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We discuss diffractive deep inelastic scattering at very small x and derive the properties of 
the diffractive dissociation of virtual photons in the triple-pomeron regime in our 
technique of the multiparton light cone wave functions. We demonstrate that photon-pomeron 
interactions can be described by the partonic structure function, which satisfies the QCD 
evolution equations, and identify the valence and sea (anti)quark and the valence gluon 
structure functions of the pomeron. The gluon structure function of the pomeron can be 
described by the constituent gluon wave function of the pomeron. We derive the leading 
unitarization correction to the rising structure functions at small x and conclude that 
the unitarized structure function satisfies the linear evolution equations. This result holds even 
when the multipomeron exchanges are included. 

1. INTRODUCTION 

The pomeron ( IP)  remains one of the most mysterious 
objects in high-energy physics. Apart from elastic scatter- 
ing, the exchange of pomerons describes (Fig. 1) diffrac- 
tive dissociation of the projectile, which can be viewed as 
projectile-pomeron interaction (Fig. lc) . ' In diffractive 
leptoproduction at x=@/(@+ w2) 4 1 one can think of 
deep inelastic scattering (DIS) on the pomeron emitted by 
the target n u c l e ~ n . ~ - ~  (Here W is the total energy in the 
photon-proton center of mass system, w2= 2pq- @, 
where p and q are the 4-momenta of the proton and pho- 
ton, and @= -q2 is the virtuality of the photon.) If dif- 
fractive dissociation is dominated by single pomeron ex- 
change, which is a very strong assumption, and if pomeron 
exchange can be treated as a factorizing particle exchange, 
which also is a very strong assumption, then one can in- 
troduce an operational definition of the (virtual) photon- 
pomeron cross section umt(y*1~,@,M2) and the structure 
function of the pomeron F~ '~ ) (x ,@)  in terms of the dif- 
ferential cross section duddtdM2 of the forward diffrac- 
tive dissociation of virtual photons y* +p -* X +p (we fol- 
low the Regge theory convention1 with the substitution 
M2+M2+ @, which is natural for DIS) : 

and 

with the corresponding Bjorken variable 

Although there has already been much work on the 
parton model phenomenology of the pomeron,2-10 a defin- 
itive proof that the structure function of the pomeron de- 
fined in this manner satisfies the conventional Gribov- 
Lipatov-Dokshitzer-Altarelli-Parisi (GLDAP) QCD 
evolution is as yet lacking. The definition 
(1) for utot(y*IP) does implicitly assume that the 
pomeron has the intercept a,(O) = 1, i.e., the high-energy 
cross sections are constant and the mass spectrum of exci- 
tation of large masses M has 1/M2 behavior, 

If the factorization relations are valid, then A31P is expected 
to be a universal dimensional constant independent of the 
projectile a. However, in QCD there are no a priori reasons 
for the factorization relations to hold, and there are indi- 
cations to the ~ o n t r a r y . ~ ~ ~ ~ ' ~ . ' ~  Furthermore, factorization 
can be strongly violated by absorption (unitarity) effects 
from the multiple pomeron exchanges in Figs. lb and ld.6 
These multiple pomeron exchanges cast doubt on the rein- 
terpretation of diffractive dissociation in terms of photon- 
pomeron interaction. Experimentally aIP(0) > 1,l6?l7 the 
total cross sections are rising and the mass spectrum of the 
diffractive dissociation of protons exhibits slight deviations 
from a 1/M2 law.18 Furthermore, the cross section for dif- 
fractive dissociation of virtual photons was shown to be 
infrared-~ensitive.~-~.'~ The quantity related to the diffrac- 
tive dissociation cross section-the unitarization (shadow- 
ing, absorption) correction to the structure functions at 
small x-is also infrared-~ensitive.'~-~~ Therefore, the pos- 
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FIG. 1.  The single- and multiple-pomeron exchange contributions to the 
(a,b) elastic scattering and (c,d) the diffraction dissociation amplitudes. 

sibility of introducing the well-defined (and well-behaved 
in the sense of QCD evolution) structure function of the 
pomeron and the issue of the infrared sensitivity of the 
diffractive dissociation cross section deserve further study. 

In this paper we address the above problems in the 
context of the light-cone s-channel approach to diffractive 
DIS at small x=@/( w2+@) initiated in our previous 

(for related early work on the s-channel 
approach to light-cone QED see Bjorken, Kogut, and 
soper2'). Our strategy is to compute the high energy be- 
havior of the total (virtual) photoabsorption cross section 
and of the diffractive dissociation cross section. We treat 
diffractive y*p scattering in terms of the absorption of the 
light-cone partonic Fock components of the virtual photon 
by the target proton or nucleus. One can do so since at x( 1 
the photon transforms into these partonic Fock compo- 
nents at large distances 

upstream of the target nucleon (nucleus). As an illustra- 
tion of the principal points of the light-cone formalism,2457 
consider interactions of the qq Fock state of the photon. 
Because of the condition ( S ) ,  the transverse size p of the qq 
pair and the partition z and ( 1 -2) of the (light-cone) 
momentum of the photon between the quark and antiquark 
can be considered frozen in the scattering process. There- 
fore, one can introduce a spatial wave function of the light- 
cone qq Fock states Y p  ( p j )  and the dipole cross section 
a (p )  such that the total photoabsorption cross section 
o~,~("/*N,x,@) for the ( T )  transverse and ( L )  longitu- 
dinal photons and the forward diffractive dissociation cross 
section can be calculated as the conventional quantum me- 
chanical expectation 

(7) 

We emphasize that the factorization of the integrands in 
Eqs. (6, 7) is exact, and corresponds to the exact diago- 
nalization of the scattering matrix in the (p,z)- 
representation. 
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Interactions of the qq Fock state of the photon give the 
driving terms of the structure function at small x and of the 
diffractive dissociation cross section. Specifically, Eq. (6) 
yields the photoabsorption cross section and the proton 
structure function FiN)(x,@), which are constant vs x. 
Equation (7) yields the mass spectrum of the diffractively 
produced states 

and can be associated with the 'valence' qq component of 
the pomeron.7'23'24 Both the rise of FlN)(x,@) toward 
small x and the triple-pomeron component of the mass 
spectrum in the diffractive dissociation of photons, which 
can be associated with the 'sea' qq pairs and gluons in the 
pomeron, are generated by interactions of the higher, 
qqgl ...g, Fock states of the photon. 

