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A two-dimensional semiconductor heterostructure consisting of two asymmetric quantum 
wells separated by a potential barrier is studied. The conductivity of this structure 
in a weak electric field directed parallel to the walls of the quantum wells is investigated 
theoretically. It is shown that when neutral scattering centers are present in one of the wells, 
the current-voltage characteristic contains a section with negative differential resistance, 
whose existence depends strongly on the geometric parameters of the heterostructure. This 
section is associated with Landau-Zener tunneling in a longitudinal electric field. 

1. INTRODUCTION 

There are a large number of theoretical and experimen- 
tal works on tunneling in low-dimensional quantum sys- 
tems in semiconductor heterostructures. These processes 
significantly influence the electric and optical properties of 
the structures. If two quantum wells with close energy 
levels are separated by a potential barrier, then a slight 
variation of the external electric field can substantially 
change the wave functions and give rise to a displacement 
of charge carriers in real space. This fact was employed in 
Ref. 1 to model IR absorption and in Refs. 2 4  to investi- 
gate exciton tunneling. 

Another parameter that depends strongly on the de- 
gree of overlap of the wave functions is the conductivity. 
The possibility of controlling the ohmic resistance of a 
resonance-tunneling heterostructure was investigated the- 
oretically in Ref. 5. Control was achieved both by varying 
the intensity of the transverse electric field and by the po- 
sition of the Fermi level. Conductivity modulation is effec- 
tive in this case if the electron scattering rate in different 
wells is significantly different. The electron mobility is ob- 
served to drop sharply near a tunneling resonance. Bista- 
bility, a highly nonlinear phenomenon, can also be ob- 
served in a transverse electric field.6 

An important phenomenon neglected in Ref. 5 is 
Landau-Zener tunneling7-lo in a longitudinal electric field. 
As shown in Ref. 10, this process appears in the ballistic 
regime when electrons accelerated in an electric field pass 
through the resonance tunneling point. In this case there is 
an aperiodic transfer (in contrast to transfers which are 
periodic in time and of electrons from one 
quantum well to another. Landau-Zener tunneling appears 
only in asymmetric quantum wdls with different effective 
mass under stringent restrictions on the dimensions of the 
wells and the barrier. This process is nondissipative and 
cannot by itself result in the appearance of ohmic resis- 
tance. The process results from the scattering of charge 
carriers by phonons and impurities localized in one of the 
quantum wells. In order that scattering not impede tunnel- 
ing, however, the relaxation time must be longer than the 
electron transition time through the resonance tunneling 
zone. For this reason we employed in this work the model 

of a resonance impurity, the probability of scattering by 
which is significant for low electron kinetic energies. The 
impurity scattering energies must be far from the reso- 
nance tunneling energy, which itself must be less than the 
energy ho of polar optical phonons. 

2. FORMULATION OF THE PROBLEM 

We study electron motion in a semiconductor hetero- 
structure consisting of a pure GaAs layer 1 with thickness 
bl, an A1,Gal-& layer 2 with thickness b2, and a middle 
layer 3 with an elevated aluminum concentration and 
thickness b3. An electric field E is oriented parallel to the 
interfaces between the layers. The x axis is oriented along 
the electric field, the z axis is perpendicular to the hetero- 
structure, and the y axis is perpendicular to the x and z 
axes. The origin of the coordinate system is located at the 
outer boundary of layer 1. All three layers are located in an 
infinitely deep potential well. The electron potential energy 
will then have the form shown in Fig. 1. The complete 
wave function satisfies the time-dependent Schrodinger 
equation 

where Y is the full time-dependent wave function, which 
depends on the three coordinates of the electron and the 
normal co0:dinate.s pf the crystal lattice. The Hamiltonian 
operators He and Hph operate only pn the electron and 
phonon parts of the wave function, He-phAi~ the electron- 
phonon interaction Hamiltonian, and describes 
electron scattering by the impurity. In this paper the 
electron-ele~tron interaction is not considered. Treating 

and Heimp as first-order perturbations, we seek an 
unperturbed solution in the form Y = YeVph. For the elec- 
tronic component we have 

where 
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FIG. 1. Overlap of wave functions for a double-well potential [k=O 
(solid curve) and 2.7. lo6 cm-' (dashed curve)]. 

the electron effective mass m depends only on z, and Ex is 
the longitudinal electric field. 

