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We perform numerical calculations of the spectrum of one- and three-dimensional three-level 
atoms in a strong optical field. The position of the cutoff of the plateau in the harmonic 
spectrum of a three-level atom is shown to agree well with the exact numerical solution for a 
one-dimensional atom, as well as with experimental data available for a real xenon atom. 

Experimental work of recent years has provided higher 
and higher optical harmonics under the action of strong 
optical field on Although this effect is important 
from an optical standpoint, since it opens the possibility of 
producing coherent radiation sources in the ultraviolet and 
higher energy ranges, it is not clear yet what kinds of re- 
strictions exist on limiting orders of the harmonics emitted. 
Most existing experimental work (in particular, Refs. 1-3) 
indicates the existence of a so-called plateau in the har- 
monic spectrum with a sharp intensity cutoff above the 
maximum harmonic order. However, the mechanism of 
harmonic cutoff is poorly understood at present. Existing 
theoretical work on the cutoff of emission in real atoms 
deals primarily with numerical  calculation.^ Although 
the results of that work agree well with experimental data, 
spectral analysis is strongly hampered in view of the com- 
plexity of the numerical models themselves. At the same 
time, it was shown in Refs. 7 and 8 that the plateau in the 
spectrum of harmonics appears even in model two-level 
systems. However, closer examination shows that the pla- 
teau width and the maximum harmonic order disagree in 
these models both with more accurate calculations and 
with experimental data. We show in this paper that the 
correct position of the plateau cutoff can be obtained in a 
comparatively simple model of a three-level atom in a 
strong field. 

We consider a three-level system having a lower level 
with energy El describing the atomic ground state and two 
levels with energies E2 and E3 located near the ionization 
limit, as shown in Fig. 1. Since in experimental work on the 
observation of the harmonic generation effect, the frequen- 
cies external photons were such that atomic ionization 
could occur only through absorption of a large number of 
photons (typically about ten), we also consider conditions 
under which the separation between the ground and the 
excited levels w12= E2- El is greater that the frequency of 
the external radiation, and the condition 0$1)02 is met. 
The ground state will then experience a Stark shift, as 
shown in Ref. 9. Furthermore, it is important that the field 
strengths g actually attainable at present are considerably 
lower than atomic field strengths for the ground state, i.e., 
8 < ~ . l / n t ,  where nl is the principal quantum number of 
the ground state. Under these conditions, the Stark shift of 
the ground state will be small, and the state will be stable 
with respect to the ionization process.1G12 As for the pair 
of upper states, the opposite conditions are usually fulfilled 
in experiments, with the separation between the levels 

w ~ ~ = E ~ - E ~  being less than the external field frequency, 
o:2(02, and the external field strength exceeding the 
atomic one, g)~.l/n:. Then the upper states experience a 
Stark shift, as shown in Refs. 9 and 11. In this situation, we 
can expect that once the upper states are populated from 
the ground state under the action of an external field, har- 
monic radiation will appear due to spontaneous inverse 
transitions from the upper states to the ground state. 

The population dynamics of three-level system states 
was determined in this work with the help of numericai 
calculations. The time-dependent wave function was cho- 
sen to be of the form 

= Q I ( ~ ) $ I ( ~ )  +~2(t)$2'2(r) +~3(t)$3(r), 

where ai(t) are the state population amplitudes, and qi(r) 
are the corresponding eigenfunctions. Obviously, for a one- 
dimensional atom, all the functions depend on the 
x-coordinate only, and the direction of the x-axis coincides 
with the external field direction. To simplify the statement 
of the problem, we assume that the lower and middle states 
have the same parity, and the upper state has the opposite 
parity. Dipole transitions between the lower and middle 
states are then forbidden by the selection rules. 