The subject of this paper is a generalization of the 
light-cone s-channel approach7924 to interactions of the 
higher Fock states of the photon. We derive a full descrip- 
tion of diffractive DIS in terms of the generalized dipole 
cross section. We demonstrate that this dipole cross section 
satisfies an integral equation, which has as its limiting cases 
both the Balitskii-Fadin-Kuraev-Lipatov (BFKL) 
equation2628 and the GLDAP evolution equation."-l3 A 
discussion of the BFKL limit of our equation is presented 
elsewhere;29 in this paper we concentrate on the GLDAP 
limit or the Double-Leading Logarithm Approximation 
(DLLA) . 

Our major findings can be summarized as follows. The 
diffractive dissociation cross section can indeed be factor- 
ized [Eq. (94)] into the flux of pomerons in the proton 
fIP(y)/y, where y= (M2+ @I/(  w2+ @) is a fraction of 
proton's (light-cone) momentum carried by the emitted 
pomeron, and the well-defined structure function of the 
pomeron F$'~)(X/~,@),  which undergoes conventional 
QCD evolution with @ [the definition ( 1) corresponds to 
the convention f IP(y) = 11. This structure function and the 
flux of pomerons describe how the naive a 1/M2 mass 
spectrum (4) is modified by rising hadronic cross sections 
and by QCD evolution effects. The factorization (94) 
shows a certain resemblance to the usual Regge theory 
factorization, despite the fact that the Regge theory factor- 
ization relations do not hold in DIS at small x, and in our 
analysis we never assume or use the Regge theory factor- 
ization. We speak of the triple pomeron regime just to pay 
tribute to the fact that we mostly consider @ 4 M2 4 w2, 
which in Regge theory would have been the triple pomeron 
domain. The infrared sensitivity of the diffractive dissoci- 
ation cross section can be reabsorbed into the initial mo- 
mentum distribution of the 'constituent' quarks, anti- 
quarks and gluons in the pomeron, in close similarity to the 
conventional QCD evolution analysis of the proton struc- 
ture function. We demonstrate that besides the 'valence' 
and 'sea' quark-antiquark components derived in,7 the 
pomeron has a 'valence' gluon component, and present the 
explicit derivation of the constituent gluon wave function 
of the pomeron. The absolute normalization of the 
pomeron structure function can be related to the triple- 
pomeron coupling ~ ~ p ( @ )  Eq. (62), which gives the 
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driving term of the diffractive dissociation mass spectrum 
(4). We shall confirm the earlier suggestion3' that despite 
being dimensional quantity, ~ 3 ~ p ( & )  a G~V-', this 
triple-pomeron coupling only has weak dependence on &, 
although if 1/ ,@ were the only relevant scale in the DIS, 
then naively one could have expected A ~ ~ ~ ( & )  a l/&. 
The fact that one can (approximately) relate the properties 
of diffractive dissociation in DIS and in real photoabsorp- 
tion, which here is proven rather than assumed, is inter- 
esting in and of itself. In Ref. 7 we gave a phenomenolog- 
ical estimate of the sea structure function of the pomeron 
and of the diffractive dissociation rate in terms of the 
triple-pomeron coupling A31p(0) derived from real photo- 
production data.31 The resulting predictions are in good 
agreement with the first data on the diffractive dissociation 
of photons in DIS at HERA obtained recently by the 
ZEUS c~llaboration.~~ 

Diffractive dissociation of virtual photons and unitar- 
ity (shadowing, absorption) corrections to the rising struc- 
ture functions at small x are two closely related phenom- 
ena. s-channel unitarization of the virtual photoabsorption 
cross section introduces multiple-pomeron exchanges, 
which could lead to the departure of the x- and 
&-dependence of the structure function from the predic- 
tions of GLDAP evolution. We find that the unitarity cor- 
rections are large and persist at all &. The unitarity cor- 
rection is a nonlinear functional of the parton density, and 
violates the conventional linear relationship between the 
photoabsorption cross section and the parton density. Our 
principal conclusion is that the modified evolution equa- 
tions nonetheless retain their linear GLDAP form as dis- 
tinct from the nonlinear equation suggested in Ref. 19 and 
discussed extensively in the literature over the past decade 
(for a recent review with many references, see Ref. 22). 
The diagonalization of the scattering matrix in our (&) 
representation7224 greatly simplifies a discussion of the uni- 
tarization correction, as it enables one to unambiguously 
identify the s-channel partial waves which must satisfy the 
unitarity bound. 

This paper is organized as follows. In Sec. 2 we review 
the light-cone s-channel approach to DIS starting with dif- 
fractive interactions of the two-body qij Fock state of the 
photon.7924 In Sec. 3 we study interactions of the 3-body 
qqg Fock state of the photon and derive the driving term of 
the triple-pomeron mass spectrum in the diffractive disso- 
ciation of virtual photons and the driving term of the sea 

FIG. 2. The lowest-order QCD diagrams 
for interaction of the qq Fock state of the 
photon with the target nucleon. In all the 
figures the wavy, solid and dashed lines are 
for the photon, (anti)quarks and gluons, 
respectively. 

fractive DIS. We demonstrate that the dipole cross section 
satisfies the generalized BFKL equation. The subject of 
Sec. 5 is the triple-pomeron regime of diffractive dissocia- 
tion of photons to higher orders in perturbative QCD. 
Here we derive the structure function and the constituent 
gluon wave function of the pomeron. The latter absorbs the 
infared regularization dependence of the diffractive disso- 
ciation cross section. This completes a derivation7 of the 
valence and sea (anti)quark and the gluon structure func- 
tions of the pomeron, which are to be used as an input of 
the GLDAP evolution of the pomeron structure function. 
The factorization properties of the QCD pomeron and the 
flux of pomerons in the proton are discussed in Sec. 6. In 
Sec. 7 we discuss the unitarization of the rising structure 
functions of the proton at small x. We demonstrate that the 
unitarized structure functions of the proton still satisfy the 
linear GLDAP evolution equations, as distinct from the 
nonlinear Gribov-Levin-Ryskin (GLR) equations.19 Re- 
markably, this conclusion of the linear GLDAP evolution 
holds even when multiple pomeron exchanges are in- 
cluded. In this section we also present a brief phenomenol- 
ogy of the shadowing correction to the proton structure 
function and comment on the treacherous path to the in- 
terpretation of shadowing in terms of the fusion of partons. 
Our main results are summarized in Sec. 8. 

This paper is mostly devoted to the derivation of the 
formalism; numerical results are presented in Ref. 33. 