We represent the wave function as a product of an 
amplitude function and an exponential: 

As shown in Ref. 10, a wave packet consisting of any so- 
lution of Eqs. (2) and (3) can be constructed from these 
solutions. The function Yo satisfies the wave equation 

where 

The wave vector k =  (k,, k,,) determines the semiclassical 
motion of an electron in the (xy) plane. We obtain for the 
projections of k 

The Hamiltonian H0 is thus explicitly time dependent. We 
seek the solution of the problem (5) in the form of an 
expansion in the eigenfunctions of the operator H0, taken 
at a fixed moment in time, HO$, = E,$, : 

The free parameter t, will be determined in Sec. 3. Using 
Eqs. (5)-(8), we obtain a system of differential equations 
for the constants Cn as a function of time: 

The wave functions $, correspond to the stationary states 
of an electron with wave vector k in the absence of an 
electric field, and the index n enumerates the size- 

quantization subbands. The coefficients WnI determine the 
rate of Landau-Zener tunneling between subbands: 

Impurity scattering and electron-phonon interaction 
are usually treated on the basis of Fermi's golden rule. This 
rule gives the transition rate of a quantum system from the 
stationary state ( i) to another stationary state 1 f): 

Here the initial and final states contain both phonon and 
electron components of the Y function. The crystal is as- 
sumed to be in a state of thermodynamic equilibrium at 
temperature T, and the phonon part of the wave function 
can be assumed to be stationary. The electron part, how- 
ever, as follows from Eqs. (7),(10), is definitely nonsta- 
tionary, provided that EAO. At any moment in time the 
state of an electroc is given by a superposition of states of 
the Hamiltonian Ho, i.e., Eq. ( 11) is inapplicable. 

We now introduce a more general formula that is more 
convenient to use in a kinetic equation. We consider two 
size-quantization subbands 1 and 2 and define a mixed 
state as the linear combination 1 i) =cl ( i l )  +c2 1 i2), whe!e 
(i,) and (i2) are electronic states of the Hamiltonian Ho 
with some wave number k. An equation of the type (9) can 
be written down for the probability amplitude cf for find- 
ing the quantum system in the final state 1 f ) ,  

and the initial condition at t=O: 

cl=C1, c2=C2, cf=0. (13) 

Here the states If) and 1 i) and the energies Ef and Ei 
contain both electronic and phonon parts, and the con- 
stants C1 and C2 are taken from the solution (9). Integrat- 
ing Eq. ( 12) and calculating 

we obtain an extension of Fermi's golden rule to nonsta- 
tionary states: 
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If the free-flight time 7)fi/(E2-E1), then the last term in 
this formula can be dropped, since it is rapidly oscillating 
and averages to zero over time. In our case this can be done 
if the free-flight time is much longer than the tunneling 
period between the quantum wells. 

3. LANDAU-ZENER TUNNELING 

The effective masses in the quantum wells in Fig. 1 are 
different: ml#m2. This results in the appearance of a syn- 
chronization point and Landau-Zener tunneling. Let k, 
increase with time according to Eq, (7). Then the bottom 
and the energy levels of each well will rise at different rates. 
For definiteness, let ml  < m2. The effective potential 
~ + # P / 2 m  of the Hamiltonian ho in region 1 increases 
more rapidly than in region 2. For this region, if the energy 
levels of the isolated wells initially satisfy the condition 
E; < E;, then there exists a time t, after which the inverse 
inequality E; > E; will hold. Tunneling occurs near t, . 

