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A nonstationary solution of the electronic kinetic equation for a weakly collisional fully 
ionized plasma is obtained within an approach leading to an asymptotic expansion in fractional 
negative powers of a large Knudsen parameter. The change in electron density due to 
the nonlocal effect of a nonuniform high-frequency field, to a potential electric field, and to 
the velocity of the ion motion is found. 

1. In experiments involving the interaction of a high- 
power laser pulse with a solid target, it has long been found 
that under conditions generally viewed as collision-free for 
a plasma, instead of the limiting (Knudsen regime) value 
of electron heat flow density, one and sometimes two or- 
ders of magnitude lower heat flow density is rea1i~ed.l~~'~ 
The first explanations of this situation involved the as- 
sumption of ion-sound turbulence (see, e.g., Ref. 4). How- 
ever, conditions for the existence of turbulence are not 
always realizable and so the disagreement between the ki- 
netic theory and experiment persisted. 

Numerical experiments using the Landau collision in- 
tegral indicated the possibility of a several-fold reduction 
of electron heat flow from the Knudsen It should 
be noted that this numerical prediction also had no phys- 
ical explanation for quite a long time. 

Simultaneously with developments in numerical mod- 
eling, an attempt was made to formulate some analytical 
ideas concerning the description of weak-collision heat 
transfer. In this attempt, as in the Knudsen collisionless 
limit, transport was treated nonlocally, and the particular 
model used relied on the extrapolation, via the Pad6 ap- 
proximation, of the strong-collisional transport  result^.^" 
Underlying the model was a result of a Hilbert-Chapman- 
Enskog-based theory corresponding to the fact that in the 
strong-collisional limit, higher-order corrections corre- 
spond to expanding in even powers of the Knudsen num- 
ber, this latter being the ratio of the electron mean free 
path to the spatial inhomogeneity scale of the electron dis- 
tribution. It should be emphasized that in a fully ionized 
plasma there are two electron mean free paths involved, 
namely, the electron-ion one, lei, and the electron-electron 
one, lee. As shown in Ref. 9, for a plasma with a high 
degree of ionization (ZB 1 ), this leads to peculiar effects 
associated with the change in the velocity-symmetric part 
of the electron distribution function. 

When speaking of the expansions involved in the 
Hilbert-Chapman-Enskog method used in the theory of a 
strongly collisional plasma, one may relate them to Ma- 
claurin series in positive integral powers of the Knudsen 
number. In contrast, in the theory of highly rarefied gases, 
the occurrence of expansions in negative integral powers of 
the Knudsen number may be connected with Laurent se- 

itatively new situation has arisen. To begin with, the 
development of numerical cast doubt on 
the Pad6 approximation approach of Refs. 7 and 8, and 
provided evidence to show that a new--efficient-Pad6 ap- 
proximation corresponds to those asymptotic Knudsen 
number expansions of Refs. 7 and 8 which are not in even 
powers. However, the publications based on the numerical 
solution of the Boltzmann kinetic equation with the 
Landau collision integral exhibit an obvious divergence in 
the numerical experiment results presented. Thus, to Refs. 
10, 1 1, and 12 there correspond expansions, respectively, in 
integer (including odd) powers; in powers of (4/3)n, 
where n is integer; and in powers of 1.44n. All these un- 
doubtedly interesting results are also a clear indication that 
an urgent need has arisen for the development of a new 
analytical approach with the potential to reveal a qualita- 
tively new asymptotic region in the description of collision 
phenomena in plasma. Such an approach should be quali- 
tatively different both from the Hilbert-Chapman-Enskog 
method and from that involved in the conventional theory 
of weakly rarefied gases. 

Today it is already possible to call Ref. 13 the origin of 
the new analytic approach required. This work, concerned 
with the theory of laser radiation filamentation in a plasma, 
yields a new, stationary, analytic solution to the kinetic 
equation with the Landau collision integral, indicative of 
the existence of an expansion in terms of the fractional 
negative powers of a large Knudsen parameter 
(K~Z)-("'~); where, for example, in writing the Fourier 
transform of the nonlocal thermal conductivity it turns out 
that 1=5 (Ref. 13): 

Here A , = ~ ~ / ~ I ~ , Z / ~ T ' / ~ ( Z +  l)l/', Z is the degree of ion- 
ization, lei= 3rnZv%~4(2~)  1/2e2e:ni~ is the electron mean 
free path for collisions with ions, k is the "wave vector," 
and x, the Spitzer-Harm thermal conductivity coeffi- 
cient. Reference 14 shows that Eq. ( 1.1 ) leads to a nonlo- 
cal kernel in the expression for the heat flow density, 

ries. As opposed to this conventional view, it may be ar- 
gued that in the current kinetic theory of a plasma, a qual- the three-dimensional form of the kernel being 
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Finally, in Ref. 15 it is shown how the relation ( 1.1 ) leads, - 

in one dimension, to a heat transfer restriction coefficient 
of the form 

q=fn&~&BT,. 