Let us substitute the complete time-dependent wave 
function into the Shrodinger equation 

where H~ is the Hamiltonian of the unperturbed atomic 
system, x=rcose in the three-dimensional case, and the 
function f (t)  specifies the temporal dependence of the ex- 
ternal field [the choice of the form of the function f (t)  will 
be discussed below]. Performing a standard change of vari- 
ables ai(t) = bi(t)exp( - iE,t), we obtain a set of ordinary 
differential equations to determine the coefficients bi(t) : 

dbl/dt= -i8x13 e x p ( - i ~ ~ ~ t ) b ~  f (t) ,  

db2/dt= - i8xZ3 exp( - i ~ ~ ~ t )  b3 f ( t), 

db3/dt= exp( -iu13t)bl f (t)  

- i g ~ ~ ~  exp( -iuz3t)b2 f (t), 

where oji= Ej- Ei, wji= -wij, and the matrix elements 
are xij=(ilxl j) with xij=x$, xii=x12=0. 

We now discuss the form of the function f (t),  which 
determines the time dependence of the external field 
strength. If the field amplitude is small enough for this field 
to be considered weak, field turn-on and turn-off are poorly 
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FIG. 1. Intensity I d(n) 1 of one-dimensional atomic harmonics 
as a function of hannonic number Q/o. The squares and the 
solid curve correspond to numerical calculations of the SchrB 
dinger equation with a model Hamiltonian. The circles and the 
dashed curve correspond to calculations in the three-level model. 
The frequency of the external field is m=0.0643, and the field 
strength is $ =0.05. 

defined, and we may set f (t) = sinwt, as is usually assumed d(t)  = (\V(r,t) 1x1 *(r,t)). 
in calculations using perturbation theory. But when a 

(5) 

strong field is acting on the atom, an atomic electron ex- It is easy to show that for a three-level System, Eq. (5) 
periences a nonphysical impulse at the instant of field reduces to 
turn-on if the function f (t) =sinwt is used in theoretical 
 calculation^.^"^ This phenomenon does not disappear even d(t) = 2 a:(t)aj(t)xij. 
if the field is modulated by some envelope q ( t )  that van- i j  

ishes at the instants of turn-on and turn-off. For example, According to Refs. 4-6, the spectrum I d ( R )  1 of radiated 
we can employ a vector potential in the form A (t) = harmonics was determined from the Fourier components 
- ( 8c/o)q(t)sin wt. Then, taking the relation 8 = - A / c  of the dipole moment as 
between the field strength and the vector potential into 
account, we find [d (R)  1 2 =  I jT d(t)eXp(iRt)dt12. 

0 
(6) 

@ ( t )  
f (t) =q(t)cos o t + o  sin or. (3) To test the appropriateness of the three-level model for 

analysis of the harmonic spectrum, it is convenient to com- 
We can show that it is really possible to suppress electron pare with the results of more accurate calculations. With 
impulses at field turn-on and turn-off if the field temporal this in mind, we accurately integrated the Schrodinger 
dependence is chosen in the form (3). In our calculations, equation for the one-dimensional problem with a fre- 
we used a trapezoidal envelope: quently used13 atomic Hamiltonian of the form 

i.e., the field grew linearly for one optical period, had a 
constant amplitude for five periods, and then decreased 
linearly for one period. 

The differential equations (2) obtained with field tem- 
poral dependence in the form of (3)-(4) was solved nu- 
merically over a time interval [0, T = 7 (2r/w)] with the 
constraint that only the ground state is initially populated, 
i.e., b1 (0) = 1, b2(0) = b3(0) =O. 

The dipole moment of an atomic electron was deter- 
mined from 

The Schrodinger equation (1) with Hamiltonian (7) was 
solved numerically using the combined spectral-shift 
method described in Ref. 14. Equations (5) and (6) were 
used to determine the spectrum of radiated harmonics. 

In solving Eqs. (1) and (2), the ground state of 
Hamiltonian (7) with an energy El ( + , = -0.670295 was 
chosen as the initial state of a one-dimensional atom. In 
solving Eqs. (2), the states E2(+, = -0.034676 and 
E3( -, = -0.026942 were chosen as the two upper states. 
The signs ( + ) and ( - ) denote the parities of the states. 
The transition matrix elements needed to solve system (2) 
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were determined numerically: x13 = -0.0584, x23 = 17.7 1. 
The amplitude of the external field was 8 =0.05. The fre- 
quency corresponded to a 10-photon transition from the 
ground state to the upper state, ~=0.064335. 

