
The structure and elastic properties of a vortex lattice in a thin film of an anisotropic 
superconductor 

A. Yu. Martynovich 

Donetsk Physicotechnical Institute, Ukrainian Academy of Sciences, 340114 Donetsk, Ukraine 
(Submitted 7 April 1993) 
Zh. Eksp. Teor. Fiz. 105, 1311-1322 (May 1994) 

The vortex structure and its properties in a thin film of a biaxial superconductor are studied. 
It demonstrates that the distributions of the magnetic field and current of an isolated 
vortex and the energy of the pair interaction of vortices are anisotropic only at small distances 
from the vortex center, while at large distances they are always isotropic. The hexagonal 
shape of a loosely packed lattice is due to the centrally symmetric interaction of the vortices, 
the elastic properties of the lattice are completely isotropic, and the anisotropy manifests 
itself only in a given orientation of the lattice with respect to the crystallographic axes. As 
induction increases, the lattice transforms into an oblique-angled with rhombic symmetry. 
The response of a closely packed lattice to compressive strain is always isotropic, while for 
shearing strain it depends on both the direction of shearing and the magnitude of 
anisotropy. The symmetry axes of the lattice coincide with the directions of easy and difficult 
shearing. The elastic modulus of rotation of a vortex lattice determines the stability of 
equilibrium vortex structures. 

1. INTRODUCTION 

Recently there have been extensive studies of new 
high-T, superconductors whose crystals exhibit highly an- 
isotropic electric and magnetic properties. Numerous the- 
oretical papers describe the effect of the crystal's anisot- 
ropy on the structure of an isolated vortex'-3 and a vortex 

on the elastic properties of a vortex latticeY5-' and 
on the shape of the equilibrium magnetization curve.8s9 All 
these papers, without exception, study magnetic vortices in 
an infinite superconductor. Actually, however, the main 
object of investigation is thin films of high-T, supercon- 
ductors, the manufacturing of which is the best developed. 
Usually the thickness d of these fields is of order 0.1 pm 
and is less than the depth of penetration of the magnetic 
flux into the high-T, superconductor. This means that the 
magnetic properties of high-T, superconducting films can 
be described using the Pearl approximation.'0 ~earl'',ll 
showed that the structure of a magnetic flux-line vortex 
emerging at the surface of an isotropic superconductor 
changes dramatically in the surface layer of thickness A. 
The variation of the magnetic field and current changes 
from exponential to a power law, which leads to a long- 
range interaction of vortices. However, the main charac- 
teristic of a vortex field, the presence of axial symmetry, 
remains unchanged. From this it follows that however 
thick the superconducting plate is, the vortex interaction is 
centrally symmetric and that only a square or hexagonal 
vortex lattice satisfies the condition that all forces are in 
equilibrium. In both infinite s~~erconductors '~ and thin- 
film supercond~ctors'~ the only stable structure is the hex- 
agonal. The short-range interaction of vortices in infinite 
samples and the long-range interaction in thin films ensure 
marked differences in the elastic properties of vortex lat- 

tices of such superconductors. The elastic moduli of the 
vortex lattice in infinite can be compared to 
the restoring forces in the thin-film The latter 
prove to be anomalously high in compressive strain, that is, 
the vortex lattice in a thin film is practically incompress- 
ible. The lattice's response to shearing strain proves to be 
practically the same for both forms of superconducting 
samples, a fact corroborated by experiments.17 

This paper studies vortex structures in a thin film of a 
biaxial superconductor whose anisotropy axes are oriented 
arbitrarily. All results are compared with the known solu- 
tions for an infinite anisotropic superconductor and for an 
isotropic thin film. 

2. THE MAGNETIC STRUCTURE OF A PEARL VORTEX 

2.1. In the thin-film approximation,10~'3'B d4A, the 
equilibrium equations for the vector potential A(x) and 
the gradient of the phase, V$(x) have the form 

2 
curl curl A=- 6(x3),d-' 

A 

Here A = 2A2/d is the effective depth of magnetic-flux pen- 
etration into the sample. The anisotropy of the supercon- 
ductive properties of the material of the film is specified by 
the effective-electron-mass tensor m,d (det f i  = 1 ), and #o is 
the magnetic flux quantum. The plane of the film coincides 
with the plane x3=0 of a Cartesian system of coordinates. 