It should be emphasized here that the results of Refs. 13, 
14, and 15 are based on the stationary solution of the elec- 
tron kinetic equation for the particular problem concerned 
with the influence exerted on a plasma by a high-frequency 
heating radiation. The present work takes one further step 
in the development of a nonlocal theory of a weakly colli- 
sional plasma. Specifically, we will obtain a nonstationary 
solution of the electron kinetic equation for conditions un- 
der which a fractional asymptotic expansion for the elec- 
tron density perturbation is realized. As in Ref. 13, a high- 
frequency electromagnetic field is assumed to act on the 
plasma. However, unlike Ref. 13, we also consistently take 
into account the presence of a potential electric field 6q as 
well as the fact that the ions move with a finite average 
velocity ui relative to the electrons. The resulting solution 
of the electron kinetic equation will be employed to derive 
the electron density perturbation. The present work does 
not discuss possible applications of this theoretical result. 
However, some applications of this kind are obvious in the 
light of the use the fractional asymptotic expansion results 
find in Refs. 13 and 16, these being the pioneering efforts to 
utilize the analytic theory of nonlocal transport in the anal- 
ysis of the parametric instabilities in a weakly collisional 
plasma. 

2. For a description of the low frequency perturbations 
of the electron distribution function caused by an electro- 
magnetic field with an electric component 

the (slowly changing in time) electron distribution func- 
tion will be represented in the form 

where f,,, is the Maxwell distribution function, 6 f is a 
small perturbation, and o, the frequency of the rapidly 
varying high-frequency field. Suppose that 6 f ,  the qua- 
dratic combination ER + e E j  of the amplitudes of the 
h f field, and the perturbation 6q of the slowly varying (in 
time) electric field, all vary with the time and coordinates 
as 

Here U T ~ =  ( x B ~ ~ m e ) ' / 2  is the electron thermal velocity, 
5/2 1/z3- le2 2 vei=2 n e,n,~m;~v?: is the electron4ectron 

collision frequency, and the electron+lectron and 
electron-ion collision integrals are of the form 

Here v(v) = 3 ~ ~ / ~ 2 - ~ ' ~ v ~ ~ ~ ~ v - ~ ,  the ion distribution func- 
tion is represented in the form f ;= f mi+6 f (where f is 
the Maxwell distribution function and 6 fi a small correc- 
tion), and ui exp(ikr - iot) = n;'Sdvivi6 f j  is the average 
ion velocity. For our purposes one can neglect the transfer 
of energy in electron-ion collisions and employ formula 
(2.5). 

Now let us represent the small perturbation 6 f of the 
distribution function as a sum of terms independent of the 
collision frequency vei and of the perturbation frequency o ,  
plus an additional term 6 f, : 

where we have introduced the notation 

where the relatively low frequency o characterizes the low- e2(vIq - ( 1/3) V~S~,)  oz= ( ~ q + q ~ , - f  S ~ , I E ~ ~ ) .  
frequency perturbation. Then, in accordance with Ref. 9, 4m:@:v4Te 
we can write for 6 f the following linear equation: (2.7') 
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Since we are interested in the case of a high degree of 
ionization Z, when Z= 1 e/e 1 ) 1, the electron-ion colli- 
sion integral will be assumed to be much larger than its 
electron-electron counterpart when considering the angu- 
lar relaxation of the electron velocity. Therefore in what 
follows we neglect the influence of electron-electron colli- 
sions on the angular anisotropy of the electron distribution 
function. Then from Eq. (2.4) we have, after substituting 
(2.71, 

A solution to this equation will be sought assuming the 
condition 

which, as shown in Ref. 13, may be fulfilled for perturba- 
tion wavelengths A.=kV1 less than the electron mean free 
path lei if the characteristic electron velocities dominating 
the plasma perturbation are much less than the thermal 
one. Let S fc=6 f0+6 f a ,  where S fo=(S f,) is the angle- 
averaged-and hence isotropic-part of the perturbation 
S f, and Sf ,=S f ,- (6 f ,) is the anisotropic part of the 
perturbation Sf,. Then averaging (2.8) over the angles 
yields 

