less than 10% 
as long as P >  3/N.  For the results presented in the present 
paper, the number of centers falls in the range N = 6 W  
850, which makes it possible to investigate initial-site pop- 
ulation kinetics up to depths P(t) =0.0035-0.0047. 

In Ref. 24 we compared the results of modeling of 
migration in ordered systems with a contact interaction to 
the exact solution known for these systems (see Fig. 1 ) . As 
one can see from the figure, the modeling result (dashed 
curve) differs from the exact solution (solid curve) by not 
more than 3% over the given range P(t)  > 3/N (horizon- 
tal dashed straight line) and by not more than 10% over 
the range P(t) > 2/N. This is a less stringent restriction 
than that indicated above and employed in the present 
work. 
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FIG. 1. Comparison of the results of computer modeling of excitation 
migration in a three-dimensional ordered system of centers with a short- 
range interaction potential (dashed curve) to the exact solution for this 
system (solid curve). The dashed straight line indicates the lower limit of 
the range where the modeling results are correct. 

For some of the systems modeled, the modeling was 
conducted in several different configurations of the centers 
with the same parameters n, I, and Wo in order to check 
the statistical interconfigurational spread. It was shown 
that the population kinetics of the initial site, averaged over 
a single configuration, over the entire investigated range of 
values of the parameters n, I, and Wo remain virtually 
unchanged from one configuration to another and, at least 
for most of the systems investigated, they exhibit the same 
functional behavior. This enabled us to do without config- 
urational averaging of initial-site population kinetics. Some 
differences of the functional behavior of the kinetics in 
different random configurations (presence or absence of 
the diffusion stage in the range of initial-site populations 
P( t) accessible to modeling) are observed only at the later 
stages of migration and only for systems with interaction 
potentials having the largest slopes. These differences will 
be discussed below. 

3. RESULTS AND DISCUSSION 

We performed computer modeling of the excitation 
migration in systems with an exponential interaction po- 
tential for a wide range of specific concentrations: from 
c=O.O14.08 up to c=O.14.2. For a number of values of 
the interaction radius, modeling was also performed for 
systems with concentrations close to the limiting values: 
c=0.5 for /=Roy Rd2, and R d 5  and c=0.75 for I=Ro. 

In this paper we do not analyze the behavior of the 
kinetics at the initial stage of migration in systems with an 
exponential potential. These results are presented in detail 
in our paper Ref. 25. We merely note that the initial stage 
of migration is described, to an adequate degree of accu- 
racy, by the well-known pair model9 (as in the case of 
systems with a dipole-dipole interaction1'), but for a num- 
ber of systems with an exponential interaction potential the 

pair model ceases to work an order of magnitude earlier 
(with respect to the population of the initial center) than 
the onset of the diffusion stage of migration. 

In this paper we consider only the long-term asymp- 
totic behavior of the initial-site population kinetics ob- 
tained by computer modeling. 

In order to analyze the long-term asymptotic behavior 
of the computed-modeled kinetics, we constructed the ki- 
netics in the coordinates [log( Wot),log PI, in which the 
expected diffusion approximation function (5) becomes 
linear: 

The diffusion stage of migration was observed in sys- 
tems of centers for which the values of the slope parameter 

3 
z= ( I .  &)-I  of the interaction potential span a wide 
range (approximately from z= 3 to z= 1 1 ) . The existence 
of this stage was ascertained on the basis of the computer- 
generated kinetics P(t)  becoming rectilinear in the indi- 
cated coordinates with the tangent of the slope angle being 
- 3/2 (see Fig. 2). 

The diffusion migration rate Wd determined from the 
results of computer modeling in the range z= 4.6-1 2.1, 
where Wd varies by more than three orders of magnitude, 
are described well by a straight line in the coordinates [z, 
log( Wd/Wo)], which corresponds to the function (8)  with 
K=const. 

Least-squares analysis of the experimental results un- 
der the assumption that the preexponential factor K in Eq. 
(8) is constant gives the values P=0.870*0.009 and 
K = 2.84 * 0.32 [continuous straight line in Fig. 3 (a)]. If, 
however, it is assumed that the factor K in Eq. (8) is a 
power-law function of z of the form K=K,,Z~, then least- 
squares analysis of the results gives 8= 1.10 * 0.04, y =- 
1.7 *0.4, and K ~ =  12*4.7 [dashed curve in Fig. 3(a)]. 