Equations ( la)  and ( lb) must be solved subject to the 
condition 
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curl v$= 27r C d3xv s (x - x,), 
v I (2) 

which determines V$ for given positions x=xv of the 
source of the magnetic field. The system of equations ( 1) 
and (2) is not complete: the quantities A and V+ can be 
defined only to within the gradient of an arbitrary function. 
As a supplementary condition we select the equation 

div V$=O, (3) 

which fixes the gauge of the gradient of the phase and 
hence of the vector potential. 

Let us examine an isolated magnetic vortex in an infi- 
nite film. The solution to Eqs. (2) and (3) is 

if the normal to the film, n, coincides with the vortex axis. 
Deviation of the vortex axis xv from the normal vector n 
leads to additional terms in (4) that are symmetric under 
the substitution xtt-x. Since allowing for these terms 
changes nothing in the results obtained below, we consider 
only the solution (4). 

2.2. For the solution of the system of equations ( l a )  
and ( lb)  we take the integral representation of the vortex 
current in the film: 

The distribution of the magnetic field of a vortex through- 
out all space has exactly the same dependence on anisot- 
ropy. We see that there are two asymptotic regions for a 
vortex in a superconducting film. The distant region, x)  A, 
is characterized by the predominant contribution of small q 
to (5). In this region the field and current distributions are 
practically independent of f i  and coincide with well-known 
expressions for an isotropic film. In the near region, x(A, 
vortex currents are essentially anisotropic. Equation (5) 
depends only on three components of the anisotropy ten- 
sor, pl I ,  p12, and p22, which can be represented by a tensor 
AT of rank 2. Proper selection of the principal axes XI and 
X2 allows AT to be diagonalized: 

M I 1 = i ~ r  47-4 , / ( ~ r  AT12-4 det AT, 

M z 2 = ; ~ r  AT+$ d ( ~ r  AT)2-4 det AT, ( 6 )  

Let us determine the orientation of the principal axes X1 
and X2. For the initial system of coordinates we take a 
Cartesian system whose x, axis coincides with the projec- 
tion of the crystallographic axis a onto the plane of the 
film. Let us calculate the components of the f i  tensor in the 
initial system. The XI principal axis is rotated from the xl 
axis in the direction of the x2 axis of the initial system of 
coordinates by the angle 

In biaxial superconductors this angle is zero only if one of 
the crystallographic axes lies in the plane of the film. In a 
uniaxial superconductor this angle is always zero and the 
X2 axis is directed along the projection of the anisotropy 
axis c in the plane of the film. In terms of the principal axes 
of the tensor AT the current distribution near the vortex 
core, x( A, has the form 

The reader can see that both the constant-current lines and 
the constant-field lines are ellipses whose diagonals coin- 
cide with the principal axes of AT. By a scale transforma- 
tion of vectors q, 

and the coordinate transformation 

the field and current distributions in the near region of the 
vortex are reduced to the isotropic form. This statement is 
universal, that is, is valid for all types of anisotropy and for 
all orientations of the crystallographic axes in the super- 
conductor. 

It is obvious why inversion of the longitudinal mag- 
netic field2 is absent in thin anisotropic films. In a bulk 
superconductor the rotation of a magnetic flux line occurs 
over distances exceeding A. Pearl films are clearly not thick 
enough for this, with the result that anisotropy in thin films 
leads only to a redistribution of magnetic flux lines in the 
plane of the film. 

3. THE VORTEX-LATTICE ELASTIC ENERGY 

3.1. The free energy of a superconductor in the London 
approximation is 

Here j is the current density, and V$ the gradient of the 
phase of the vortex system in the film. Employing the so- 
lutions (4) and (5) for an isolated vortex, we get 

(10) 

where S(q) = Z,exp(iq x) is the structure factor and x are 
the coordinates of the vortices in the plane of the film. 

The free energy (10) consists of the sum of self- 
energies of the vortices and the energies of pair vortex 
interactions. The self-energy of a vortex is 
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where c is the coherence length. 
It is interesting to compare this result with the energy 

of a vortex in a massive anisotropic superconductor,2 
which can be represented in two ways: in terms of the unit 
vector Y of the vortex, 

or in terms of the unit vector of the external magnetic field 
h = H/H, 

Here Fo= (40/47r~)~ln(A/c) is the free energy, per unit 
length, of a vortex in an isotropic superconductor. The last 
expression has the same dependence on the anisotropy pa- 
rameters as ( l l ) :  the vortex structure in a thin film is 
created only by the component of the external magnetic 
field that is transverse to the surface of the film, or h=n. 