Subtracting this from (2.8) and neglecting the combi- 
nation ikvS f a  - i(kvS f ,) compared with Jells f J + i d  f , 
[corresponding to the condition (2.9)] and also neglecting 
J,[S f ,] compared with JeI{S f a] [corresponding to ZB 11, 
we obtain the second equation: 

This last equation has the following explicit exact solution: 

Thus the problem of determining the electron distribution 
perturbation is reduced to the solution of an equation for 
the isotropic function 6 f o, 

In the following we take into account that 
(a/&) ( v v - ~ )  = 4 ~ S ( v ) ,  where 6 (v) is the delta function. 

3. In this section the perturbation of the electron den- 
sity will be determined, which requires the solution of Eq. 
(2.13) for Sfo, the symmetric correction to the distribu- 
tion function. We will consider the low-frequency limit, 
assuming 

whereupon the condition (2.9) takes the form 

For kuTe>vei, this inequality can only be realized 
when the perturbed nonequilibrium electron distribution is 
dominated by electrons whose velocities are much less than 
thermal. With this indication of the importance of low 
electron velocities-and so recognizing the hope for ob- 
taining solutions for sufficiently large values of k [see con- 
dition (3.2)]-it should be noted that care must also be 
taken to track the contribution from large velocities. In 
fact, it is only when this contribution is negligible that we 
may hope to construct a satisfactory theory. 

In view of inequality (3.1 ), for the function F ( x )  de- 
fined by 

where lei= vTev, ' and 

the following integro-differential equation can be written 
according to (2.13 ) : 
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Here we have taken into account the relation 
S(r) = ( 4 d ) - ' 6 ( r )  for the 6-function and used the nota- 
tion 

A solution to Eq. (3.5) will be sought in the approxima- 
tion where 

N) 1. (3.7) 

Moreover, assuming o to be small, we represent the solu- 
tion of Eq. (3.5) in the form 

In the solution of Eq. (3.5) we will restrict ourselves to 
terms linear in w. 

The equation for Fo(x) has the form 

In the approximation (3.7) this equation was solved in 
Ref. 13 and its solution has the form 

where to make things compact we have used the functional 

Here ~ = x N ~ / ~ ,  r ( z )  is the r function, and 1117(2) and 
KlI7(z) are modified Bessel functions. In the search for the 
function Fl (x) we represent it in the form of a sum of four 
terms as 

where for the three functions involved we have from Eq. 
( 3.5 ) the following equations: 

The last of these, Eq. (3.15), is a result of iteration after 
replacing F(x)  by Fo(x) in the term in iw  on the left-hand 
side of Eq. (3.5). 

The solution procedures for Eqs. (3.13) and (3.14) are 
given in Appendix I, and that for Eq. (3.15) in Appendix 
11. 

Note that the term containing kui in (3.12) provides a 
correct expression for the ion-velocity correction to the 
isotropic part of the distribution, not only in the low- 
velocity region, see Eq. ( 3.2), but also in the opposite limit 
when kv)v(v). This is shown in Appendix 111. Thus the 
kui term in (3.12) may be used to describe the ion-velocity 
correction for any value of electron velocity. The solutions 
of Eqs. (3.13)-(3.15) enable the electron density pertur- 
bation to be evaluated: 

where the relation (2.7) has been used and where from 
(3.3), (3.8), (3.12), and Appendices I and 11, 

Here 
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8 2 'I7 
= 7n (?) sin 5 Jom d(KlI7 (; (7") 

The estimation of the contribution to the integrals (3.18)- 
(3.21) from the region <)co, ~ ~ / ~ ) ( ~ > l ,  yields: a contri- 
bution - ~ - " ~ ( & ~ " ( f l ~ -  1 to the integral (3.18); 
-(&14f11/2- 1 to (3.19); - 1 n ( ~ ~ / ~ / ( ~ )  <& 2-1n(~2/7) 
to (3.20); and - m a x ( ~ - ~ " ~ - ~ , N - ~ " ( ~ ~ ~ ~ )  4 6 ~ -  1 to 
(3.21 ). We emphasize that exp( - {N-"~) in the integrals 
(3.18), (3.19)-(3.21) may be replaced by unity because 
the main contribution is from the values 6~ 1 or, equiva- 
lently from the velocities 

This enables one to argue that the iteration leading to Eq. 
(3.15) implies the following restriction on the frequency w 

This also follows from (3.17) by comparison of the terms 
proportional to Do and 6B. 