The best approximation of the computer modeling re- 
sults by an expression of the type (9) with a power-law 
preexponential factor K = K ~ ~ Y  is obtained with the param- 
eters be=0.15 and ye= -3.7 [dashed curve in Fig. 3(a)]. It 
is obvious from the figure that an expression like (9) with 
the given parameters describes the modeling results quite 
well. The parameter be=0.15 is close to the value bt=0.19 
obtained in the continuous random-walk theory.20 Unfor- 
tunately, since no explicit expression for the factor K is 
given in Ref. 20, we were not able to make a more detailed 
comparison between the CRW theory and our results. In a 
function of the form (9), obtained in Ref. 21, the param- 
eter bt=0.27 is significantly larger than be=0.15, and this 
theoretical model therefore describes the modeling results 
poorly [see the solid curve in Fig. 3(b)]. 

The dashed curve in Fig. 3(b) represents the concen- 
tration dependence of the diffusion-migration rate accord- 
ing to the percolation theory13 [a function of the form (8) 
with K=K~Z", p= 1.15 and y =-3.87, and the value of K,, 
not determined within the theory of Ref. 13, was obtained 
by least-squares approximation]. It is evident from Fig. 
3 (b) that the percolation theory describes the computer 
modeling data poorly. As is evident from the same figure, 
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FIG. 2. Results of computer modeling (solid curves) and analytical approximations (dashed straight lines) of long-term asymptotic behavior for 
different slopes of the interaction potential: (a) small slope: I-z=2.52 (I=Rd2, c=0.5), 2-z=2.71 (I= R,, c=0.05), 3-z=3.22 (I= Ro, c=0.03), 
4--~=3.42 (I=Rd2, ~=0 .2 ) ,  5-z=3.68 (I=Ro, ~=0.02),  6-z=4.31 (I=Rd2, c=O.l), 7-z=4.64 (I=Ro, c=0.01), &z=5.13 (l=Rd3, c=0.2); 
(b) average slope: 1-z=5.43 (l=Rd2, c=0.05), 2-z=6.30 (I=Rd5, c=0.05), 3-z=6.46 (l=Rd3, c=0.1), &z=6.84 (I=Rd4, c=0.2), 
5-z=7.20 (I=Rd3, c=0.07), 6 z = 7 . 3 7  (1=%/2, c=0.2), 7-z=8.14 (l=Rd3, c=0.05); (c) large slopes: 1-z=8.55 (l=Rd5, c=0.2), 2-z 
=8.62 (I=Rd4, c=0.1), 3-z=9.28 (I=Rd2, c=0.01), &z=9.66 (l=Rd3, c=0.03), E-z=9.70 (l=Rd4, c=0.07), b z = 1 0 . 9  (I=Rd4, 
c=0.05) (two configurations), 7-z= 11.1 (I=Rd3, c=0.02); (d) largest slope: 1-z= 11.7 (I=Rd5, c=0.08) (two configurations), 2-z= 12.1 
(I=Rd5, c=0.07) (three configurations), 3-z= 13.6 (I=Rd5, c=0.05) (three configurations), 4--z= 13.9 (I=Rd3, c=0.01), 5-z= 14.6 (I= Rd5, 
c=0.04). The arrows mark the onset of the diffusion stage. 

the theoretical coherent potential and diagrammatic 
 method^'^"^ (dashed straight lines) also describe the mod- 
eling results poorly. 

Within the limits of accuracy of our experimental re- 
sults we cannot determine reliably whether or not the pre- 
exponential factor K is constant or is a power-law function 
of z. The choice of one or another form of the function ~ ( z )  
substantially changes the value of the parameter B (by 
25% ) : while for K= const the experimentally obtained 
value fle=0.87 & 0.009 is significantly less than the theoret- 
ical value, for K=K& the quantity Be= 1.10*0.04 is less 
than but close to the theoretical value Pt= 1.15 obtained in 
the percolation theory13 and the coherent potential 
theory14 (though the exponent ye=-1.7 is substantially 
different from the value predicted by the percolation 
theory,13 yt=-3.87). Analysis of the results under the as- 
sumption of a power law K=K& shows that the parame- 
ters KO and y depend strongly on one another. A strong 

dependence of the parameters on one another usually in- 
dicates that there are too many fitting parameters, and for 
subsequent analysis we therefore choose a simpler form of 
the expression (8) with  c con st. 