To investigate the evolution of the wave function at 
times t z  t,, it is helpful to consider a more general formu- 
lation of the problem. Let (t) and ~ i ( t )  be two nonsta- 
tionary Hamiltonians. The time dependence might be a 
consequence of some external action u ( t ) :  

Here u(t) might correspond, for example, to G ( t )  [see Eq. 
(7)J-an external nonstationary electric or magnetic field. 
The external perturbation can change the state of these 
quantum systems. The eigenfunctions and eigenvalues of 
the Hamiltonians (15) will then depend on the time as a 
parameter: 

Let $; and $; be normalized to unity, and let them be 
"almost" orthogonal functions: 

In addition, let there be a Hamiltonian ho for which $; and 
Jt; are "almost" eigenfunctions 

for a pair of quantum wells separatled by a tunneling- 
penetrable potential barrier, where Ho is a double-well 
Hamiltonian and H , , ~  are single-well Hamiltonians. If the 
potential barrier is sufficiently high, then the overlap of the 
functions $; and #; is small, so that the condition (17) is 
satisfied. 

In this section we consider the time-dependent Schro- 
e g e r  equation ( 5) with the Hamiltonian 
Ho(t) = ~ ~ [ u ( t ) ] .  We use the two-mode approximation in 
order to solve this equation. We retain the first two terms 
in the sum (8), which give the solutions in both wells. The 
functions $j and e j  depend on t as a parameter and can be 
found from the equations 

The relations ( 18) suggest that to within terms of order P, 
the eigenfunctions [solutions of the problem (19)] can be 
approximated by eigenfunctions of the Hamiltonians &A, 

This is true at all t, and the coefficients B1, ..., B4 depend 
only on the time. In the basis I $;), the Hamiltonian H0 is 
a 2 X 2 matrix: 

In this matrix hl and h2 are real. In addition, it is assumed 
that the functions $A are normalized such that h12 is real 
and positive. It follows from Eq. ( 18) that hi and hij are of 
order p and are continuous functions of time. In this rep- 
resentation Eq. (19) is a homogeneous system of linear 
algebraic equations. The dispersion relation that follows 
from this system has two different solutions: 

where 

In accordance with Eq. (20), the constants B1 and B2 
correspond to the minus sign and the constants Bg and B4 
correspond to the plus sign in Eq. (2 1 ) : 

Let the time t, correspond to a tunneling resonance, 
i.e., AE(~*) =O. In a B neighborhood of the point (E, ,t,) 
in the ( ~ , t )  plane, the eigenvalues of the Hamiltonians 
& and H; occur at the same time: ~ i ( t , )  =: ~ ; ( t * )  
z E, , where 

For this reason, the point (~*,t*) is said to be a synchro- 
nization point. In Fig. 2 this point is located at the inter- 
section of the dashed lines, which, to within the small 
quantities hl and h2, display the time dependence of the 
energy levels E;  (t) and &;(t). The solid lines correspond to 
the eigenvalues of the Hamiltonian H0. It is evident from 
the figure that the time axis can be divided into three char- 
acteristic regions. In the regions 1 and 3 the dispersion 
relation is virtually identic+ to the-dispersion relation 
given by the Hamiltonians H; and H; taken separately. 
Near the synchronization point 2, a continuous transition 
occurs from the first to the second dispersion relation and 
vice versa. The eigenfunctions change similarly. In region 
1, AE/~EZ - 1, and therefore B1 z 1, B2 ~ 0 ,  B3 =:O, and 
B4=: 1, i.e., z J I ;  and t,b2 z $;. At the synchronization 
point, A& =O and B, = - B2= B3 = B4= l/t/Z, SO that 

715 JETP 78 (5), May 1994 V. R. Gushchin 715 



FIG. 2. Size-quantization subbands for a double-well potential. Inset: 
region 2 on an enlarged scale. 

Similarly, in region 3 

We now consider a quantum system which at time t=O 
is in the state I As stated above, this state corresponds 
approximately to the quantum state +;. Let the parameter 
u ( t )  vary so that the system passes continuously through a 
neighborhood of the synchronization point. The evolution 
is determined by the system of ordinary differential equa- 
tions (9) with initial conditions 

We are interested in determining the state of the quan- 
tum system in region 3. To simplify the computations, we 
replace the time by the dimensionless parameter 

where SE*=SE(~*)  =2hlz is the splitting of the energy lev- 
els at the synchronization point. Such a substitution is ad- 
missible if A E ( ~ )  is a monotonic function of time. From Eq. 
( 17) we obtain SE* -8, i.e., 