The energy of the pair interaction of two vortices sep- 
arated by a distance R, 

exhibits the following asymptotic behavior: 

Obviously, at great distances the interaction of the vor- 
tices is practically isotropic. At small distances, U(R) de- 
pends on the direction of R and the constant-interaction 
lines are ellipses, as are the constant-current lines. 

3.2. Interaction between the vortices lead to their or- 
dering into a regular lattice. To derive the elastic theory of 
an anisotropic vortex lattice, we consider the displace- 
ments u(x) of the vortices from their equilibrium position 
and assume that typical displacements of the vortices are 
small compared to the distances between the vortices. We 
represent the Fourier trans form of the strains in the form 
of an integral over the first Brillouin zone: 

We expand the free energy (10) in a power series in 
the small vortex strains u(x) about the sites of the equi- 
librium lattice and restrict our discussion to the harmonic 
approximation. As a result we get 

The energy of an unstrained lattice is 

with N the number of vortices in the film. 
The strain-linear expansion terms depend only on the 

components of the distortion tensor 

describing homogeneous strains of the vortex lattice. The 
components of the "stress tensor" oij have the form 

Note that for real crystals the stress tensor can be de- 
fined only because of the short-range of intermolecular 
forces.19 In our case the vortex-vortex interaction is essen- 
tially long-range. Hence, for the parameters in the expan- 
sion of F we selected u(x) rather than ui j .  The presence 
in the expansion (14) of the components uij identical in 
form with the true stress tensor is a consequence of the 
assumptions that the equilibrium vortex lattice must be 
regular and infinite. 

The expansion terms in (14) quadratic in u are pro- 
portional to the vortex-lattice elastic matrix 

For real crystals such a matrix is known as the dynam- 
ical matrix. 

4. EQUILIBRIUM VORTEX STRUCTURES 

For infinite superconductors the structure of the vortex 
lattice can be found by solving the equilibrium equation 
oij=O. This is not the correct approach if we are dealing 
with a superconducting film placed in a transverse mag- 
netic field H=nB. The magnitude of the field uniquely 
determines the concentration of vortices in the film, 
n:= B/#o. With homogeneous strains in the vortex lattice, 
the concentration n~ is related to the equilibrium value 

0 nL as 

n - 
n: 

L - ( 1 + u 1 1 + ~ 2 2 + ~ 1 1 ~ 2 2 + ~ 1 2 ~ 2 1 ) - r .  

Since in the film (nL) =n:, homogeneous strains of the 
compression-elongation type can occur only if 

Thus, the equilibrium equations of a vortex structure 
in a thin film are 
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of coordinates the vortex lattice has a hexagonal structure. 
An inverse scale transformation yields the following solu- 
tions: 

The monotonic variation of the shape of the vortex lattice 
and the transition from solution (19) to solution (20) oc- 

FIG. 1. Orientation of the unit cell of the vortex lattice in an anisotropic curs when the field increases from B a $0(AM22)-2 to 
superconducting film. XI and X, are the principal axes of tensor M. B a $ o ( ~ l l ) - ~ .  

Let us consider the film of a uniaxial superconductor 
whose anisotropy axis is inclined by an angle 8 from the 

We write the explicit form of these equations in the normal vector n to the X2 axis. The principal values of 
system of coordinates associated with the principal axes tensor ,C are pa=pb and p,=p,2 In this notation the ex- 
Xi of the tensor M specified by Eq. (6): pressions for angle E are 

(184 
~ = 2  tan-' J ~ ( c o s ~ ~ + ~ ; ~ s ~ ~ ~ o ) ,  

J T f j  

Z=2 tan-' 
., (18b) 

(21b) 

We compare these expressions with similar solutions for an 
For a lattice that is symmetric under reflection with infinite  superconductor^^ 

respect to the XI and X2 the structure factor 

J 3 
~ = 2  tan-' 

cos28+p~sin28' 

is an even function of ql and q2, and the integrand, on the 
whole, is an odd function, with the result that the integral 
in ( 18a) is zero. 

Hence, in high-T, superconducting films the vortex lat- 
tice has the symmetry of a rhombus with diagonal collinear 
with the XI and X2 axes along which the M tensor assumes 
its maximum (the X2 axis) or minimum (the X1 axis) 
value. 

We determine the shape of the unit cell of the vortex 
lattice by solving Eq. (18b) for high or low inductions 
separately. 