The value Be=0.87 obtained in this work from the 
computer results is less than the values pt= 1.15-1.61 ob- 
tained theoretically.'0~'3~14~19 We note that according to 
Ref. 2, the values of the coefficient fie= 1.0-1.14 obtained 
in experiments on hopping conductivity in semiconductors 
are also less than the theoretical values fit. To analyze the 
discrepancy indicated above, we rewrite Eq. (8) in the 
form 

The fact that the theoretically predicted value fit is higher 
than the experimental value (result of modeling) Be can be 
attributed to too high a value of the effective concentration 
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FIG. 3. (a) Concentration dependence of the migration rate at the dif- 
fusion stage: dots-data from computer modeling for different values of the 
interaction radius: 0--I= Ro, C I =  Rd2, A-I= Rd3, A-I= Rd4, 
+I= Rd5; the numbers near the points indicate the specific concentra- 
tions. Solid straight line-approximation by an expression of the type (8) 
with fr=const. Dotted straight line-approximation by an expression of 
the type (8) with a power law function ~ ( 2 ) .  Dashed straight line- 
approximation by an expression of the type (9) with a power-law function 
K(z ) .  (b) Comparison of the theoretical concentration dependences of the 
migration rate at the diffusion stage to the results of computer modeling; 
the labeling of the points is the same as in Fig. 3a. Solid curve- 
dependence from Ref. 21; dotted curve-dependence obtained with the 
percolation theory;" dashed straight linesdependences obtained by the 
coherent-potential method4 ( 0 ) and the diagrammatic method19 (a). 

nf13 of centers--excitation carriers-capable of delocaliz- 
ing the excitation. In our view this indicates that because 
the multistep random-walk trajectories are not taken into 

account adequately, the reversibility of the transport pro- 
cess may not be taken into account completely in the the- 
ory, thus lowering the concentration of effective carrier 
centers. A similar situation occurs in the dipoldipole 
interaction.18 In that case 

and the fact that the experimental values18 a,= 1.5-1.9 are 
lower than the theoretical values a,=2.2-3.4 likewise sug- 
gests that the reversibility of the transport process is not 
adequately taken into account in the theory, and this is 
manifested as a weak decrease in the effective concentra- 
tion of carrier-centers n 6. The replacement of the disor- 
dered system by an effective ordered system in the theoret- 
ical models in order to simplify the computations could 
also result in values of a, that are too high.26 

For a system with a sufficiently high specific concen- 
tration of centers c=0.5, the migration rate Wd deviated 
from the values obtained from Eq. (8) in the direction of 
higher values. This can be interpreted as an increase in the 
diffusion coefficient with increasing degree of ordering of 
the system. Deviations from the law (8) in the direction of 
higher values of Wd are also observed for zG4.5. This in- 
dicates that the pre-exponential factor in Eq. (8)  has a 
significant concentration dependence for small values of z. 
Both enhancements of the rate Wd (for large c and for 
small z) can be understood in terms of an increase in the 
parameter K and the diffusion coefficient D, occurring with 
increasing degree of ordering in a discrete system (large c) 
or quasicontinuous system with long-range action (small 
z). This is analogous to the behavior of the concentration 
dependence of Wd in systems with multipole interaction.I8 

To compare the diffusion stage in systems with ex- 
change interaction to the analogous stage in systems with 
electrostatic interaction of different multipolarity, it is con- 
venient to represent the concentration dependence of the 
migration rate at the diffusion stage in logarithmic coordi- 
nates [ 1 0 ~ ( n ~ ) ~ , l o ~ (  Wd/Wo)]  (see Fig. 4, curve I). ~t is 
evident from Fig. 4 that when the concentration changes 
by 1.5 orders of magnitude, the migration rate changes by 
almost five orders of magnitude, but the increase in migra- 
tion rate with increasing concentration is not uniform: The 
migration rate rises steeply for small nP, i.e., for interac- 
tion potentials with a large slope, and slows down as n13 
increases (i.e., with decreasing z). Thus the behavior of the 
concentration dependence of the migration rate in systems 
with exchange interaction is reminiscent of the behavior of 
the analogous dependences in systems with electrostatic 
interaction of different multipolarity in different ranges of 
values of z. In order to find these ranges we equate the 
derivatives d In Wd/d Inn of the corresponding concentra- 
tion dependences of the migration rates at the diffusion 
stage: 

It is evident from Eq. (12) that the concentration depen- 
dence (8) of the migration rate at the diffusion stage for 
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FIG. 4. Concentration dependences of the migra- 
tion rate at the diffusion stage. Solid lines- 
theoretical dependences. Dots-results of com- 
puter modeling: 1-xchange interaction (8), 
2 4 - d i p l e A i p l e ,  dipole-quadruple, and 
quadruple-quadruple interactions, respectively; 
ll-exchange interaction within the simplest 
model [see the expression (17)]; 5, 8-exchange 
interaction for I= Rd2 and I= Rd5, respectively; 
6, 7, 9, 10-interactions with degree of multip- 
larity 6, 8, 10, 12, respectively. 

