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We derive a simple integral form for the Mie cross section for an electromagnetic plane wave 
scattered by a transparent spherical particle. We show that this expression applies to 
any value of the diffraction parameter ka, and discuss the reasons for that behavior. 

INTRODUCTION 00 - - -  . 

Q=(2/a2) I: (la1l2+ 1br12), 
One of the most frequently encountered phenomena in I= 1 

nature is the scattering of light by a spherical particle, as involving the partial amplitudes al and bl, 
discussed by ~ i e . ' . ~  It shows up in applications ranging 
from the rainbow and the glory right on through to al= (Re g$)/&, bl= (Re #I/#. (4) 
astrophysics.3 Scattering of this kind is also valuable as an 
analytical tool.4 These can be expressed in terms of Hankel and Bessel 

The exact Mie formulae are multipole series of order I, 
a representation that could scarcely be less convenient in 
practical applications. They are therefore often replaced by cl(Z) =4i)1,2(z) e, 
simpler approximations, which are usually of somewhat 
restricted usefulness, and which tend to depend on the 
diffraction parameter a= ka (k here is the incident wave $1(4 =Re gr(z) = JI+ 1,2(~) - ,t (5) number and a is the particle radius). 

For small a ,  the attenuation factor Q (or equivalently, in the form 
the transverse scattering cross section in units of nu2) is 
given by the Rayleigh formula &=P$;(B)Sl(a) -dP$~(B)S;(a), P=E,M, ( 6 )  

8 (m2-112 cE=dM=a, c"=dE=fj. 
(ka)4 (1) 

(7) 
Q R = ~ m  (m2+2) The arguments of these functions are the diffraction 

(for a transparent particle, the refractive index m relative parameters 
to the ambient medium is a real quantity). 

In the opposite limit k a s l ,  van de Hulst's formula a=ka,  D=mka, (8) 

provides a better approximation3: where the diffractive index m normally depends on k. 

sin 6 1 -cos 6 I 
One critical aspect of the following discussion is 

62 
, 6=2ka(m-1). ~erelrnan's~ suggestion that the absolute value of g$' is in- 

(2) 
dependent of the multipole order and polarization, 

These expressions hold over rather different domains: l&I2=:  l # I 2 = : ~ ,  (9) 
Rayleigh's formula is very narrowly applicable (ka<0.5), which reduces to the vastly simpler form 
while van de Hulst's is somewhat broader (ka)5.0). Un- 
fortunately, these domains fail to overlap, and the inter- 2 " 
vening gap has been poorly bridged by a patchwork of p-- -Ka I=1 ( I ~ e g $ l ' +  1 ~ e g ? I ~ ) .  
largely inadequate approximations. 

What we see here is an acute need for rediscussion of The simplification here consists in the fact that the cylin- 
the results of Mie theory, and a search for more serviceable drical functions enter into Q polylinearly: 
expressions for both the cross section Q and other physical 
quantities involving polarization, the forward- and back- 2 

Q = s  [(a2+%) (A+ B )  - 4 a S ~ l .  
scattering amplitudes, and so on. 

(10) 

Here 

2. SUMMARY OF REQUIRED FORMULAE 
I= 1 

The transverse scattering (diffraction) cross section 
m for an electromagnetic plane wave scattered by a spherical 

particle is given in general B= C. (2I+ l)$~(P)$;(a)$~(P)$i(a), 
I= 1 
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a Rayleigh (ka( 1 )-for a given wavelength, this cor- 
C= C (21+ l)$i(B)rClr(a)$~(B)$;(a). responds to small scattering particles; 

I= 1 van de Hulst (ka, 1 )--corresponding to "large" 
The three quantities A, B, and C can all be obtained particles (in the same sense). 

from the single function Both of these follow from our basic formula ( 15). We 
take the van de Hulst formula first. 

S ( X I & Z J ~ & ~ )  
m 3.1. van de Hulst scattering, R%6 

= C (21+ 1 )*l(xl)*l(x2)*l(x3)*l(x4), 
I= 1 

(12) 
The foregoing relationship between R and S enables us 

where xl =x3=/3 and x2=x4=a, by differentiating with to keep just the second term in E ~ .  ( 18), 
respect to its arguments: PH=f ( m ) ~ ( s > ,  (20) 

A = a2s/ax1ax3, B= a2s/ax2ax4, C= a2s/axlax4. where 
(13) 

We calculate the function S(x) in Appendix A and 
obtain the following expression [see Eq. (A6)]: 

Differentiating, substituting A. B, and C into Eq. ( lo), 
and simplifying, we arrive at our basic formula 

