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A theoretical and experimental study has been made of the time-independent structure of 
beams of electromagnetic radiation formed by radial (axicon) and azimuthal (phase 
screw) phase transformations. It is shown that if the phase screw parameter s assumes integral 
values (s= m > 0), then the radial profile of the radiation intensity in the linear 
dissipationless case is described by a Bessel function of order m. The effects of radiation 
absorption and the nonlinearity of the medium on the electric field profile of such beams 
propagating in a plasma is considered. The radiation power needed for self-modulation 
to occur is determined as a function of m. It is shown that in contrast to beams with m=O, 
the instability begins to grow at other than the first maximum of the radial profile of 
the field. 

1. INTRODUCTION con. After passing through a phase plate of thickness h(q) 
that varies linearly with azimuthal angle according to The propagation of beams of electromagnetic radiation 

focused by an a~icon ' .~  in media with different types of h(q)  = (hd2.rr)q, hd27r<l, the phase of a radiation field 

n ~ n l i n e a r i t ~ ~ - ~  has been studied with a view to explaining incident on the plate in the direction of the z axis under- 
goes a change given in the geometric-optics approximation the structure of the plasmas that develop when gas is bro- 

ken down by laser radiation. The radial profile of the elec- (neglecting scattering by the discontinuity at p=O) by 

tric field of such beams is characterized by the presence of 
an intensity maximum on the axis of symmetry, and near 
the axis it is described by a Bessel function of order zero 
Jo(kr sin y), where y is the angle between the rays and the 
axis of the axicon and k is the wave number of the radia- 
tion. Based on the details of the radial structure, Andreev 
et ~ l . ~  classified them as a special category of "Bessel 
beams." It is of particular interest to study beams formed 
by an azimuthal phase transformer (a phase screw), rather 
than an axicon, which is essentially a radial phase trans- 
former. Such beams have fields whose radial structure is 
described by a Bessel function J,(kr sin y) of order m > 0 
equal to the parameter of the phase screw. In contrast to 
Bessel beams, their maximum is displaced from the axis of 
symmetry, and near the axis there is a region where the 
electric field essentially vanishes, which justifies calling 
them "hollow Bessel beams." Beams with such a "null 
region" were previously studied, e.g., by Valyaev and 
~ r i v o s h l ~ k o v , ~  who discussed the solution of the wave 
equation describing highly collimated nondiffractive 
beams, and Azimov et al.,' in connection with the time- 
independent self-focusing of annular laser beams, and also 
by Margolin et ~ 1 . , ~  who proposed a device for producing 
such beams. In the present work we consider the formation 
of hollow Bessel beams and their propagation in the 
plasma produced when gas is broken down by laser radia- 
tion. 

2. FORMATION OF HOLLOW BESSEL BEAMS 

E is the absolute value of the wave where k = (w/c) & 
vector of the radiation with frequency w in the medium 
with permittivity E,, surrounding the phase transformer, np 
is the relative index of refraction of the plate, and ho is its 
maximum thickness. The phase of the field focused by an 
axicon with a rectilinear generatrix (inclined at an angle 
a < l  with respect to the base perpendicular to the z axis) 
varies linearly with the radius: 

where nu is the relative index of refraction of the axicon. 
Hence the expression for the complex amplitude E(p,r,z) 
of the radiation electric field, 

propagating in the z direction from an initially planar 
phase front and passing through the optical system from 
the phase screw (1) and axicon (2), can be described in 
view of the smallness of the angle a in the following form 
(the coordinate origin is at the vertex of the axicon): 

E(q,r,z=O) =Ein(r)exp(i [sq-kr sin y)], (3) 

where Ein(r > R ) =O (R is the aperture of the focusing 
system). For r<R it is determined by the radial intensity 
profile in the incident beam, e.g., a hyper-Gaussian 

Hollow beams can be produced by focusing radiation 
with an optical system (Fig. 1) consisting of a phase screw, E = ( -  ( )  N >  1. 
which deflects rays in the azimuthal direction, and an axi- 

(4) 
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FIG. 1. Layout of the measurements: I )  telescope; 2) phase screw; 3) 
axicon; 4) beam-focusing region (caustic); 5) diaphragm. 

Here s=k(n,- l ) h d 2 ~  and y= (no- 1)a are the phase 
screw parameter and the angle between the rays and the 
axis of symmetry of radiation focused by the axicon, re- 
spectively. 