In the case of a loosely packed vortex lattice 
(nLA2 4 1 ) we can ignore in the integral in ( 18b) the term 
A ( ~ M ~ ~  + q i ~ l  responsible for the anisotropy. The re- 
maining integral is M-independent and coincides with the 
similar expression for an isotropic superconductor. The 
equilibrium vortex structure has the shape of a hexagonal 
lattice, and the angle Z between the translation vectors of 
the lattice (Fig. 1 ) is 

J 1 
2 = 2  tan-' 

3 (cos28+p$in28)' (22b) 

In discussing the self-energy ( 1 1 ) of a vortex we noted the 
analogy between the direction of n in a thin film and that of 
H in a massive superconductor. Therefore comparison of 
(21) and (22) would appear to be justified. The numerical 
calculation of (21) and (22) for superconductors with 
pa < 1 and p, > 1 is illustrated by Fig. 2. It is clear that at 
the boundary points 8=0  and 8=  ?r/2 the vortex struc- 
tures in the massive and thin-film samples coincide. For an 
arbitrary orientation of axis c the vortex lattices prove to 
be different. 

5. THE ELASTIC PROPERTIES OF VORTEX LATTICES 

5.1. We write the elastic matrix 6 (16) in the system 
of coordinates associated with the wave vector k: 

In the case of a closely packed vortex lattice 
(nLA2 $1 ) we should leave in the denominator of ( 18b) 
only the terms with q:. The resulting simple expressions 
are reduced via the scale transformations of coordinates 
(7) and (8) to the isotropic form. In the "primed" system 

709 JETP 78 (5), May 1994 A. Yu. Martynovich 709 



FIG. 2. The vortex lattice angle E as a function of 
the deviation of the magnetic field from the an- 
isotropy axis of a uniaxial superconductor. Curves 

60' I and 2 were built for a superconductor with 
pJp,= 64, and curves 3 and 4 for a superconduc- 
tor with p,Jp,=64; curves I and 3 correspond to 
thin-film samples, and curves 2 and 4 to massive 
superconductors. 

I I I 

0" 30" 60" 
0 90" 

The component Gll describes compression waves ("Ilk) in 
the vortex lattice, and GZ2 describes shearing strains ( 
ul k). 

In the expression for the main contribution is pro- 
vided by vortices separated by a distance greater than A. 
The interaction U ( 13) between such vortices is practically 
isotropic, and the value of in the case of small k is 
independent of @ and of the direction of k: 

A characteristic manifestation of the long-range inter- 
action in the vortex system is the simple dependence @,, 
on the first power of k. For a massive superconductor all 
the coefficients <Pij are proportional to kZ (see Ref. 15), 
which makes it possible to express the aij in terms of the 
elastic moduli of the vortex lattice. In the lattice of Pearl 
vortices, even in the isotropic case, there is no way in 
which the concept of an elastic modulus can be introduced 
for compressive strains. 

5.2. For closely and loosely packed vortex lattices the 
quantity GZ2 in (23) depends differently on induction B 
and the wave vector k 4  &. 

For low inductions ( n L ~ '  B 1 ) , 

The second term, which takes into account the anisot- 
ropy of the superconductive properties of the film, is neg- 
ligible. The first term constitutes the well-known result for 
an isotropic superconducting film,I7 and the respective lat- 
tice sums and the value C= 1.106 11 were calculated by 
Fetter and Hohenberg. l3 

For high-inductions (nLh2 4 1 ), it is convenient, when 
calculating aZ2, to go over to the priced system of coor- 
dinates [Eqs. (7) and (8)], in which QZ2 differs from the 

isotropic expression & k ' / 6 4 & ~ ~  (see Ref. 15) by an ad- 
ditional factor, (n@- 'n) -3/2(k'/k)2. Performing the in- 
verse coordinate transformation, we obtain 

The following conclusions can be drawn from (26): 
(2) as in the case of a massive isotropic superconduc- 

tor, @22 - k2; 
(b_) for a given orientation of the anisotropy axes in the 

film, QZ2 assumes its maximum value when the vortex lay- 
ers are shifted along the X2 axis yith the greatest value of 
AT, and the minimum value of @22 is realized when the 
shift is in the perpendicular direction; 

(c) the greatest and smallest values of 622 differ by a 
factor of (M22/M1 )'; - 

(d) for a specific superconducting material QZ2 as- 
sumes its extreme values in the case when the axes with the 
greatest and smallest values of tensor @ lie in the plane of 
the film; 

(e) in the case of a uniaxial superconductor, 

For a fixes value of angle 8, the greatest and smallest 
values of aZ2 differ by a factor [1 + 1 )sin28I2. The 
projection of the anisotropy axis on the plane of the film 
determines the direction of difficult shear in superconduct- 
ors with pa < 1 and the direction of easy shear in the case of 
Pa' 1. 