2. DIS IN TERMS OF THE FOCK STATES OF THE PHOTON 
AND THE DIPOLE CROSS SECTION 

2.1. The q p  Fock states of the photon and sea quarks in 
the proton. 

We are interested in DIS at x(1, where the structure 
functions are dominated by the scattering of photons by 
the sea quarks. The driving term of the sea is given by the 
perturbative QCD diagrams shown in Fig. 2. The same 
diagrams can be viewed as scattering of the qq Fock states 
of the photon by the target proton. The principal finding of 
Ref. 24 is that the corresponding contribution to the pho- 
toabsorption cross section can be cast in the quantum me- 
chanical form (6). The wave functions of the qij fluctua- 
tions of the photon were derived in Ref. 24, and read 

structure function of the pomeron. In Sec. 4 we apply our 2 6am 
formalism to derivation of the rising structure function in I Y,(z,p) ( =- ( 2 ~ )  3~2[2+ 1 (1 -z) ' IzK~(E~) '  

the DLLA. Here the generalized dipole cross section 
emerges as the principal quantity which controls the dif- + ~ ~ K O ( E P ) ' ) ,  ( 8 )  
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where the K,,(x) are modified Bessel functions and 

In Eqs. (8)-( lo), mf is the quark mass and z is the Suda- 
kov variable, i.e., the fraction of a photon's light-cone mo- 
mentum q- carried by one of the quarks of the pair (0  <z  
< 1 ). In the diagrams of Fig. 2, the color-singlet qij 
interacts with the target nucleon via the Low-~uss inov~~ 
two-gluon exchange, which is the driving term of the QCD 
pomeron. The interaction cross section for the color dipole 
of size p is given by24 

In ( 1 1 ), k is the transverse momentum of the exchanged 
gluons, the longitudinal momentum of the exchanged glu- 
ons is - mNx and is negligible at small x, and l/Rc is 
some kind of effective mass of gluons introduced so that 
color forces do not propagate beyond the confinement ra- 
dius R,- RN. The gluon-gluon-nucleon vertex function 
V(k) is related to the two-quark form factor of the nucleon 
G2(kl,k2)=(NIexp[i(k1 . r l+k2. r2) l IN)  by 

where y C h ( ~ )  is the charge form factor of the proton. 
a s ( p )  is the running QCD coupling which we shall use 
both in the momentum and coordinate representations: 

where A and AQcD may be slightly different: A=AQcD/C 
with C- 1 . 5 . ~ ~  In the integrand of Eq. (1 l ) ,  the strong 
coupling as(k2) is understood to be min{as(P),as(p)). 

2.2. Universality of the dipole cross section and infrared 
regularization. 

The salient feature of the dipole cross section ( 1 1 ) is 
its universality u (p )  depends only on the size 
p of the qq color dipole. The dependence on @- and the 
quark flavor is concentrated in the wave functions (8) and 
(9). The fundamental role of color gauge invariance must 
be emphasized. By virtue of color gauge invariance, gluons 
of wavelength A=l /k>RN decouple from the color- 
singlet nucleon. This decoupling is taken care of by the 
vertex function V(k), which vanishes as k - 0, and the size 
of the nucleon emerges as a natural infrared regularization: 
the dipole cross section (1 1) is infrared-finite even if 
p ~ = 0 .  Similarly, the factor [l -exp(ikp)] takes care of the 
decoupling of gluons with A > p from the color-singlet qq 

Fock state. As a result, at small p the cross section u(p)  is 
perturbatively calculable with its absolute normalization. 
For the nucleon target 

where 

is the large parameter of the so-called Leading-Log Ap- 
proximation ( LLA) . l1 

Another universal feature of u (p )  is its saturation at 
p>RN,Rc because of ~onfinement.~~ This is a strong- 
coupling regime, and in the saturation regime u (p )  de- 
pends on the infrared regularizations. [Following ~ r i b o v , ~ ~  
we assume freezing-in of strong coupling 
as(p)=as(Rf)-1 at p>Rf . ]  One natural infared 
regularization-the size of the target proton--enters via 
the vertex function V(k). The other two infrared regular- 
izations are the effective confinement radius R,, which en- 
ters via the effective gluon mass p,, and the freezing point 
R of the strong coupling as(R f )  - 1. Evidently, by virtue 
of Eq. (6), the dependence on these infrared regulariza- 
tions propagates into the proton structure function. Here 
we would like to emphasize that such an infrared sensitiv- 
ity of F&~)(x ,@)  is old news: in the conventional QCD- 
improved parton model, this dependence is hidden in the 
parameterization of the input parton distributions at the 
low factorization scale &. In our light-cone s-channel ap- 
proach, we instead calculate the structure function in 
terms of the dipole cross section, drastically reducing the 
number of infrared parameters. Furthermore, a crude test 
of the large-p behavior of the dipole cross section u (p )  is 
provided by the hadronic cross sections. For instance, the 
pion-nucleon total cross section can be evaluated as 

which roughly reproduces the observed value of at,,(%-N) 
at moderate energies.7.8"4*15,30 Once the constraint ( 16) 
has been enforced, the predictions for DIS to a large extent 
become parameter-free. Such a minimal-regularization ap- 
proach leads to a viable description of the absolute value of 

( x , @ - ) , ~ ~ ~ ~ ~ * ~ ~ ~ ~ ~  of the longitudinal structure function 
F,(x,@),~~ of the nuclear shadowing in DIS 23924>36, of the 
gluon distribution in the proton,38 and of the excitation of 
charm in muon and neutrino scattering,39 and roughly re- 
produces the total cross section of real photoabsorption.738 
Whether the large-r behavior of the dipole cross section 
u(r )  contains the nonperturbative component or not, and 
what is a magnitude of this component, remains somewhat 
of an open issue. There is good reason to believe, though, 
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that the energy dependence of the dipole cross section and 
the x-dependence of structure functions, which are our ma- 
jor concerns in this paper, must come from the exchange 
by perturbative gluons, to which our formalism is applica- 
ble. 

2.3. Connection with the QCD evolution equations. 

At small @, the transverse size of the qq Fock states of 
the photon is given by the Compton wavelength of the 
quark l/mf. For the heavy flavors (charm, ...) this is the 
perturbatively small size. For the light flavors it is also 
natural to ask that quarks not propagate beyond the con- 
finement radius. With the natural choice mU,d-pp- 1/R,, 
Eq. (6) with the wave function (8) reproduces the real 
photoabsorption cross At larger @ % m?,pL, 
R;', the conventional QCD-improved parton model de- 
scription is recovered. Indeed, let us calculate the @ de- 
pendence of the cross section (6). At large @, the leading 
contribution to oT(y*N) comes from the K , ( E ~ ) '  term in 
Eq. (8). Making use of the properties of the modified 
Bessel functions, after integrating over z one can write 

We find the scaling cross section a I/@ times the LLA 
scaling violation factor, with one power of L(@) 
=log[l/as(@)] per QCD loop, which is the starting point 
of the derivation1'-l3 of the QCD evolution equations. No- 
tice that the factor l/@ in Eq. (17), which provides the 
Bjorken scaling, comes from the probability of having the 
qq fluctuation of the highly virtual photon. There is a finite 
(and also scaling) contribution to ( 7 ~  from the region 
p2 < l/@: 

This is the -as(@)/L(@) correction to the LLA cross 
section ( 17). Notice the strong ordering in the LLA cross 
section: 

FIG. 3. One of the 16 lowest-order QCD diagrams for the inclusive cross 
section for forward diffraction dissiociation of the 94 Fock state of the 
photon. The vertical dashed lines show the unitarity cut corresponding to 
the diffractively excited state. 