To describe the structure of the beam field formed by 
the focusing system for z >  0 we use the wave equation in 
the parabolic approximation 

imposing the boundary condition ( 3 ) at z= 0 and requiring 
that the solution vanish asymptotically in the limit r- oo 

and be bounded at the axis. Here E", &NL( I El ) are the 
components of the permittivity tensor of the medium in 
which the beam is propagating. 

Expanding the field as a sum of azimuthal harmonics 

and using the Fourier-Bessel transformation of order n to 
determine the amplitudes En(r,z) of the harmonics, we can 
write the linear ( E ~ L (  I E 1 2, =0) solution of Eq. (5) in a 
nonabsorbing medium (E"=O) using (3) in the form 

X exp[i$(rl) ] r'dr', (7) 

where we have written A,(s) = [exp(2?ri(s-n)] - 1 ) /  
2?ri(s-n), $(r')=kr'2/2z-kr'sin y, and Jn(rr'k/z) is 
the Bessel function of order n. From (7) it follows that 
when the phase screw parameter is an integer s=m, the 
solution corresponds to a single azimuthal mode with in- 
dex determined by the value of m: An(s= m) =amn. Hence 
in the region near the axis ( r  < z sin y, k 3  < z) of the focal 
section L -- R/tan y, for l/k sin y < z  < L we have the fol- 
lowing asymptotic expression: 

E dm( kr sin y)exp 

+Edm k - R  exp ik- ( : ) ( ?lZR2)) 

in which 

1 
Ea=- 

1 -z/L Ein(R)exp( -ikR sin y)  

The first term in this expression is the change in the 
complex amplitude of the electric field of an undiffracted 
beam. The second term describes diffraction at the periph- 
ery of the axicon and is small in comparison with the first 
over the distance of the focal section when z is not close to 
L, in relation to m z ,  and A is the wavelength of the 
radiation. From this it follows that the radial profile of the 
field strength in this region is approximately 

The possibility of creating a hollow Bessel beam has 
been verified experimentally using the scheme proposed by 
Margolin et a1. (see Fig. 1 ). A beam of radiation from a 
helium-neon laser, after spreading by the telescope I, was 
transformed by the phase screw 2 and axicon 3. The diam- 
eter of the diaphragm 5 corresponded to the diameter of 
the phase screw, which had the minimum aperture, and 
was equal to 5 mm. The phase screw was fabricated of 
photoresist on a glass substrate. Its optical thickness in- 
creased linearly as a function of the azimuthal angle g, 
from 0 to 2 r ,  independent of the radius, and changed dis- 
continuously by q = 2 ~  at 0.63 pm. The axicon was fabri- 
cated of K-8 glass and had a base angle of 2". 

After focusing by the axicon alone, and also by the 
axicon together with the phase screw, the elongation of the 
caustic was equal to about 15 cm. Figure 2 shows typical 
photos of the field profile in the transverse cross section of 
the beam in these two cases. They provide systems of al- 
ternating concentric light and dark rings, essentially un- 
varying along the caustic. In the axicon case (Fig. 2a), as 
expected,9 a Bessel beam of order zero was formed with 
maximum intensity on the axis. In the case where the axi- 
con and phase screw acted together (Fig. 2b) a hollow 
beam with minimum intensity on the axis developed. The 
dimensions of the observed rings are in good agreement 
with the locations of the maxima of the Bessel function of 
order unity having the corresponding scale. This enables us 
to conclude that the use of an axicon together with a phase 
screw having a parameter (pitch) equal to the wavelengths 
gives rise to a first-order hollow Bessel beam, in complete 
agreement with (9). 

Thus, we can confirm that for integer values of the 
phase transformer parameter s=m, an essentially 
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FIG. 2. Typical photographs of the inten- 
sity profile in the transverse cross section of 
a Bessel beam of order 0 (a) and 1 (b); 
below, the corresponding calculated depen- 
dences. 

diffraction-free beam forms over the larger part of the focal 
section. The radial profile of its electric field is described by 
a Bessel function of order equal to the phase transformer 
parameter. 

3. PROPAGATION OF A HOLLOW BESSEL BEAM IN 
PLASMA 

We will analyze the effect of the medium on the prop- 
agation of a focused beam using the dielectric function &, 

which we write in the form 

where E ~ , E "  are the real and imaginary parts of the linear 
dielectric function of the plasma, incorporating respec- 
tively the difference between the electromagnetic properties 
of the medium and those of vacuum and the absorption of 
radiation; eNL( I E 1 2, is the nonlinear correction deter- 
mined by the dependence of the plasma parameters on the 
strength of the beam electric field. 