systems with exchange interaction is close to the analogous 
dependence for systems with electrostatic interaction with 
degree of multipolarity S near the values 

z=sf?. (13) 

Thus, using our value /3=0.87, exchange diffusion near 
z= 5 is similar to dipole-dipole diffusion ( wda n2), 
dipolquadrupole diffusion ( Wd a: n8l3) near z = 6.7, and 
quadrupole-quadrupole diffusion ( Wd a n10/3) near z= 8.3 
(see Fig. 4, straight lines 2-4). It is also evident from Fig. 
4 that starting at z=5, the function Wd(n) found by com- 
puter modeling becomes quadratic, deviating, as has al- 
ready been mentioned, from the theoretical exponential de- 
pendence (8) [compare also Fig. 3(a)]. 

The concentration dependences of the diffusion migra- 
tion rate, presented in the standard coordinates 
(log c,log Wd) for analyzing the concentration depen- 
dences of migration rates in systems with multipole inter- 
action [in units of to, where to= w~'(R,)], for different 
interaction radii I=Rd2 and I=Rd5 (see Fig. 4, curves 5 
and 8), show that over the investigated range of specific 
concentrations c=0.014.50, the dependence for the sys- 
tem with the smallest slope of the interaction potential is 
close to the dependences for the dipolequadrupole inter- 
action for low concentrations and the dipoldipole inter- 
action for high concentrations (straight lines 6 and 7). In 

addition, the concentration dependence for the system with 
the highest slope of the potential (I=Rd5) in the experi- 
mental concentration range is close to that for interactions 
with multipolarity S= 10-12 (straight lines 9 and 10 in 
Fig. 4). 

The similarity of the dependences of the migration rate 
at the diffusion stage for systems with exchange and mul- 
tipole interactions can be understood if it is assumed that 
delocalization is caused by hops over distances close to 
some Reff and these distances are such that both types of 
interactions have the same slope near them. This represen- 
tation can make sense physically, since, on the one hand, 
the intercenter excitation transfer rate Wij(Rij) drops rap- 
idly with increasing intercenter distance Rij and, on the 
other hand, hops over small distances, though they are 
significantly more frequent, do not lead to significant delo- 
calization of excitation from the starting point.'0 

It turns out that Reff for the exchange interaction can 
be determined on the basis of the assumption made above. 
Equating the derivatives d In Wij/d In Rij for the exchange 
and multipole interactions at Reff under the assumption 
that the parameters of both types of interactions are such 
that at this point (Rij=Reff) both interaction potentials 
have the same slope (see Fig. 5), we obtain 
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FIG. 5. Excitation transfer rates Wi, as a function of the intercenter 
distance Ri, for different types of interactions: 1--exchange, 2 -d ipo le  
dipole, and 3-dipole-quadrupole. The arrows mark the values of Rij 
near which the transfer rates for the exchange and multipole (with dif- 
ferent degree of rnultipolarity) interactions are close. 

We note that the left-hand side of Eq. ( 14) (for multipole 
interaction) does not contain Reff .  Since the assumption 
made above implies that at this point the concentration 
dependences of the exchange and multipole migration rates 
at the diffusion stage must be the same, which, as the fore- 
going analysis of the concentration dependences showed, 
happens for z=Sa [see Eq. ( 13)], we have from Eqs. ( 13) 
and (14) 

It is interesting to note that substituting the value ob- 
tained for Reff into the lower limit of integration in the 
expression10 

which determines the concentration dependence of the dif- 
fusion coefficient and migration rate at the diffusion stage 
on the basis of the simplest approach,10 gives the expres- 
sion 

whose exponential term exp ( -z/P) (leading-order term 
for large z) is identical to the concentration dependence 

that we obtained by computer modeling for the migration 
rate at the diffusion stage (8). This proves the applicability 
of the assumption, made above, that hops over distances 
close to Ref predominate in the delocalization process. 
Comparing the plots of the function (17) to the modeling 
results in Fig. 4 shows that in spite of the fact that they 
agree for large values of z, the expression (17) does not 
give an accurate description of the concentration depen- 
dence of the migration rate obtained by computer model- 
ing. For small z, however, when the purely exponential 
formula (8) no longer describes the computer modeling 
results, the preexponential factor in Eq. ( 17) intensifies the 
concentration dependence, increasing the rate Wd, as ac- 
tually happens according to the results of computer mod- 
eling (see Fig. 4, curves 1, 2, and 11). The form of the 
concentration dependence [expression (17), Fig. 4, curve 
111 is found to be close to the experimental (computer- 
modeled) dependence wda n2 (Fig. 4, curve 2), though 
the magnitude of the correction is much too large. 