1 

Q= (B~IK) (@-a2)' d t ( l + Z ) d ( o ) ,  (15) 

in which 

g(w) = (w cos w-sin o)/w3 (16) 

and 

Henceforth, following Ref. 6, we put K=aB. 
The integral ( 15) can be reduced to a combination of 

elementary and transcendental functions (the cosine inte- 
gral). Details of the calculation can be found in Appendix 
B; the final result is 

One usually considers scattering by so-called "soft" 
particles, for which m z 1, so that f (m) = 2. We then ob- 
tain van de Hulst's formula (2) and its asymptotic value 
Q( UJ ) =2, a result known as the blackbody paradox: the 
scattering cross section of short electromagnetic waves for 
an absorbing sphere is twice its geometrical size, notwith- 
standing the naive result given by geometrical optics, 
which is assumed to apply here. The resolution of the par- 
adox can be found in Refs. 2 and 7, and amounts to taking 
account of that part of the cross section attributable to the 
narrow diffractive region near the boundary of the scat- 
terer. 

At moderate values m= 1, the van de Hulst approxi- 
mation applies to 620.5, as is readily apparent in Fig. 1 
(see below ) . 

3.2. Rayleigh scattering, R= 6 q 1 

In this case, the basic formula ( 15) can be expanded in 
powers of a = ka. The leading term of the series yields 

cos R-cos 6 QR= (8/27)m(m2- ~ ) ~ ( k a ) ~ ,  (22) 

+2m(1+4 R 2 - 6  which is often cited as the Rayleigh formula. Here, how- 
ever, the factor (m2+2)-2 in the original Rayleigh expres- 

1 -cos t 
J:dt--;--], 

sion ( 1 ) is simply replaced by the number 9. There is a 
(I8)  simple explanation for this: the Rayleigh calculation is car- , - 

where H(z) denotes the van de Hulst function encountered ried out in the dipole approximation, which can be ob- 
tained from the Mie formula (3) by keeping only the first above, 
term, with I= 1; Eq. (22), on the other hand, encompasses 

sin z 
, -+2 

Z 

all multipoles (in the approximation a ( 1 ), so that the role 
(I9)  played by the first multipole, i.e., the dipole, is "smeared 

out.') 
kl and k2 are given in Appendix B, R = 2 (m + 1 )a ,  and A careful analysis shows that the denominator 
6=2(m- 1)a. (m2 + 2) -' cannot be obtained in the Perelman approxi- 

Equations ( 15) and ( form the basis for subsequent mation, since it is incompatible with the basic assumption 
developments. 

(9). 

3.3. Intermediate scattering, Raylelgh-Gans formula 
3. SURVEY OF IMPORTANT APPROXIMATIONS 

Scattering with m z  1 was closely examined by 
In the Introduction we cited two fundamental formu- ~ a ~ l e i ~ h '  and later by ~ a n s . ~  Taking R z 4 a ,  6 z O  in 

lae: (18), we have 
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FIG. 1. The function Q(6) from Mie theory (solid curve) in the Rayleigh 
(dot-dash) and van de Hulst (dashed) approximations. Data from the 
present paper are plotted as points. Q,,=2.16. 

Substituting lim k2H(6) = - ~ ~ / 8  and Eq. ( 19) for H(R) ,  
we obtain the Rayleigh-Gans formula, 

3.4. Asymptotic behavior 

At large values of a ,  the cosine integral can be replaced 
by its asymptotic value 

dt R si; t j 6 R  + j 6 R  dt 
(1 -cos t) -=ln --- 

t 6  
sin t - 

t 

in addition, we can assume 

As a whole, Eq. ( 18) for the cross section goes asymp- 
totically as 

Notably, the aforementioned "blackbody" cross sec- 
tion Q,=2 can be obtained from this result only for m = l! 

4. DISCUSSION 

The foregoing results can most conveniently be ana- 
lyzed using Fig. l ,  where they have been plotted as dots. 
There we show the dependence of the cross section on the 
phase shift S=ka(m- 1), as obtained in the van de Hulst 
anomalous diffraction approximation (dashed curve), the 
Rayleigh dipole approximation (dash-dot line), and as 
given by the exact Mie calculation, without the Perelman 
approximation (solid curve). 

We carried out the calculations by integrating Eq. 
( 15) numerically, using Eq. ( 18) as a check. All curves 
were calculated for a refractive index m = 1.1, correspond- 
ing, for example, to oil droplets in water. 

These data show that over the full range of 6, our 
results are in good agreement (to within 1-2%) with the 
exact Mie theory. In particular, the asymptotic values are 
the same as those given by the latter. This means that Eq. 
(15), which was derived for "soft" scatterers, is also rea- 
sonably accurate for so-called "hard" particles. 