Thus, near the synchronization point the energy levels 
are separated by a narrow gap. Hence we obtain an esti- 
mate of the derivative of h12: 
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since LJh12/a( A&) - fl. This estimate enables us to replace 
h12 by a constant in region 2, and to simplify ( 2 2 )  and 
( 2 4 )  : 

These expressions can be used to calculate the matrix co- 
efficients w,,, in the system of equations ( 9 ) .  We replace 
the time derivative by a derivative with respect to the vari- 
able f :  

where 

has the dimensions of time and is a weak function oft  or (. 
Next, we assume that the functions $,, are real. This is true 
of the Hamiltonian ( 6 )  and many other cases. Then the 
diagonal elements of the matrix W are strictly equal to 
zero: 

The cross coefficients to leading order have the f o m  

where we have dropped terms containing a$A/a( - 8 
[which is analogous to Eq. ( 2 9 ) ] .  Substituting these ex- 
pressions into Eq. (91, we obtain a simplified form of this 
system that can be employed near the point of synchroni- 
zation: 

where 

and a is the only dimensionless constant in this problem: 

The value of r can be calculated at the synchronization 
point t , .  It can be replaced by a constant in a narrow 
region 2  if dnr/d(( 1, or 
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FIG. 3. Probability amplitude for finding the quantum system in states 1 
and 2 (solid and dashed lines, respectively) near the synchronization 
point for different values of the parameter a. 

This condition imposes certain constraints on the form of 
the external action u ( t )  and the energy spectrum of the 
problem. When the condition (37) is satisfied, r is the 
characteristic traversal time through the resonance 
tunneling point. 

The system (35) together with the boundary condi- 
tions on the left-hand boundary of region 2 

comprise an initial-value problem. According to Eqs. (8), 
(20), and (3 1 ) , these initial conditions correspond to find- 
ing the quantum system in the state \ &). 

Solutions of this problem for different values of the 
parameter a are displayed in Fig. 3. It is evident that for 
a > 3, C1 (5) --, 1 and C2({) zO. However, the real bound- 
ary conditions may differ from (38). When the system (9) 
is integrated in region 1 from t=O to the left-hand bound- 
ary of region 2, arbitrary boundary conditions can arise for 
the system (35): 

It turns out that the solution of the problem (35) and (39) 
can be expressed in terms of the solution of the problem 
(35) and (38). For this we employ the following property: 
if [C,({),C2({)] is a solution of Eq. (35), then [ q ( g ) ,  
- q ( c ) ]  is also a solution of this system. Let 
[Q1,,(6),Q2,,({)] be a solution of the system (35) with the 
boundary conditions (38) for some fixed value of the pa- 
rameter a. Then a solution of the form 

satisfies the system (35) and the conditions (39). Thus the 
functions Ql,,(S) and Q2,,({) contain complete informa- 
tion about all possible solutions of the system (35). 

The case a = 0 corresponds to infinitely rapid traversal 
of region 2. According to (36) and (33), this case can be 
approached if the energy gap SE,(~ and at the same time 
the external action u(t) varies rapidly in region 2. For 
a=O, the Cauchy problem (35) and (38) has the exact 
solution 

Substituting this solution into (8) and using (20), (3 1 ), 
and (40), we find to leading order that Yo(( ,z) is indepen- 
dent of {. In other words, during rapid traversal of the 
narrow region 2, the quantum state of the system does not 
change. 

The system (35) was integrated numerically for a- 1. 
In the limit 5- UJ, however, the solutions are approxi- 
mated well by the analytic expression 

Since the normalization condition 

IQl,a(S> 1 2 +  IQ2,a(f> 1 2 ~ 1 ,  

is satisfied for any and a ,  I el,,( + UJ ) I can be calculated 
from this condition. According to Eqs. (8), (20), and 
(311, ( ~ ~ , , < + a ) ~ ' a n d  I Q ~ , , ( + u J ) ~ '  equal the proba- 
bility of finding the quantum system in the states I $;) and 
( $;), respectively. Interestingly enough, Eq. (41) yields an 
error of less than 12% for any 0 < a  < UJ , and it is asymp- 
totically accurate in the limit a -0. 