For the integral on the right-hand side of Eq. (3.20), 
exp( - c ~ - ~ / ~ )  cannot be replaced by unity because of its 
role in restricting contributions from velocities exceeding 
the electron thermal velocity ( v  > u,). The dominant con- 
tribution to the integral is given by the region 1 5 ( 5 N2I7, 
with the consequence that ~ , / ~ - l n ( N ~ / ~ ) .  This means, in 
particular, that the dependence of uj(t) on time should not 
be restricted by the inequality (3.23) but rather by a more 
stringent one, 

However, one can also employ F3/2(x) in the region mod- 
erate x values. The proof is given in Appendix 111. 

Since the relation (3.1), with (3.22), reduces to the 
inequality w(v,,N~/~, it holds automatically under the con- 
dition (3.24), which may be regarded as the principal re- 
striction our analysis imposes on the frequency w. 

As to the formula (3.17), we also note that in view of 
the condition (3.7) the term -B3121 in it may be ignored. 
Finally, on account of (3.7) and especially noting that 
Z)1, the term may be neglected. Therefore we 
have 

where Co= (8 1 ~ / 1 6 )  1 / 7 ~ 0 =  1.73 was obtained in Ref. 13 
and 

To conclude this section it is appropriate to discuss the 
validity of the assumption (2.9) which, using (3.1 ), and 
for the velocities given by (3.22), takes the form 

This inequality is satisfied if the conditions (3.7) and Z) 1 
are as well, which together with (3.24) are the principal 
conditions determining the applicability of Eq. (3.25) to 
the electron density perturbation. 

4. To summarize, a discussion is given of the principles 
of a new approach to the nonstationary kinetic theory of a 
fully ionized plasma in the rare collision limit, when colli- 
sion effects show up in the asymptotic expansion in nega- 
tive fractional powers of the Knudsen parameter. A non- 
stationary solution of the kinetic equation is obtained. It is 
shown that for nonstationary phenomena, the electron 
density perturbation is controlled by variations in the sym- 
metric part of the electron distribution function for elec- 
tron velocities less than thermal. The peculiar new prop- 
erties of the electron distribution obtained are due to the 
effect of the electron4ectron collisions. One should em- 
phasize the qualitative difference of our asymptotic ap- 
proach from any one of the previous analytical approaches 
to the kinetic theory of a collisional plasma. Note that the 
formula (3.25) offers a possibility of a consistent theoret- 
ical description of the influence of electron collision effects 
on the collective excitations in a weakly collisional plasma 
and on the properties of parametric instabilities. 
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APPENDIX I 

In this Appendix the solution to Eqs. (3.1 ) and (3.14) 
is obtained. We first note that owing to the condition (3.7), 
the asymptotic dependences for x>l  follow from Eqs. 
(3.13) and (3.14) as 

F1/2(x) = 1x3 {-x1/2+C1/2N ), 

( AI. 1 ) 

where 

Now consider Eqs. (3.13) and (3.14) in the opposite 
limit x<l.  Neglect the integral terms in (3.13) and (3.14) 
assuming that in the region x< 1 the following inequalities 
hold: 

where 

Then for x<l,  Eqs. (3.13) and (3.14) take the following 
respective forms: 

N - ' ( x ~ ~ F ~ / ~ ( x ) ) ' - x ~ F ~ / ~ ( x )  =x1l2, (AI.9) 

N- 1 ( X 3 / 2 ~ t  3 / 2 ( ~ )  )' -x3F3I2(x) =x3I2. (AI. 10) 

The solutions of these equations which are regular at in- 
finity and zero can be written in the form 

- 
F 1 / 2 ( ~ ) ' F 1 / 2 ( 5 ) =  -1V5/7*(c,[c1/21 1, (AI.ll) 

F~/z(x) ~ F 3 / 2 ( ( ) = - ~ ~ / ~ * ( 5 ,  [ Y 2 ]  1, (AI. 12) 

where the functional \V({,[q]) is given by (3.11), and 
5=xN2I7. In the region c>1 the asymptotic forms of 
(AI. 11) and (AI.12) are identical to the corresponding 
expressions ( AI. 1 ) with ClI2 and C3I2 neglected. Expres- 
sions (AI.ll) and (AI.12), when substituted into (AI.2), 
give 

C3, = JOw d553/2dY(& [g/2] )/dl--* ( AI. 12") 

This means that for x> 1, ClI2 and C3/2 can be neglected in 
formulas ( AI. 1 ) . Since for this very reason the asymptotic 
N> 1 forms of the solutions ( AI. 1 1 ) and ( AI. 12) are iden- 
tical with the asymptotics of (AI.l), it follows that these 
solutions are applicable to any x value. 