The other approximations are more limited: 
a )  the Rayleigh dipole approximation, Eq. (2), can 

only be used for 6 < 0.1-0.2; 
b) the improved van de Hulst approximation, Eq. 

(20), is suitable for 6 > 0.8. The basic van de Hulst result, 
Eq. (2) without the factor f (m), lies somewhat lower 
than the exact result; 

c) the Rayleigh-Gans approximation can only be used 
with sufficiently "soft" particles, and in the range 6 ~ 0 . 4 -  
0.5 it leads to appreciable errors (in this regard see also 
Ref. 10). 

Thus, Eq. (15) turns out to be an equitable approxi- 
mation to the Mie theory, and it is mathematically simple 
as well. We have therefore confirmed ~erelman's~ hypoth- 
esis, and this raises the question of the latter's meaning and 
justification. Perelman himself6 does not adduce any solid 
arguments on this score, and merely cites the structure of 
the Wronskian. In our view, the most important aspect of 
his hypothesis is not the specific form of the constant K 
(which is highly likely not to be equal to ap ) ,  but the 
feasibility of summing the entire Mie series. 

The issue here is that the Rayleigh, Rayleigh-Gans, 
and van de Hulst approximations operate only on selected 
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"segments" of that series, thereby overlooking properties 
inherent to the series as a whole. In particular, this would 
explain their inability to interpret the glory,11 which results 
from an intricate interplay among contributions from the 
various terms of the Mie series. 

While the theory of the glory is intimately related to 
the complex angular momentum method, the alternative- 
albeit approximate-possibility of summing the multipole 
series is extremely interesting, timely, and expedient. 

Equation ( 15), which is approximate in name only, 
and not in spirit, can also be applied to polydisperse col- 
loidal mixtures, in which the interpretation of the mea- 
sured scattering cross sections for light is closely tied to the 
statistical distribution of scattering particle size; this is why 
standard analysis leads to such complicated expressions. 
The expressions developed here simplify such calculations 
significantly. 

We are very grateful to K. Kostzheva for assistance 
with the numerical calculations. One of us (Ya. I. G.) was 
supported by a grant from the Soros Foundation, awarded 
by the American Physical Society. 

APPENDIX A 

To sum the Mie series in the Perelman approximation, 
it is convenient to make use of the addition theorem for 
Bessel functionsS in the form6 

r sin wl C (21+ l)J1+1/2(~1)J1+1/2(~2)Pl(t) =- , 2 l=o W1 

or in the notation of Eq. (5), 

w sin wl 
C (21+ 1 )*l(xl)*r(x2)Pl(t) =x1x2 - 

w1 
. (Al )  

I=O 

Similarly, with the corresponding expression for w2, 

w sin w2 
C (21+ l)*l(x3)*1(~4)Pl(t) =x94 - 

I=O w2 
- (A2) 

If we multiply (Al )  by (A2), integrate over t, and 
take advantage of the orthogonality of the Legendre poly- 
nomials 

we obtain on the left-hand side the S function of ( 12) with 
an additional I=0 term in the sum over I, while the right- 
hand side gives the integral. Transferring the additional 
term to the right-hand side, we obtain 

sin wl sin w2 
S(X 1 9  X 2 9  X 3 9  X 4 ) -2 -- I I' _ I  [X1xfl$4 -- 

w1 w2 

-sin xl sin x2 sin x3 sin x4 . (A4) I 
Let 
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sin wl sin xl  sin x2 
g(xl ,x2 I t) =--- - ; 

w1 x1 x2 
(A51 

we then obtain (14), 

1 

=x1x2x$c4 g(x1 ,x2 1 t)g(x3,~4 1 t)dt/2. 
- 1 

(A61 

Differentiating this expression, according to ( 13 ), 
yields A, B, and C. Replacing the arguments with a and 8, 
we arrive at the basic formula ( 15 ) . 

APPENDIX B 

Here we reduce Eq. ( 15 ) to the form ( 18). This trans- 
formation is accomplished by introducing the van de Hulst 
function ( 19) into the integrand, 

1 -cos 2o 
- 

2 '  1 (B1) 

where o= (m2+ 1 )/2m, and, according to ( 17), 

o=a J2TEG=aJ2mG.  (B2) 

Instead of t, we integrate over the variable z=2w: 

All integrals can be expressed in terms of the H func- 
tion, the cosine integral, and elementary functions, as is 
clear from the following: 

1 -cos z I H(z) 
2 zdz= -2' -+ 4 W(Z) +2 cos z 

We denote the cosine integral5 by J(z)  : 

J(z)  = ( 1 - cos Z) ~z /z .  I (B5) 

After a great deal of simplification, Eq. (B3) takes the 
final form 
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where 

Equation (B6) is the same as ( 18). 
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