The interaction between the beam and the nonlinear 
medium, together with the behavior of the beam propagat- 
ing in the medium, are determined by the nonlinear part of 
the dielectric function and the nature of its dependence on 
the field strength (local or nonlocal, with or without sat- 
uration). In the incompletely ionized plasma that results 
from gas breakdown due to laser radiation, the change in 
the electron temperature is determined by the balance be- 
tween the energy acquired by the electrons from the radi- 
ation and that lost mainly through collisions with neutral 
particles. If the typical scale LE of the variation in the field 
substantially exceeds the electron mean free path lJLE 
< &, (here Sen is the part of the energy transferred by the 
electron to neutrals in collisions), the nonlinear part of the 

dielectric function determined by the deviation 
Sn,=n,-n, in the electron density from its initial value 
nm is given 

where Ep = 4- is the characteristic plasma elec- 
tric field for the thermal nonlinearity, n,=my2/4re2 is 
the critical electron density, and T ,  is the initial electron 
temperature. 

A similar expression results for ENL in the case of a hot 
plasma as when the electron mean free path is longer 
than the scale of the electric field variation, I, > LE, and the 
electron density perturbation, I Gn,JnA, I < 1, is determined 
by the ponderomotive force, except that here Ep 
= ,/- is the characteristic plasma field for the pon- 
deromotive nonlinearity. 

Next we consider beams which correspond to the 
single-mode solution (8), resulting from a phase screw 
with parameter s=m, m= 1, 2, ... . Introducing the dimen- 
sionless amplitude 0, = E,/E,, of the corresponding azi- 
muthal harmonic and the dimensionless cylindrical coor- 
dinates 

zf = f kz sin2 y, r' = kr sin y, (10) 

we find an equation for 0, in the form (from now on we 
omit the prime; all quantities in what follows are dimen- 
sionless) : 

where ~ = E " / E ~  sin2 y is the dimensionless absorption rate 
and P=nJnego sin2 y is the dimensionless nonlinearity 
coefficient. 
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FIG. 3. The effect on the radial structure of a 
field produced by absorption of radiation for 
r=0.1, m=5, 2=20; 1-111/111:2~, 
2- I J ~ I / I J ~ I ! & .  

This equation was solved numerically by tridiagonal 
inversion in the radial direction; the accuracy of the calcu- 
lation was checked by means of the conservation of energy. 
The boundary condition (3) for z= 0 corresponds to fo- 
cusing of the hyper-Gaussian beam (4) with N =  8; its di- 
mensionless amplitude g in ( r)  = Ein/Ep is shaped so that 
over most of the focal section ( 1 < z < R/2) the dimension- 
less amplitude fFo=EdE, of the linear solution (8) re- 
mained constant. 

The beam-plasma interaction was treated in two 
stages: first we treated the absorption of the radiation, and 
then the effects associated with the nonlinearity of the me- 
dium. 

The change in the structure of the beam electric field 
associated with dissipation was adjusted in a model of the 
cylindrical absorption region with a Gaussian profile for 
the absorption rate: 

where Pa is a coefficient that determines the absorption 
rate and ra is the length scale of the absorbing region. 
Calculations carried out for various modes at ra= 20 and in 
the range where Fa varied from 0 to 0.1 revealed that for 
r < r,, where rc is the typical value of the radius as a func- 
tion of the order of the mode (e.g., for m=5 we have 
rC- 1.2r:&, where r:& is the radius corresponding to the 
first maximum in the magnitude of the amplitude I O I :A), 
the radial profile of the field is essentially the same as that 
in the absence of absorption. For r greater than rc, the 
Bessel structure of the beam is smeared out, as can be seen 
from Fig. 3, which displays the profile I 8 ( / 1 O 1 g,,)x for 
z=20,0< r <20 with ra=O. 1 and m= 5, together with the 
normalized Bessel function of the same order. As shown by 
the calculations, the amount of "smearing" for a given 
mode increases with the value of Fa. 