One needs to check the validity of the conditions 
(AI.3)-(AI.6), however. To carry out this check, for x< 1 
we shall start with the region N2/'>5> 1 in which, accord- 
ing to (AI. 11) and (AI. 12), we have 

These expressions give the respective forms 

Equations (AI.13) yield for the left-hand sides of the ine- 
qualities (AI.3) and (AI.5) the estimates N-~" and N-' 
In N, respectively. Comparison of these estimates with ex- 
pressions (AI.14) enables one to infer the validity of the 
inequalities (AI.3) and (AI.5) in the region ~ ~ / ~ > 5 >  1. 
Also satisfied in this region are the inequalities ( ~ 1 . 4 )  and 
(AI.6), because 4 s .  (AI.13) yield for the left-hand sides 
of them the respective estimates N- 'x-~ and N-'x-'. We 
turn next to the region c<1, in which by (AI.lO) and 
(AI. 1 1 ) we have 

Fi/z(x) = - p " [ ~ ~ / ~ - $  xN2I7], (AI. 15) 

where 

In particular, Eqs. (AI. 15) and (AI. 16) yield 
-2 3/2 A , / ~ = $  x1I2, A3/2-s x . ( AI. 17) 

Since (A1.15) gives for the left-hand side of (AI.3) the 
form (4/1 5)x5I2, whereas for the left-hand side of (AI.5) 
the expression (AI.16) gives (4/35)x7I2, comparison with 
(AI.17) shows these two inequalities to hold. Further, by 
estimating from (AI.15) the left-hand side of inequality 
(AI.4) we obtain x ' / ~ N - ~ / ~ .  Since N> 1, inequality (A1.4) 
is realized. Therefore Eq. (AI. 15) gives the solution to Eq. 
(3.13) for the entire range of x values under the assump- 
tion (3.7). 
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It remains to consider inequality (AI.6) in the region 
f < l  in which, from (AI.16), the left-hand side of this 
inequality turns out to be of order . C omparisor. 
of this estimate with A3/2 as defined by (AI. 17) shows that 
inequality (AI.16) may fail (if at all) only for 
{ 6 N - ~ / ~ < I .  However the contribution that F3/2(x), in 
this region of its argument, makes to the electron density 
perturbation is small compared to that from larger f val- 
ues. 

APPENDIX II 

We present here the basic steps in the approximate 
method used to solve Eq. (3.15 ) . Despite the analogy with 
the discussion in Appendix I, there arises here a certain 
complication, due to the special behavior of the right-hand 
side of (3.15) for x ( N - ~ / ~ ( ~ ,  when, from Eqs. (3.10) 
and (3.11), 

(AII. 1 ) 

In the opposite limit of moderately small x values, when 

we have from (3.10) and (3.1 1 ) the asymptotic form 

By using (AII.3) one readily obtains, from Eq. (3.15) for 
x) 1, the asymptotic formula 

where 

In accordance with the approach of Ref. 13 and Appendix 
I, we next consider Eq. (3.15) for x(1. To simplify this 
equation, assume the following inequalities to hold: 

1 - I I: df12e-y6~'(y) I (A, 
N 

(AII.6) 

1 
- lxln I: dye-Y6F'(y) I (A, 
N 

(AII.7) 

where 

Then for x(l, Eq. (3.15) can be reduced to the differential 
equation 

1 
- N [ x ' / ~ ~ F '  (x) ] '-x36F= - x1/'F0(x) +$I. I 

The solution to this equation which satisfies the bounded- 
ness conditions at both infinity and zero can be written in 
the form 

where the functional Y (f,[q({)]) is defined by (3.1 1 ). 
The asymptotic behavior of the solution (AII.lO) for 

0 1  turns out to be consistent with Eq. (AII.4). This 
implies that (AII. 10) gives the solution of Eq. (3.15) for 
any values of the argument x provided the condition (3.7) 
and, as well, the conditions (AII.6) and (AII.7) hold. We 
shall later show that the last two conditions are fulfilled if 
so is inequality (3.7). 