Slow traversal of region 2 was studied in detail in Ref. 
10, and corresponds to the limit of large a. The formula for 
Q2,,( + UJ ) has the form 

which differs from Eq. (41) only by a factor close to unity. 
Let PI, = ( Q2,,( + UJ ) I ' be the probability of finding 

the quantum system in state I $i) after traversal of region 
2 under the condition that earlier the system was in the 
same state. Using Eq. (36) we obtain 

By virtue of the symmetry of the system of differential 
equations (35), we have P242=P141, P142=P2-.1 
= 1 -PI, Since in this scction we did not employ a spe- 
cific type of Hamiltonian Ho, the last expression is univer- 
sal and is applicable to any two weakly coupled quantum 
systems in a small neighborhood of the synchronization 
point. 

4. SCAlTERlNG OF QUASI-TWO-DIMENSIONAL 
ELECTRONS IN A DOUBLE-WELL HETEROSTRUCTURE 

As shown above, a longitudinal electric field causes 
nonstationary quantum states to appear continually. In ad- 
dition, according to (9) and (34), the rate of appearance 
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of these states is greatest near the resonance tunneling 
point. Dropping the last term in Eq. ( 14), we obtain the 
transition rate out of a nonstationary state, which is deter- 
mined by Fermi's golden rule and the probabilities of find- 
ing an electron in the two stationary states. 

In this section we study electron scattering by polar 
optical phonons, acoustic phonons, and impurities. These 
questions are investigated in detail in Ref. 13 for single- 
and multiple-well potentials in an external transverse elec- 
tric field. In contrast to Ref. 13, we shall not assume that 
the subbands are parabolic. This assumption is inapplicable 
if a synchronization point exists. 

We represent the electron-phonon Hamiltonian as a 
sum of Hamiltonians for polar optical and acoustic pho- 
nons: 

Since the interaction of phonons and electrons is governed 
by longitudinal  oscillation^,^^ we retain in these Hamilto- 
nians only the longitudinal optical and acoustic phonons. 
In a weak electric field, the electrons in the r valley of the 
conduction band are located close to the center of the Bril- 
louin zone, and for this reason here we employ the long- 
wavelength phonon approximation. Following Ref. 15, we 
write H,, in the form 

where ho and q are, respectively, the energy and wave 
vector of longitudinal optical phonons; 6, and 6: are the 
phonon creation and annihilation operators; 
--I- -1 
E -E, -&{I, where E, and eo are the high-frequency 
and static dielectric constants; and, V is the volume of the 
crystal. The summation extends over the entire Brillouin 
zone. We give the initial and final states as products of the 
electronic part rC, and the phonon parts 4, corresponding to 
phonon occupation numbers N, : 

Using the property 6q4Nq=fi4Nq-I, Q4Nq 

= dm+Nq+ 1, as well as the orthonormality of the pho- 
non eigenfunctions, we obtain from Eqs. (44) and ( 1 1 ) 

For a crystal in thermodynamic equilibrium, we take for 
N, the Bose-Einstein distribution function: 

where k, is Boltzmann's constant. We note that the two- 
dimensional wave vector k of the final state is determined 
completely by the wave vector ki of the initial state, the 
scattering angle 8, and the energy and quasimomentum 
conservation laws (the quasimomentum conservation law 

FIG. 4. Transition rates between subbands with electron scattering by 
polar optical phonons. 

is applied in a plane parallel to the walls of the quantum 
wells). For this reason, summing Eq. (45) over the final 
states, we obtain the transition rate Wi out of the state I i). 
This rate can be expressed in terms of the angular distri- 
bution G(8): 

where 

+1)RI (qf(kf+) )eiq'IIC,i(ki>) 12dqz. (46) 