The QCD scaling violations are (logarithmically) domi- 
nated by p2- l/@. Similar analysis gives the longitudinal 
cross section 

which is completely dominated by p2- l/@ (for more 
discussion on this point, see Ref. 39). 

2.4. Diffraction excitation of the q p  Fock state of the 
photon and the 'valence' q p  component of the pomeron. 

The shape of the mass spectrum from the diffraction 
excitation of the qQ Fock state of the photon (Fig. 3) can 
be estimated by undoing the z integration in Eq. (7). 
Firstly, we note that the diffraction dissociation cross sec- 
tion is dominated by large p2- R: , m72 (Ref. 7): 

Secondly, the invariant mass squared of the qq system 
equals 

where is the transverse momentum of the (anti)quark of 
the pair. For the crude estimation of the mass spectrum at 
M2 > @, one can undo the z integration in (7) and (2 1 ) by 
making use of k2 - l/p2 - m?, so that M' - 1/zp2 and 
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which gives (for a more detailed derivation see Ref. 7) 

Notice the strong flavor dependence of the diffraction dis- 
sociation cross section, Eqs. (2 1 ) and (24). For the exci- 
tation of heavy flavors the diffraction dissociation cross 
section is perturbatively calculable; for the excitation of 
light flavors it is evidently infrared-regularization depen- 
dent. (We shall encounter such an infrared-regularization 
sensitivity of the diffraction dissociation cross section over 
and over again. We shall demonstrate, however, that this 
infrared sensitivity can be reabsorbed into the normaliza- 
tion of the input structure function of the pomeron, which 
by itself will be proven to satisfy the GLDAP evolution.) 
The corresponding contribution to the structure function 
of the pomeron has a form7 reminiscent of the valence 
structure function of the proton: 

4@ (M2+@) ~!'~'(x,@)=, ( 
em tot PN) 

(The convention ( 1 ) for the photon-pomeron cross sec- 
tion differs from that used in Ref. 7 by the factor 
(M2+ @)/M2.) Therefore, the diffraction excitation of 
the qg Fock state of the photon can be associated with DIS 
on the 'valence' qg component of the pomeron. 

2.5. Rising structure functions and higher Fock states of 
the photon. 

The diagrams of Fig. 2 can also be reinterpreted as 
Bethe-Heitler production of a qg pair by the photon-gluon 
fusion y*g + qij. The conventional Weizsacker-Williams 
formula for this Bethe-Heitler cross section reads 

where g(y,@) is the distribution function of the physical, 
transverse, gluons in the proton. By the kinematics of DIS, 

The diagram of Fig. 2 describes the driving term of the 
perturbative gluon distribution in the proton, which is as- 
Sumed here 6 be entirely of radiative-origin. At x < l ,  we 

Here it is worthwhile to emphasize that the flux of soft 
gluons depends only on the color charge, and neither the 
spin nor the helicity, of the source of gluons. The vertex 
function V(k) in the integrand of (28) is precisely the 
same as in Eq. ( 1 1 ) and describes the destructive interfer- 
ence of gluons radiated by different quarks bound in the 
color-singlet nucleon. In terms of the mass M of the ex- 
cited qg pair, Eqs. (26) and (28) give 

Because of the spin-$ exchange in the t-channel, the cross 
section of the photon-gluon fusion subprocess decreases at 
large M2, 

the integral (29) converges at finite M2-@ and yields a 
constant photoabsorption cross section at small x.  For a 
closely related reason, one finds the rapidly convergent 
mass spectrum (24). On the other hand, if the qgg final 
state is produced in the photon-gluon fusion, then because 
of the spin-1 gluon exchange in the t-channel, 
~ ( y * ~ + q g ~ , M ~ )  a const, which leads to a rising [a log( l /  
x)]  contribution to the photoabsorption cross ~ec t ion .~  No- 
tice that excitation of the qgg final state in photon-gluon 
fusion can be reinterepreted as scattering on the nucleon of 
the q(18 Fock state of the photon. Therefore, one has to 
study the effect of higher Fock states of the photon. 

3. INTERACTIONS OF THE qig FOCK STATE 
OF THE PHOTON 

3.1. Interaction cross section for the qqg state. 

One can easily write down the interaction cross section 
for the color-singlet three-parton qgg state using only color 
gauge invariance considerations (the separation of partons 
in impact parameter space is shown in Fig. 4): 

Indeed, when the separation of the quark and antiquark is 
small, r( p z R, the qg pair will be indistinguishable from 
the pointlike color-octet charge. In this limit 
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It is convenient to introduce 

FIG. 4. Spatial structure of the qqg Fock state in the impact-parameter 
plane. 

where 9/4 is the familiar ratio of the octet and triplet 
strong couplings. In the opposite limiting cases of R =O or 
p=O, a gluon and (anti)quark with vanishing separation 
are indistiguishable from a pointlike (anti)quark and 

5The formal derivation goes as follows. In the integrand of 
the cross section (1 I ) ,  the two propagators l/(kZ+&) 
correspond to the Fourier transforms 

and U(-k) of the (infrared-regulated) gluonic Coulomb 
potential. If the color charge is located at position c, then 
U(k,c) = U(k)exp( -kc) .  Whenever the two exchanged 
gluons couple to the same parton, one gets the square of 
the corresponding strong charge. If the gluons couple to 
the two partons located at points rl and r2, the correspond- 
ing contribution acquires the extra phase factor 
exp[ik(r2-r,)]. This is precisely the origin of the factor 
[1 - exp (ikr)] in the integrand of Eq. ( 1 1 ) . Accurate cal- 
culation of color traces for the different couplings of the 
two exchanged gluons to the quark, antiquark and gluon of 
the qqg Fock state leads precisely to the cross section ( 3 1 ) . 