However, before p~oceeding to the proof, let us esti- 
mate the quantity 6C. Substitution of (AII.10) into 
(AII.5 ) gives 

x (dq({,t51/2F,({)l )/d{). ( AII. 1 1 ) 

In view of the rapid decrease of the functionals \I, in the 
region (AII.2), even for x(1, it is possible in the integrals 
in (AII.ll) to replace the exponentials by unity. This al- 
lows one to write 

From this,-making use of (3.10), there at once follows the 
estimate ~ ~ - N ' ~ / ~ . - ~ h e r e f o r e  in the asymptotic formula 
(AII.4) the term SC/N is only important for X) N - ~ / ~ ~ ,  
or equivalently for g)N4/35 > 1. 

We now proceed to discuss the validity of inequalities 
(AII.6) and (AII.7). Consider first the region ~ ~ / ~ > g ~ 1  
in which, by (AII.4), 

In determining the left-hand sides of the inequalities 
(AII.5) and (AII.6) in the region ~ ~ / ~ ) 5 ) 1 ,  one can 
again employ Eq. (AII.4). Then, for example, the left- 
hand side of inequality (AII.6) takes the form 

Comparison of this expression with (AII. 13) shows that in 
the region ~ ~ / ~ > g )  1 inequality (AII.6) is satisfied. Simi- 
larly, the left-hand side of inequality (AII.7) for 
~ ~ / ~ $ f > 1  has the form 

(AII. 13") 

675 JETP 78 (5), May 1994 A. V. Maksimov and V. P. Silin 675 



Comparison of this expression with (AII. 13) shows that in 
the region N2">{> 1 inequality (AII.7) is realized. In the 
opposite limit 641, Eq. (AII.lO) yields the following as- 
ymptotic behavior: 

SF(x) = ~ ' ~ " [ 4 ? r ' " ( x ~ ~ / ~ ) ' " - a ] ,  (AII. 14) 

where 

In the case of small values {<I we have 

A = 2 7 ~ " ~ ~ .  (AII.16) 

A particularly simple form takes in this case inequality 
(AII.7), which can be written 

In view of the expression (AII.16), we have thus shown 
that inequality (AII.7) is satisfied. Finally, the left-hand 
side of inequality (AII.6), dominated by the integration 
over small values of x, has the form ~T'/~N~/' .  Comparison 
of this last expression with (AII.16) shows inequality 
(AII.6) to hold in the region {<I. A somewhat closer look 
at the above expressions involved in the inequalities 
(AII.6) and (AII.7) shows that these inequalities also 
hold for {- 1. Thus we have shown in this Appendix that 
Eq. (AII.10) represents the solution of the Eq. (3.15) 
when inequality (3.7) holds. 

APPENDIX Ill 

Remembering that we must compare the contributions 
to the nonequilibrium electron distribution made by elec- 
trons with low and high velocities, in this Appendix we will 
show that the term in kui in (3.12), which is determined by 
Eq. (3.14), not only provides a correct contribution for the 
region of low velocities, Eq. (3.2) but for the high-velocity 
region as well kv > v(v). 

From the initial kinetic equation (2.4) with the colli- 
sion integral (2.5) ,  it is easy to obtain, in the limit of low 
frequencies w [cf. Eq. (3. I)], the following expression for 
the ion-velocity correction S fo,, to the isotropic part of 
the distribution function [for large velocities kv> v(v)]: 

Let us compare this result with that given by the approach 
we used in Sec. I11 for the case kv < v(v). We note above 
all that the inequality kv>v(v) can be rewritten in the 
form x2 > (klei) - ' or t2 > Z' /~N' /~> 1, i.e., the high-velocity 
region kv > v(v) corresponds to the region of values (> 1. 
In the range &1, the solution for the function F3/2(x) 
[which function corresponds, by (3.12), to the ion velocity 
contribution to the distribution function] has a solution of 
the form (see Appendix I )  

The ion velocity correction to the isotropic part of the 
distribution, S fo(i), can be expressed in terms of F3/2(x) in 
the following manner in accordance with Eqs. (3.3), (3.8), 
and (3.12): 

and hence from (AIII.2) is, for kv > v(v), identically equal 
to the expression (AIII.1) obtained from the solution of 
the initial kinetic equation. 

Thus the ion-velocity correction S fo(i) to the isotropic 
part of the distribution function is determined by Eq. 
(AIII.3) for both the regions kv < v(v) and kv > v(v), that 
is, for any value of electron velocity. 
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