Here $=q;+d,  (kf-ki)2=d =k2f+e-2kfkicos8, 
the functions qf and t+hi do not depend on x and y and are 
solutions of the equation HOJIn=~,$, . The integrand 
R(q)=e2ud2?rZ$ and ~ j ( k )  = d ~ f / d k  (the index f indi- 
cates the number of the subband of the final state). For 
fixed ki the wave vector kf of the final state can be deter- 
mined from the equation ~ ~ ( k ~ )  -E f(kS) = fho. A typ- 
ical function Wi(ki), calculated on the basis of Eq. (46), is 
displayed in Fig. 4. The heterostructure parameters em- 
ployed for these calculations are: bl =5.09 nm, b2= 12.44 
nm, b3 = 5.65 nm; the aluminum concentrations in layers 1, 
2, and 3 are 0, 0.0897, and 0.3, respectively; the tempera- 
ture of the crystal T=77 K. Each curve corresponds to 
transitions (marked by arrows) between subbands. At 
k > kl =25 - lo6 cm-I, the electron scattering rate increases 
abruptly, since above this value of the wave vector the 
energy conservation law allows the emission of a polar 
optical phonon. For k < kl, the scattering is determined 
solely by the absorption of phonons, and it therefore ap- 
proaches zero as T -0. The resonance tunneling point for 
this heterostructure lies at k,=2. lo6 cm-'. This was 
manifested as an intersection of all plots in the vicinity of 
k,. It is evident from Fig. 4 that at kzO, the intrasubband 
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FIG. 5. Comparison of electron scattering rates by polar optical phonons FIG. 6. Angular distribution of electrons with emission of polar optical 
for double-well (solid lines) and single-well (dashed lines) heterostruc- phonons for a double-well potential. 
tures. 

transition rate is significantly lower than the intersubband- 
transition rate. This is directly related to the localization of 
electrons (belonging to a single energy subband in the ini- 
tial and final states) in different quantum wells. 

The rates of electron scattering by polar optical pho- 
nons in double-well (solid lines) and two single-well het- 
erostructures (dashed lines) are compared in Fig. 5. The 
subbands for the double-well potential are denoted by 1 
and 2, and on the dashed lines they correspond to the 
narrow and wide potential wells. Since the first quantum 
well is narrower, the corresponding transitions have a 
higher probability. Here the rate of scattering of 2D elec- 
trons by 3D phonons tends to increase as the well width 
decreases. This property results from the increase in the 
width of the domain of convergence of the integrals (46), 
since the matrix element appearing in the integrand is the 
Fourier transform of the probability density of an electron 
state localized in z. The rate of electron scattering by polar 
optical phonons has a finite upper limit at zero well width, 
while for acoustic phonons it approaches infinity. This dif- 
ference is associated with the fact that R(q) approaches 
zero for optical phonons and infinity for acoustic phonons 
in the limit q- co . Far to the left and right of the synchro- 
nization point k, the scattering rates for two wells and one 
well are close to one another, and upon traversal of a 
neighborhood of this point they change places. The nor- 
malized angular distribution G(8) of polar optical pho- 
nons is shown in Fig. 6. It corresponds to radiative tran- 
sitions within the first subband. Since kf =O at ki= kl ,  this 
distribution is isotropic near kl. For larger values of k the 
probability of forward scattering increases. 

We now study electron scattering by acoustic phonons. 
We employ the deformation-potential theoryI5 to deter- 
mine the interaction Harniltonian: 

where z is the deformation potential, M is the mass of the 
entire crystal, and c, is the sound speed. Next, proceeding 
as in the case of polar optical phonons, we derive the ex- 