If cPl (r,R,p,z,z,) is the wave function of the qqg Fock 
state, the corresponding contribution to utOt(y*p) is 

The gluon of the qijg Fock state is generated radiatively 
from the primary qq Fock state (Fig. 5 ) , and this radiation 
simultaneously renormalizes the weight of the qq compo- 
nent of the photon. If n,(z,r) is the number of gluons in the 
qqg state with q-q-separation r (we suppress the subscripts 
T and L in I Y (z,r) 1 2), defined by 

the wave function of the radiationless qq component of the 
photon will renormalize as 

which shows how much the interaction cross section of the 
qqg Fock state is different from the cross section for the qij 
state. Then utot(y*N) from interactions of the qq and qqg 
Fock states of the photon takes the form 

Up to now we have manipulated the formally diver- 
gent quantity n,(z,r) as if it were finite. As a matter of fact, 
the renormalization (36) of the radiationless qij Fock state 
corresponds to the introduction of the so-called regularized 
splitting functions13 in the GLDAP evolution equations, 
and takes care of the virtual radiative corrections [a very 
detailed discussion of the interplay of the virtual and real 
radiative corrections and the emergence of the running 
strong coupling was given by ~oksh i t ze r '~  (see also the 
review in Ref. 41), and need not be repeated here]. Of 
course, the final result for the physical cross section, the 
last line of Eq. (38), does not contain any divergences. 

3.2. Wave function of the qijg state and the rising 
photoabsorption cross section. 

We are interested in the a log( l/x) component of the 
increase in the photoabsorption cross section 

FIG. 5. Scattering of the qqg Fock state of the photon on the nucleon by 
interaction of its radiatively generated gluon. 
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FIG. 6. Different couplings of the ex- 

-& -& -8- -& changed gluons to the color-octet qq pair 
and the gluon of the qqg Fock state of the 
photon. 

u b c d 

This log(l/x) comes from the dzdzg integration in the 
domain x < z, < 1, and we must concentrate on z,< 1. One 
should not confuse the Sudakov variable z,, which is the 
fraction of the light-cone momentum of the photon carried 
by the gluon, with y, which is the fraction of the light-cone 
momentum of the proton carried by the same gluon. The 
two quantities are related by 

Only the diagrams of Fig. 6a in which the exchanged glu- 
ons couple to the gluon of the qijg Fock state give rise to 
AU,,,(~*N,X,Q~) cc log( l/x ) . The corresponding wave 
function can be reconstructed from the number of gluons 
n, in the qijg state, which on the one hand equals 

and, on the other hand, can be evaluated from the 
Weizsacker-Williams formula (28), 

Here we have used the fact that for the qij source of gluons 

and the factor 2/3 accounts for the two (anti)quarks in the 
qij state compared to the three quarks in the proton. Trans- 
formation of Eq. (42) into the configuration-space integral 
can easily be performed making use of24 

RP 
= J d 2 ~ ~ % l ( ~ G ~ ) ~ l ( ~ ~  Rp Y 

which yields 

4 
n , = s  I %d2p I dzd2rl Y(r,z) 12as(r) 

zs 

P R 
XPLIK~(PGP) --KI(PGR) P . (46) 

After a more careful treatment of the running coupling, we 
can identify the three-parton wave function 

1 1  
1 Bl(r,R,p,z,z,) 1 2=;s 1 *(z,r) 1 'p; 

P x l g s c r ~ m i n ) ) ~ l c ~ G p l )  - p 

- g S ( r i r n i n ) ) ~ , c ~ ~ )  . (47) R 1 2  
Here gs(r) is the running color charge, as(r)  =gs ( r )2 /4~  
and the arguments of the color charges are 
r[min) - -min{r,p) and rimin) =min{r,R}. The wave function 

(47) has the l/z, behavior needed for the a log( l/x) rise 
in the cross section. The color gauge invariance property of 
the wave function (47) is noteworthy: because of cancel- 
lations of the color charges of the quark and antiquark in 
the color singlet state, it vanishes when (R-p) -0. It 
counts only physical, transverse gluons. For those reasons 
and because of the related color gauge invariance proper- 
ties of u(r,R,p), our introduction of the infrared regular- 
ization and the modeling of the confinement by the effec- 
tive mass of gluons exchanged in the t-channel is consistent 
with color gauge invariance. 

In the DLLA, the leading contribution to 
A U ~ ~ ~ ( ~ * N , X , @ )  comes from the LLA ordering of sizes 

and 
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which produces the factorized wave function 

= 1677 dM2 
du~(~*-+q+qqg)  1 

3 
dtdM2 

1 4 t=O 

IP(z,r) 1 2 g a ~ ( r )  7 .  
P 

(50) 
= dzd2r 1 P(z,r) 1 2[ 1 -ng(r) ] ~ ( r ) ~  

Naturally, the LLA wave function (50) does not depend 
on the infrared regularization parameter p ~ .  In the LLA + d&rdzg2p I @I (r,R,pssg) I ' 

9 X [u(r) +Au(r,R,p)I2 
Au(r,R,p> = z ( p )  =;l d p ) ,  (51) 

= J dzd2r 1 P (z,r) 1 2u(r)2 

and the increase in the total cross section can be written as 

+ J dzd2rdzg2p 1 OI (r.R,p.z,zg) 1 

AU,(~N,X,P) = J dzd2r 1 Y(z,r) I 2a,(r)3 X [AU(~,R,~)~+~U(~)AU(~,R,~)I. (54) 

The first term in the last line of Eq. (54) describes the 
diffraction excitation of the qij Fock states into low masses 

9 4 M2-@; see Eq. (24).  he-second term gives rise to the 
= I dzd2r 1 P (z,r) 1 'a,(r) cN?- - 

4 377 
1/M2 mass spectrum, which can be seen as follows. The 
invariant mass squared of the qqg state equals 

1 1 
Anticipating the final results, we note that the leading con- 

ii10g(5) - @ L( p) 3 (52) tribution to the diffraction dissociation cross section comes 
from the slightly modified LLA ordering 

Here we have made explicit use of the small-r behavior of 
u(r), Eq. (14). This is the first instance when we encoun- 

1 1 
@ 4 3 4 p 2 - ~ $ , 7  , 

ter the expansion parameter of the D L L A ' ~ , ~ ~ , ~ ~  PC 

i.e., from %%k2g--pi. Therefore, the excitation of 
((x,r) =? L(r)log(f). (53) masses M2 % @ only comes from zg4z < 1, and the dz, 

Po integration in (54) can easily be transformed into the 
dM2 integration [see Eqs. (27) and (40)]: 

We have one power of L ( Q )  per QCD loop [which a pos- 
teriori justifies LLA ordering (48)] and one power of 
log( l/x) per gluon in the Fock state of the photon. dM2 dy dz, 

- MZ+=y-T/ (57) 

3.3. The tripie-pomeron as~m~totics of the mass spectrum where now y is the fraction of proton's momentum carried 
of diffraction dissociation. by the pomeron. The wave function (47) has precisely the 

Our starting point is the generic formula (7). Repeat- needed a l/z, behavior, and [in view of (56) the term 
ing the considerations of Section 3.2, we can write a u(r)Au(r,R,p) in (54) can be neglected] leads to 
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1 1 A31p for the diffraction dissociation of protons, pions and 

t=O 

I dzd2r 1 '(z,~) I 2as(r)'C~' - CN real photons will be presented elsewherez9,"). For an 
order-of-magnitude estimate of A:Ip, in the dominant re- 

1 4  W p )  gion of integration in (60) we can take .F(pGP) 

XG ' T;; ' 12m dP2[7] F ( ~ ~ ~ ) ,  -exp( - 2 p ~ p ) ,  U p )  - 1 and d p ) / p 2 - ~ ~ s ( p  
= 1/2pG), with the result 

The form factor F ( x )  satisfies F(0)  = 1 and F(x)  a exp 
( - 2 x )  at x >  1. 