It is interesting that for small values z<4.5, the plots 
of the population kinetics P(t)  at the prediffusion stage are 
steeper than the fitted straight line of the diffusion stage, 
i.e., "overshoot" is observed7 [see Fig. 2(a)], similar to 
that observed in the case of ordered systems with a multi- 
pole interaction.'* The amplitude of this overshoot in- 
creases with decreasing z, and the limiting initial-site pop- 
ulation corresponding to the onset of the diffusion stage 
(marked by arrows in Fig. 2) decreases and reaches for 
z < 3 a value such that the minimum degree of the change 
in the kinetics P-3/N acceptable for modeling, which is 
limited by the number of centers in the model system 
N- 800 (see Ref. 18 for a more detailed discussion), does 
not permit observing the diffusion stage. 

For larger values z > 4.5, i.e., with increasing slope of 
the potential, overshoot is not observed [see Figs. 2(b)- 
2(d)], except for the system with high concentration and 
degree of ordering c = 0.5 and I= R d 5  [Fig. 2 (b) , curve 21. 
As z increases in the range z >  7.5, the diffusion stage is 
observed [see Figs. 2(c) and 2(d)] at increasingly smaller 
values of the limiting initial-site population Pb. 

For systems with large z and different randomly gen- 
erated configurations of centers with the same parameters 
n, I, and Wo, the amplitudes of the initial-site population 
have a significant spread [see Figs. 2(c) and 2(d)], caused 
by fluctuations of the spatial distribution of the centers. 
The increase in the spread with increasing z is probably 
associated with the fact that the migration kinetics is more 
sensitive to fluctuations in the intercenter distance in sys- 
tems with a larger ratio of the intercenter distance to the 
interaction radius (large slope of the interaction potential 
at the average intercenter distance). This spread is also 
manifested in fluctuations of the limiting population. Be- 
cause of it, for a number of systems with large z- 11-14, 
the diffusion stage is not observed in some configurations, 
but is observed in other randomly generated configurations 
with the same parameters [see, for example, Fig. 2(d), 
curves 1, 2, and 31. In addition, the fraction of configura- 
tions in which the diffusion stage is observed decreases as z 
increases from 11.7 to 13.6. 
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We note that for the experimental systems with an 
exponential interaction potential, the maximum limiting 
initial-site population Pb-0.03 at the onset of the diffusion 
stage is reached for 2-7. 

CONCLUSIONS 

1. Diffusion asymptotic kinetics of excitation migration 
has been observed for the first time for a large group of 
disordered three-dimensional systems with a different slope 
of the exponential (exchange) interaction potential (ratio 
of the average distance between centers to the interaction 
radius for z ranging from 3 to 12). 

2. It was established that at the diffusion stage, the 
migration rate decreases exponentially with increasing 
slope of the potential (ratio of the average interparticle 
distance to the interaction radius); the numerical parame- 
ters of this dependence were determined; the fact that the 
values of the parameters obtained in the numerical exper- 
iment are higher than the theoretical values indicates that 
the reversibility or stochasticity of the migration process in 
the previously existing analytical models was not taken 
into account fully. 

3. For low values of the ratio of the average interpar- 
ticle distance to the interaction radius (with long-range 
interaction), overshoot of' the plot of the kinetics in loga- 
rithmic coordinates was observed at the prediffusion stage, 
and it was found that the amplitude of the overshoot de- 
creases as this ratio increases (decreasing concentration, 
decreasing range of the interaction in the system). Over- 
shoot was also observed for a strongly ordered system 
(specific concentration of 50%) with a large value of this 
ratio. 

4. It was established that the limiting initial-site pop- 
ulation corresponding to the onset of the diffusion stage 
has a maximum for a ratio of the average distance to the 
interaction radius of about 7, and decreases with both in- 
creasing (due to the later onset of the diffusion asymptotic 
behavior) and decreasing (due to an increase in overshoot) 
values of this ratio. 

5. It was found that the migration rate at the diffusion 
stage and the diffusion coefficient increase with the degree 

of ordering of the system for both quasicrystalline (c=0.5) 
and quasicontinuous ( c  ( 1 ,z < 4.5 ) systems. The concen- 
tration dependence of the migration rate for small z<4.5 
(high concentrations) is quadratic in the quasicontinuous 
system. 
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