pression (46) in which R (q) = ~ ~ q / 8 ? ~ c , ,  where p is the 
density of the crystal. In contrast to the preceding case, the 
occupation number Nq of the phonon states cannot be re- 
moved from the integrand, since the phonon energy de- 
pends on the wave number fiwq=fiqca. This is especially 
important for narrow potential wells, in which the domain 
of convergence of the integrals (46) as a function of q, is 
wide. The rates of electron scattering by acoustic phonons 
in double- and single-well potentials at crystal tempera- 
tures of 4 and 77 K are compared in Fig. 7. The curves are 
numbered in the same manner as in Fig. 5. These figures 
are distinguished by the weak dependence of Wi for a 
single-well potential on the electron velocity at high crystal 
temperatures. Since all wave vectors lie near the center of 
the Brillouin zone, the energies of the acoustic phonons are 
significantly lower than the energies of the optical phonons 
and the average electron kinetic energy. Therefore k izkf  
and qhizqhf. At high temperatures N,zkBT/%iqc,) 1, and 
the integrals in Eq. (46) are identical. Since for a single- 
well potential qh is virtually independent of k and q drops 
out of the integrand, Wizconst. The dip near k=O is as- 
sociated with the suppression of the emission of acoustic 
phonons for low electron kinetic energies. As is evident 
from Fig. 7, this dip increases with decreasing well width, 
since for scattering in a narrow well, the average phonon 
energy is higher because the q, component is larger. The 
behavior of the double-well dependence, just as in Fig. 5, is 
determined by the abrupt change in the eigenfunctions 
(20) and (3  1 ) near the synchronization point. The rate of 
interband electron scattering by acoustic phonons is shown 
in Fig. 8. The solid line represents a transition from the 
first to the second subband, and the dashed line represents 
the reverse transition. Here, the crystal temperature is 77 
K. The maximum of this distribution near the resonance 
tunneling point arises because the overlap of the wave 
functions is greatest at this point, and the discontinuity at 
k z 6 .  lo5 cm-' depends on the width of the energy gap 
between the subbands. The normalized angular distribu- 
tion for the emission of an acoustic phonon by an electron 
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FIG. 7. Comparison of electron scattering 
rates by acoustic phonons for double-well 
(solid lines) and single-well (dashed lines) 
heterostructura. The crystal temperatures are 
4 K (a) and 77 K (b). 

at T=4 K is displayed in Fig. 9. Scattering occurs within here the model of a resonance impurity that scatters elec- 
the first size-quantization subband. This distribution has a trons at low kinetic energy, far from the resonance tunnel- 
scattering maximum at 180". ing energy. 

We use the model Hamiltonian 

to describe scattering by a neutral impurity. This Hamil- 
tonian corresponds to a collection of delta-function-like 
force centers located at the points ri. Let the impurity be 
distributed randomly in some plane zimp=const. Then the 
scattering is isotropic as a function of direction, and the 
electron transition rate from state ( i )  to state If) is deter- 
mined by the expression 

(47) 
where nimp is the impurity concentration. In order that an 
electron be able to traverse the neighborhood of the syn- 
chronization point in the ballistic mode, we assume that 
Whp(ki) = 0 for ki)kimp = 15 . lo6 cm- '. Thus we employ 

FIG. 8. Rate of interband electron scattering by acoustic phonons. 

5. CALCULATION OF THE CONDUCTIVITY OF A 
HETEROSTRUCTURE 

In this paper, in order to neglect the electron-electron 
interaction, we assume that the electron distribution is uni- 
form in the ( x y )  plane and the electron surface density is 
low. Landau-Zener tunneling gives rise to nonstationary 
states, and electron scattering by phonons and impurities 
transfers electrons into stationary states. The usual defini- 
tion of the distribution function f,(k,,k,,) and the kinetic 
equation are not suitable here, since they neglect stationary 
states. Let f ,( k,,k,,,t) be the distribution of stationary 
gates in the sth subband. Then the distribution function 
f,(k,,k,,,t) of the nonstationary electronic states in k 
space is determined by the transport equation (9) and elec- 
tron losses due to scattering: 

FIG. 9. Angular distribution for the emission of an acoustic phonon by 
an electron. 

720 JETP 78 (5), May 1994 V. R. Gushchin 720 



FIG. 10. Average electron velocity u x  lo-' cm/s (solid line) and prob- 
ability PI of finding an electron in the first subband (dashed curve) as a 
function of longitudinal electric field strength. 

f i  k x  
xexp ( -- eEx Jka 7 I cij(kd?k: yky) I 

where Wj is the transition rate from thejth subband, cij is 
the solution of Eq. (9) where the time t is replaced by kx 
according to Eq. (7) ,  and cij(kd,k,,ky) =ajj. The solu- 
tions satisfying these initial conditions can be easily ex- 
pressed in terms of a system of fundamental solutions of 
Eq. (9), Qi(kx ,ky), i= 1, 2, which satisfy the initial condi- 
tion 