The propagation of radiation in a nonlinear medium is 
accompanied by the appearance of a number of specific 
effects for which there is no analog in the linear case. As 
shown in Refs. 3-5, in a medium with a local cubic non- 
linearity (which includes the plasma in the present approx- 
imation), Bessel beams exhibit self-modulation of the elec- 
tric field with a threshold. The parameter which 
determines the nonlinear self-focusing adjustment is the 
power enclosed in each annular region of the radial profile 

(9), which in the dimensionless variables (10) is propor- 
tional to the maximum intensity of the field (9): 

Calculations carried out for hollow Bessel beams reveal 
that the self-modulation effect arises, as in the case of the 
Bessel beams of Refs. 3-5, at a power close to the critical 
value for self-focusing: 

where p is the dimensionless nonlinearity coefficient in Eq. 
( 11 ). Figure 4 displays the dependence of the threshold 
parameter Pth for the self-modulation effect, 

as a function of the order m of the mode. This dependence 
shows that the power enclosed in the annular regions of the 
beam needed for self-modulation to occur increases mono- 
tonically with the order of the mode. 

The principal difference between the growth of the in- 
stability in hollow Bessel beams and in Bessel beams 
should be pointed out: while self-modulation in the latter 

FIG. 4. Threshold value of the parameter P (beam power) as a function 
of the mode order m. 
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FIG. 5 
1$1/1 

I. Spatial profile of 
$1,) for m=5 

'the 
and 

field (contours of 
P/P,= 1.25. 

initially occurs at the beam axis and propagates toward the 
peripheral region as the power increases, in hollow Bessel 
beams the opposite pattern is observed, as the power in- 
creases the instability develops at the beam periphery and 
propagates toward the center, and the strongest modula- 
tion is observed not near the principal maximum of the 
field as in Bessel beams, but is displaced toward the higher- 
order maxima. In Fig. 5, which displays contours of con- 
stant I %' I / I %' I ,,, (here I %' 1, is the maximum value of 
the amplitude in a given range of r and z), it is clear that 
for m = 5 and P/Pth= 1.25, the region where the modula- 
tion is largest in the present case is near r=  11 and corre- 
sponds to the location of the third maximum of the field. 

The nonlinearity of the medium exerts a strong influ- 
ence on the spatial structure of the electric field of the 
beam, substantially changing both the radial and the lon- 
gitudinal profiles of the amplitude. From Fig. 6, which 
shows I %' I / I %' 1 t:, as a function of radius for m = 5, it is 
clear in particular that the radial beam profile no longer 
has a Bessel structure, although the general behavior of the 
profile (quasiperiodicity) is retained. This figure also 
shows that in a nonlinear medium there is a displacement 
of the first maximum of the field toward smaller values of 
r, the magnitude of this shift is larger, the higher the order 
of the mode. An illustration of the quantitative nature of 
this displacement is seen in Fig. 7a, where r z L  is plotted 
versus the mode number for z=20 in the linear (P=O) 
case as trace I, and the nonlinear case (close to the thresh- 
old P- Pth for self-modulation) is plotted as trace 2. Figure 
7b shows r:;, as a function of P for m=5 and 10, from 
which it follows that with increasing P (or, what is the 
same thing, beam power), a monotonic shift $2, toward 

smaller values of the radius occurs for both modes, which 
implies that there is no threshold (in P) for the change in 
the radial structure of the field. 

4. CONCLUSION 

On the basis of the foregoing analysis we can assert 
that an optical system consisting of a phase screw and 
axicon permits beams of electromagnetic radiation to form 
with a radial electric-field profile in a linear nondissipative 
medium which is described by the Bessel function 
J,(kr sin y )  of order m > 0 equal to the parameter of the 
phase screw. These are the so-called hollow Bessel beams. 
If the medium is absorbing and nonlinear, then this brings 
about a change in the Bessel structure of the beam radial 
profile. However, the characteristic behavior of such beams 
(the presence near the axis of electric fields that are close 
to zero), which fundamentally distinguishes them from 
Bessel beams (whose field peaks on axis), is also preserved 
in this case, at least in the range of the parameters P and r, 
treated, corresponding to the beam power and radiation 
absorption respectively. Self-modulation of the electric 
field occurs for hollow Bessel beams at higher power levels 
than for Bessel beams, and in contrast to the latter the 
greatest modulation is observed not at the principal maxi- 
mum of the amplitude, but is displaced toward the higher- 
order maxima. 

We are grateful to our collaborators at the Institute of 
Image-Processing Systems of the Russian Academy of Sci- 
ences for providing a phase screw. 

FIG. 6. Radial profile of the field near the 
self-modulation threshold P= Pth , for m = 5, 
z=2Q I - ~ ~ ~ / ~ ~ ~ , , , a x ,  ~ - I J ~ I / I J ~ I ~ ~  
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