Kogan and campbel17 calculated the shear modulus 
for the vortex lattice in a uniaxial superconductor with 
pa < 1. Their main finding was that the shear modulus is an 
anisotropic quantity and reaches its greatest value when 
the vortices are shifted along the anisotropy. This is also 
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true for a thin film, but the dependence of the shear mod- 
ulus obtained in Ref. 7 on the parameters p, and 0 differs 
from formula (27). 

5.3. In the previous section we established that two 
"ortex structures satisfy the equations of equilibrium. 
Their reactions to compressive and shearing strains are the 
same and are described by the positive coefficients of the 
elastic matrix @. To establish the stability conditions for 
these structures we consider the elastic modulus of rotation 
of the vortex lattice as a whole: 

Introducing the elastic modulus C,, as a means of 
describing rotational strain is justified since in the given 
case the interaction of vortices is "short-range": at great 
distances U(R) is independent of direction of R. 

For a loosely packed lattice (nLh2< 1 ) the integral in 
(28) can be calculated analytically. For the vortex struc- 
ture ( 19a) we have 

while for the vortex lattice described by (19b) we have 

These expressions show that the sign of the modulus 
C,,, determines the stability of a vortex structure. A lattice 
is stable if one of its elementary translation vectors is di- 
rected along the axis with the greatest value of tensor AT. 
This statement is also true for massive superconductors.5 

For a closely packed lattice ( n L ~ '  > 1 ) a numerical 
calculation of (28) leads to the following expressions for 
the elastic modulus Grot : 

for solution (20a), and 

for solution (20b). In these expressions the numerical pa- 
rameter p is approximately equal to unity and depends 
very weakly on the anisotropy: for any variations in M l l  
and MZ2 by a factor of 100 (from 0.3 to 30) the value of B 
varies by a factor of less than two. 

In the particular case of a uniaxial superconductor the 
elastic rotation modulus of a vortex lattice is 

6. CONCLUSION 

1. We have studied the structure of an isolated vortex 
and an equilibrium vortex lattice in a thin film of an an- 
isotropic superconductor. We have calculated the compo- 
nents of the dynamical matrix and the elastic rotation 

modulus of the lattice. The results are valid for a broad 
range of magnetic fields from zero to several tesla. For high 
values of induction the distance between the vortices be- 
comes smaller than d and the Pearl approximation breaks 
down. 

2. The anisotropy of the magnetic properties of thin 
film is described by the tensor AT of rank 2 given by Eq. 
(6). 

3. At great distances @>A) the structure of a vortex 
is determined by the fields generated by the vortex in free 
space. Hence the field, the current ( 5 ) ,  and the pair vortex 
interaction potential U (x) ( 13) are centrally symmetric 
and do not depend on the anisotropy parameters. In the 
near region ( x < h )  the vortex field and the vortex inter- 
action with neighbors are anisotropic. The constant- 
current and constant-field lines are ellipses. The principal 
axes of tensor AT are the symmetry axes of the vortex struc- 
ture and fix the direction of difficult and easy shear of 
vortex chains in the lattice. 

4. For low inductions ( B  < the vortex lattice 
always has the hexagonal structure ( 19), which transforms 
into an oblique-angled structure (20) as the field strength 
grows. The lattice orients itself in such a way that one of 
the elementary translation vectors is directed along the X2 
axis with the greatest value of the tensor H in the plane of 
the film. 

5. The rigidity of the lattice under compressive strains 
(24) grows cc B2k and is independent of the direction of 
the compression waves. 

6. The reaction of the lattice to shearing strains is dif- 
ferent for low (Eq. (25)) and high (Eq. (26)) inductions. 
For B < 4dh2 the coefficient diZ2 varies like B3"k2. AS the 
field grows, the dependence on B becomes linear, the de- 
pendence on the wavelength disappears, and a dependence 
on the direction of shearing appears. The lattice manifests 
the greatest rigidity under a shift of the vortex layers along 
the X2 axis, the direction with the greatest value of H,  and 
the least rigidity under a shift in the perpendicular direc- 
tion. 

7. For rotation of the lattice as a whole the potential of 
vortex interaction is short-range. Rotation strain is de- 
scribed by the elastic rotation modulus (28) and deter- 
mines the stability of equilibrium vortex structures. 

The author is grateful to A.M. Grishin for discussing 
the results of the present study. 
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