The results of the calculations of the one-dimensional 
atomic harmonic spectrum are presented in Fig. 1. The 
harmonic intensity in the accurate solution of the Schro- 
dinger equation is seen to decrease quite smoothly up to 
the 21st harmonic, after which a sharper drop occurs. In 
this case, it is conventional to say that the plateau cutoff 
occurs at the 21st harmonic. Completely analogous behav- 
ior is exhibited by the spectrum of a model three-level 
one-dimensional atom, only the plateau cutoff occurs at the 
23rd harmonic. Moreover, it can be seen that the absolute 
values of the harmonic intensities from the 13th to 23rd 
harmonic agree well in order of magnitude for both calcu- 
lations. Thus, in the one-dimensional case, the three-level 
model nicely describes the position of the plateau cutoff of 
harmonics as well as the spectral values near the cutoff. At 
low and medium harmonics, the three-level model under- 
estimates the harmonic intensities, because there are no 
intermediate states between the ground state and the high 
excited levels in the three-level model. In the accurate 
model, these intermediate levels are also excited, and con- 
tribute significantly to spontaneous emission of harmonics 
at medium and low frequencies. 

The calculations in the three-level model can also be 
compared with the existing experimental data. With this in 
mind, we oriented ourselves in this work to the 
experiments5 in which harmonic generation was observed 
when Nd:YAG laser radiation with a wavelength A = 1064 
nm (w=0.043) and intensity I = 4 .  1013 w/cm2 ($  
=0.0336) acted on xenon atoms. As the authors of the 
experiments5 suggest, the laser radiation intensity exceeded 
the saturation intensity for their conditions of observing 
harmonics. This implied formation of a large number of 
singly ionized xenon ions. Therefore, we considered that 
the medium consists simply of atomic ions and the external 
field was described without a switching regime, i.e., f (t) 
=sinat. The ground state of a xenon ion has an energy 
El (5p) = -0.774. The states E2(9p) = -0.053 and 
E3 ( 10s) = -0.043 were chosen as the two upper states. 
Thus, the transition from the ground state to the upper 
state comes about by virtue of the absorption of 17 pho- 
tons, and absorption of the next photon results in the for- 
mation of a doubly-charged ion. The transition matrix el- 
ements for the indicated levels are x12=0, x13= -0.24 
X23 = - 4i. The calculation time was T = 600. 

A Comparison of the numerical results with the exper- 
imental data5 for the harmonic spectrum of a three-level 
xenon ion is presented in Fig. 2. It is seen that the three- 
level model provides a good description of the position of 
the harmonic plateau cutoff. A strong dip in the central 
part of the calculated spectrum is associated with two fac- 
tors. First, our model does not account for the existence of 
intermediate discrete energy levels, which contribute to the 
final spectrum, as in the one-dimensional case. Second, 
both the xenon atom and ions produced radiation in the 
experiments, and this was not included in our model. 

FIG. 2. Intensity I d ( n )  1 of xenon ion harmonics as a function of their 
number Q/w. The solid oscillatory curve presents the calculated results in 
the three-level model. The squares denote the experimental resu~ts.~ The 
frequency and strength of the external field are respectively w=0.043 and 
$=0.0336. The numerical results are normalized to the experimental 
data at the frequency of 2lst-harmonic radiation. 

On the whole, the results presented here show that a 
three-level atomic model provides a good description of the 
position of the harmonic plateau cutoff for a one- 
dimensional atomic model as well as for actual experimen- 
tal observations. 

In conclusion, the authors are grateful to S. P. 
Goreslavskii for useful discussions of this work. 
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Translated by A. M. Mozharovskii 

This article was translated in Russia. It is reproduced here the way it was 
submitted by the translator, except for stylistic changes by the Translation 
Editor. 
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