Firstly, we notice that the diffraction dissociation cross 
section depends on the infrared regularization, since the p 
integration in (58) is essentially flat and is dominated by 
large p-R,, l/pG. Then can take p2=0 for the lower 
limit of intergation, and daddtdM2 in Eq. (58) factorizes 
into the @-independent dimensional constant 

With pG-0.4 GeV this gives A:Ip - 0.3 (GeV) -2. The ex- 
perimental data on diffraction dissociation of real photons 
give A31P(0) z 0 . 1 6 ( ~ e ~ ) - ~  Ref. 31. This dimensional 
coupling ATIp z A31P(0) emerges as the principal normal- 
ization factor of the diffraction dissociation cross section, 
and Eq. (62) is a starting point of the derivation of the 
factorization representation (94) to all orders of perturba- 
tion theory. 

Combining Eq. (62) with the definition Eq. (25), we 
find the corresponding contribution to the structure func- 
tion of the pomeron at x=@/(@+M2) 4 1,7 

which is nearly identical to aT("/CN,x,@) of Eq. (17), 
lacking only L ( r )  in the integrand. Therefore, this driving 
term of the triple-pomeron component of the diffraction 
dissociation of virtual photons satisfies the approximate 
factorization reminiscent of the factorization properties of 
the triple-pomeron diagram of conventional Regge theory 
(Fig. 7a), 

This describes DIS on the qij 'sea' of the pomeron. The 
relationship (64) shows a deep connection between the 
triple-pomeron component of the mass spectrum and the 
sea structure function of the pomeron. Notice the differ- 
ence between the diffractive excitation of the qij state, Fig. 
3, and of the qijg state, Fig. 7b: in the former the pomeron 
couples to (anti)quarks and the DIS probes the 'valence' 
qg structure of the pomeron; in the latter the pomeron 
couples to gluons, and the DIS probes the 'sea' of the 
pomeron, which can be treated as having been generated 

M2+@ dao("/C+N-X+N) from the 'valence' (constituent) gluons of the pomeron. 

aTcr*N,x,e2,' dtdM2 t = O  

To the lowest order considered in the perturbation theory, 
the quantity A , ~ ~ ( @ )  does not depend on x. ~31p(@) is 
the dimensional quantity, and as such it can have had a 
strong have had a strong @-dependence, ~ ~ ~ p ( @ )  - I/@ being a plausible guess if 1/ were the only scale 
relevant to DIS. The fact that d"( f ) and o,,,("/C~,x,@) 
are nearly identical proves that this is not the case. Fur- 
thermore, the right-hand side of Eq. (62) has a very 
smooth extrapolation down to the real photoproduction 
limit @=0, confirming an earlier that 
ASIp(@) is close to A31P(0) as measured in real photopro- 
duction (a more detailed comparison of ~ 3 ~ p ( @ )  with 

FIG. 7. The triple-pomeron diagrams for the diffraction dissociation of 
virtual photons in deep inelastic scattering: a) The triple-pomeron dia- 
gram, which describes the a l / ~ ~  component of the mass spectrum in 
the triple-Regge phenomenology of diffraction dissociation. b) The driv- 
ing term of the triple-pomeron mass spectrum in QCD-the diffraction 
excitation of the qcjg Fock state of the photon. c )  Diffraction excitation of 
the many-particle Fock states in the Low-Nussinov approximation for 
the exchanged pomerons. d)  The same as ( c )  with exchange by the full 
QCD pomerons. 
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FIG. 8. Gluon-ladder representation of the DLLA pomeron in QCD. 

The diffraction dissociation cross section ( 5 8 )  and the 
pomeron structure function (64) are sensitive to the infra- 
red regularization, and the normalization of both quanti- 
ties contains the new dimensional parameter ATIp. The im- 
portant result of the above analysis is that this dimensional 
parameter ATIP can be inferred approximately from real 
photoproduction data. Notice a close similarity between 
Eq. ( 6 0 )  for the normalization of the triple-pomeron mass 
spectrum and Eq. ( 2 1 )  for the normalization of the mass 
spectrum for the excitation of the qij state. However, 
whereas Eqs. ( 6 0 )  and ( 6 4 )  predict a flavor-independent 
relation between the proton and pomeron structure func- 
tions, the valence qij structure function of the pomeron has 
a strong flavor dependence.' We now study how these con- 
clusions change when higher-order effects and QCD evo- 
lution are included. 

4. RISING STRUCTURE FUNCTIONS AND HIGHER-ORDER 
FOCK STATES OF THE PHOTON. THE BFKL 
EQUATION 

Generalization of the analysis in Sec. 3 to interactions 
of higher qqgl ...gn Fock states of the photon is straightfor- 
ward. The strong DLLA ordering of gluons 

is required to have the maximum possible powers of log( 1/ 
x )  and L ( Q) The quark-loop contributions to the 
DLLA in the generalized ladder diagrams of Fig. 8  can be 
neglected. By virtue of the ordering of sizes ( 6 6 ) ,  the 
qijg, ...gn Fock state interacts like the color-singlet octet- 
octet state, with the inner subsystem qqgl ...gn- acting like 
the pointlike color-octet charge. Henceforth, the generali- 
zation of Eq. (5 1 ) is 

The DLLA wave function is a straightforward gener- 
alization of the wave function ( 5 0 )  for the qqg Fock state: 

1 3  2 
Pn- I 

X - as(pn-1)  7. zn 7 Pn 
( 6 8 )  

Notice that the first gluon is radiated by the triplet- 
antitriplet color-singlet state. The subsequent gluons are 
radiated by the octet-octet color-singlet state, which brings 
in the ratio 9 / 4  of the octet and triplet strong couplings. 
The corresponding increase in the total cross section equals 
[here we make explicit use of Eq. ( 1 4 ) ]  

4 n - l  dp: dp;  
A U ~ A ' ( P N , X , P ) = - . ( : )  37r J d z d 2 r ~ ~ ( z , r ) ~ 2 a s ( r ) ~ - J 2 x a s ( p l ) J p ~ ; ; : a s ( p 2 ) . . .  Jp:-l dpt, -Z z ( p n )  

( 6 9 )  
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Therefore, the total photoabsorption cross section can be 
represented as 

DIS; see Eq. (70). We are now in a position to write the 
integral equation directly for the dipole cross section. Spe- 
cifically, if we expand the dipole cross section as 

where 
then Eq. (39) is equivalent to 

is the energy-dependent dipole cross section, which gener- 
alizes the Low-Nussinov pomeron to the DLLA pomeron. 