QI (O,ky) = 1, Q,(O,k,) =O 

for all k,. Following the derivation of Eq. (40) we obtain 

where i, j=  1, 2 and the overbar on a subscript denotes its 
complement, i.e., F= 3 - i. Writing out the electron transi- 
tion rate out of and into stationary states, we obtain the 
equation of balance of the states. This is the kinetic equa- 
tion for the function f,: 

The total transition rate Wj(kx,ky! out of the unmixed 
state j is obtained from the partial scattering rates 

w:;' ,, by summing over s and integrating over all 
X Y - f i y  

kL and k;. The kinetic equation (50) is a linear integral 
system with delay. The delay arises due to the finite tran- 
sition time from a stationary state into a nonstationary 
state. This problem was solved numerically by a variant of 
the Monte Carlo method. The I (V)  characteristic and the 
probability Pl of finding an electron in the first subband as 
a function of Ex are displayed in Fig. 10. The plot contains 
a section where the average electron velocity decreases 
with increasing strength of the longitudinal electric field 
applied to the heterostructure. Negative differential con- 
ductance should be observed on this section. This behavior 
is due to Landau-Zener tunneling from a narrow potential 
well to a wide quantum well containing an impurity, re- 
sulting in a decrease in average electron velocity. 

We now give the basic physical parameters for this 
calculation. The temperature of the crystal is 4 K; the 
thicknesses of the layers of the G~As/A~.~G%.,As/ 
Ab.lG%,9As heterostructure are 4.9, 7.2, and 13.84 nm, 
respectively; the wave vector of the synchronization point 
k,=20. lo6 cm-', and the energy gap at this point 
S~*=0.23 meV. Table I gives the number of electron scat- 
tering events occurring for different scattering mechanisms 
within 4 . sec in an electric field Ex= 11.5 V/cm. The 
number of transitions out of nonstationary states was de- 
termined according to Eq. ( 14) and is given in Table I. It 
is evident from these results that the dominant mechanism 
is impurity scattering within the second subband. Since 
this occurs for k <  1.5 - lo6 cm-', an electron with rela- 
tively low average velocity spends most of its time in this 
region. Emission of acoustic phonons in the first subband is 
a secondary process. The probability of emission of an 
acoustic phonon in a narrow layer of width b is propor- 
tional to l/b2. This imposes a lower limit on the width of 
the GaAs layer, since this mechanism prevents ballistic 
transport in the vicinity of the resonance tunneling point. 

Transitions due to electron scattering by polar optical 
phonons within the second subband (2 + 2) are absent be- 
cause there is enough time for an electron to complete a 
transition in the first three scattering channels (see Fig. 4). 
In stronger electric fields this channel comes into play. The 
channel 1 -* 2 transfers electrons undergoing Landau- 
Zener tunneling into the second subband near kzO. This 
transition is therefore responsible for the section with neg- 
ative differential conductance. This section vanishes when 
the channel is artificially closed. 

6. CONCLUSIONS 

In this work the parameters of the quantum wells in 
the heterostructure were specially selected so as to guaran- 
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TABLE I. Number of electron scattering events in a double-well heterostructure during the acquisition 
time of a statistical sample. 

tee the existence of a section with negative differential con- 
ductance in a longitudinal electric field. The following con- 
ditions had to be taken into account: 

the existence of two weakly coupled energy subbands 
~ , , ~ ( k )  with a synchronization point k,, and 
~ l , ~ ( k * )  - E ~ ( O )  <h0, where Hoe is the energy of the polar 
optical phonons; 

the existence of an impurity in the higher quantum 
well; 

weak overlap of the wave functions in regions far 
from the synchronization point; and, 

the rates of electron scattering by phonons and im- 
purities must be low enough that transport through the 
synchronization point is ballistic. 

These conditions are mutually inconsistent, so a compro- 
mise must be sought. For example, the third condition 
might be satisfied by prescribing a sufficiently high barrier 
between the wells. In this case, however, the tunneling time 
increases, and this will cause the fourth condition to be 
violated. Appropriate heterostructure parameters yielding 
the best result probably exist for each specific regime. 
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Transitions 1 Emission of polar1 
1 optical phonons 

Translated by M. E. Alferieff 

Emission of I Absorption of 

1 4 1  
1 - - 2  
2 4 1  
2 -+ 2 
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