The sum in (71) can be evaluated as (we neglect the 
slowly varying pre-exponential factor) 

x [un(p) +c,(R) --un(r)] 

and 

leading to 

u(x,r) a u(r)exp - log [as;r)]log(f) - (73) This is our generalization of the BFKL equation for the 
dipole cross section. In the DLLA studied here, the kernel 
X takes a simple form: 

and 

The BFKL scaling limit corresponds to the fixed 
strong coupling as and pG+O. By virtue of Eq. (49), in 
this limit our Eq. (77) takes the form 

The representation (70) for the photoabsorption cross 
section in terms of the DLLA dipole cross section (71) is 
a new result and is presented here for the first time. How- 
ever, since the perturbative expansion (69) is completely 
equivalent to the GLDAP evolution equation for the struc- 
ture function, the result (74) for the DLLA growth of 
the structure function is identical to the one derived from 
the GLDAP evolution equations,12941 where it appeared as 
a rising density g ( ~ ~ ~ ~ ~ , x , @ )  of gluons in the proton. 
In our light-cone s-channel approach it comes from inter- 
actions of the higher qqg1 ...gn Fock states of the photon 
and can be described in terms of the rising DLLA pomeron 
cross section (71 ) for the color dipole. As a matter of fact, 
comparing equations (11) and (28), and making the 
straightforward generalizations, one can easily show that 
in the DLLA~' 

A proof of the equivalence of this equation to the original 
BFKL equation and the analysis of solutions of Eq. (77) 
are presented in Refs. 29 and 42. 

5. STRUCTURE FUNCTION OF THE POMERON AND 
CONSTITUENT GLUONS OF THE POMERON 

We now consider diffraction excitation of the higher 
order qqgl ...gn+2 Fock states of the photon (Fig. 7c). 
Large masses M of the excited state 

will be dominated by the softest gluon contribution. The 
fraction y of the proton's momentum carried off by the 
pomeron is related to zn+, by [cf. Eq. (40)] 

We note in passing that the cross section (7 1 ), (73), (75) 
obviously does not satisfy the factorization relations usu- 
ally assumed for the pomeron in standard Regge phenom- 
enology. The QCD evolution analysis of DIS need not as- 
sume any factorization of F2(x,@). 

Above, the generalized dipole cross section u(x,r) 
emerged as the principal quantity that describes diffractive and 
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Using the wave function (68) 

ations that led to Eq. (58), we find the contribution of 
(83) excitation of the q@gl g,...gn+2 Fock state to the mass spec- 

trum of the diffraction dissociation and to the photon- 
, and repeating the consider- pomeron cross section: 

167r 
(M2+e2> 

do~(Y*+qqg~...gn+z) 
A & + ~ ) ( ~ I P , @ , M ~ )  =o 

tot PP) dtdM2 

Comparison with Eqs. (1 1) and (69) shows that the last 
line of Eq. (84) can be reinterpreted as the dipole cross 
section for interaction with the pomeron treated as a two- 
gluon state with the wave function 

where 

is the fraction of pomeron's momentum carried by the 
gluon. 

Indeed, making use of Eq. (43) for the vertex function 
of the two-body system, the dipole cross section q g ( p )  for 
the scattering on the gluon-gluon state can be written as 

The factor 3/2 difference from Eqs. ( 11 ) and ( 14) is due 
to the ratio 9/4 of the gluon (octet) and the quark (trip- 
let) strong couplings and the ratio 2/3 of the number of 

constituent gluons in the pomeron and the number of con- 
stituent quarks in the proton. A series of transformations 
of the integrand of (87), 

and comparison with the last line of Eq. (84) complete the 
derivation of the wave function (85). This is one of the 
central results of the present paper. 

The wave function Y2g(zg,r) gives the distribution of 
the 'valence' gluons gIp(zg) in the pomeron 

610 JETP 78 (5), May 1994 N. N. Nikolaev and B. G. Zakharov 610 



The perturbative expansion (84) describes the QCD evo- 
lution of this 'valence' gluon distribution. The above deri- 
vation holds at zg( 1; the neighborhood zg- 1 requires spe- 
cial consideration. Only 2,- 1 is important in the DLLA. 
The radius of the pomeron Rp-R,, l/pG, and it is con- 
trolled by both the form factor F(p,-y) and the behavior 
of u(r)  in the saturation regime. The absolute normaliza- 
tion of the flux of soft gluons in the pomeron is given by the 
familiar coupling AfIp : 

Extrapolation of (90) to large zg as well yields an estimate 
of the gluon momentum integral for the pomeron, 

The momentum integral for the 'valence' (anti)quarks of 
the pomeron, discussed in Section 2.4, was estimated in 
Ref. 7 with the result (x,(qq) )p- 0.1. Equation (64) gives 
a few per cent estimate for the momentum integral for the 
sea (anti)quarks. Here we merely emphasize that the 
pomeron need not be regarded as a particle, and on purely 
theoretical grounds there is no reason why the momentum 
integral for gluons and (anti)quarks in the pomeron must 
add to loo%.' 

Henceforth, we identify three components of the input 
for the QCD evolution of the pomeron structure function: 
i) the valence quark-antiquark component with the struc- 
ture function (25) (see Ref. 7; for a detailed analysis); ii) 
the valence gluon distribution with the structure function 
(90); iii) the sea (anti)quark distribution given by Eq. 
(64). All these input parton distributions are sensitive to 
the infrared regularization. There is nothing wrong with 
this sensitivity: the infrared sensitivity of the parton distri- 
butions is inherent to the QCD-improved parton model. In 
the conventional parton model phenomenology it is hidden 
in the parametrization of the parton densities at small fac- 
torization scale, which is then used as an input in the QCD 
evolution analysis of the scaling violations. The important 
finding is that the absolute normalization of the sea and 
gluon distributions in the pomeron is determined by one 
and the same flavor-independent dimensional constant 
AfIp, which must be approximately equal to the triple- 
pomeron coupling as measured in real photoproduction. 
The normalization of the valence qq structure function of 
the pomeron is given by a very similar but flavor- 
dependent dimensional constant [cf. equations (21), (58) 
and (60)l. In the above DLLA analysis we omitted the 
quark loops in the ladder diagrams for the pomerons. 
These quark loops will automatically be included in the 
GLDAP-evolution calculation of the structure function of 
the pomeron starting with the aforementioned input parton 
distributions in the pomeron. 

6. FLUX OF QCD POMERONS IN THE PROTON 

To complete our analysis we must replace the Low- 
Nussinov two-gluon pomeron in the lower part of the di- 
agrams in Fig. 7c by the full QCD pomeron-the sum of 
the triple-ladder diagrams of Fig. 7d. This is done by re- 
placing the dipole cross section a ( p )  by a(y,p) in the last 
line of Eq. (84), where y is the fraction of the proton's 
momentum carried by the pomeron. The diffraction disso- 
ciation cross section thus calculated will differ from that of 
Sec. 5 only by the y-dependent factor 

What is the proper interpretation of fp(y)? 
We would like to preserve the most important result of 

the above analysis-the representation of the diffraction 
dissociation cross section through the GLDAP-evolving 
structure function of the pomeron. The scaling variable of 
the photon-pomeron scattering (3) equals xp 
=@/(@+M2) = x / ~ ,  SO that 

With allowance for the factor fp(y), Eq. (92) for the 
diffraction dissociation cross section can be written in the 
factorized form 

which has the conventional parton model representation, 
with fp(y)/y being the flux of pomerons treated as partons 
of the proton. In order not to introduce any spurious de- 
pendence on the kinematic variables x and y, the coefficient 
utOt(pp)/l6r in (94) must be assumed constant, for in- 
stance fixing at,, (pp) = 40 mb. Because the pomeron is not 
the particle with the well-defined couplings (residues) and 
spin, and because in QCD the pomeron does not factorize, 
the Regge theory convention (1) is not unique. The coef- 
ficient utot(pp)/16.n is the convention-dependent normal- 
ization constant for the correct dimensionality of the dif- 
fraction dissociation cross section in terms of the 
dimensionless structure function or vice versa. The abso- 
lute normalizations of the flux of pomerons and of the 
pomeron structure function are the convention-dependent 
ones: it is always the product of the two quantities that 
enters the experimentally observable cross sections. Equa- 
tion (94) shows how QCD evolution effects and the rising 
dipole cross section u(x,p) modify the 1/M2 law (4) for 
the mass spectrum in the triple-pomeron region. The fac- 
torization (94) bears a certain resemblance to the usual 
Regge theory factorization in the triple-Regge region. We 
emphasize that we have derived (94) neither assuming nor 
using any of the Regge theory factorization relations. 

The three pomerons in the triple-pomeron diagram are 
described by different QCD ladder diagrams. The top 
pomeron of Fig. 7d is in the LLA regime: the relevant sizes 
vary along the ladder from p:+, - R:, in the bottom cell of 
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the ladder down to 2- l/@ in the top, quark-antiquark, 
cell of the ladder. For this reason we can introduce the 
structure function of the pomeron. By contrast, the ex- 
changed pomerons in the lower part of Fig. 7d are the soft 
pomerons: since - Rip - R;, the situation is reminis- 
cent of the pomeron contribution to the typical hadronic 
cross section; see Eq. (16). The predictive power of QCD 
for the hadronic total cross section is still very 
limited.17"9'29'43 The empirical observation is that the had- 
ronic cross sections and the real photoabsorption cross 
section14 have a very weak dependence on energy 
v-rn,/x, much weaker than the steep rise in the DIS 
structure functions with l/x. The dipole cross section (7 1 ) 
is consistent with this property: it is essentially flat vs l/x 
at large, hadronic, size r, and the smaller the size r, the 
steeper the rise in o(x,r) with l/x. 

This rise has a definite impact on the radius of the 
pomeron. Namely, the replacement of o(r)  by u(x,r) leads 
to the effective wave function of the pomeron 

With the rising generalized dipole cross section o(y,r), the 
ratio a(y,r)/? will rise toward small r, so that the effective 
radius of the pomeron Rp(y) will decrease as y+O. The 
GLDAP evolution equations hold at R:@) 1, where the Ri 
are the relevant hadronic radii. If one would like to for- 
mulate the input for the GLDAP evolution at a certain 
fixed a, then because of the decreasing radius of the 
pomeron, the GLDAP applicability condition will be vio- 
lated at very small values of y 5 yC(&) such that 

The factorization of the diffraction dissociation cross sec- 
tion into the flux of pomerons and the structure function of 
pomerons Eq. (94) will break down at <yC(@). Our 
criterion (96) for the breakdown of GLDAP evolution is 
different from the GLR ~riterion'~ (for a review and ref- 
erences, see Ref. 22). 

7. UNlTARlZATlON OF THE RISING STRUCTURE 
FUNCTIONS 

7.1. Rising cross sections and s-channel unitarity. 

The rising cross section u(x,r) Eq. (71 ) conflicts with 
the s-channel unitarity at sufficiently large l/x. The 
s-channel unitarity constraint is best formulated in the im- 
pact parameter representation (the partial wave expan- 
sion) and reads 

The profile function r ( b )  is related to the elastic scattering 
amplitude f (q') such that 

FIG. 9. s channel iteration of the pomeron exchange: a) In the approx- 
imation of elastic intermediate states. b) Contribution of the inelastic 
intermediate states (diffraction dissociation of the target) to the s-channel 
iteration of the pomeron exchange. 

Here BeI is the diffraction slope of the elastic scattering. 
The Gaussian parametrization (98) is viable for the pur- 
poses of the present discussion45 and gives 

The profile function of the bare pomeron exchange To(b) 
defined for the rising cross section (71 ) will overshoot the 
s-channel unitarity bound at sufficiently small x. 

The is no unique prescription as to how to impose the 
s-channel unitarity constraint on the rising cross sections. 
The most used procedures are the e i k ~ n a l ~ ~ , ~ '  

and the X - m a t r i ~ ~ ~ ' ~ ~  

s-channel unitarizations. Both produce r ( b )  which satis- 
fies the unitarity bound (97). To leading order in the 
s-channel unitarization, the unitarized profile function 
reads 

with X= 1 for the eikonal unitarization, and x = 2 for the 
X-matrix unitarization. The eikonal unitarization is rou- 
tinely used in high-energy and sums the s-channel 
iterations of the bare pomeron exchange (Fig. 9a) when 
only elastic scattering intermediate states are included in 
the s-channel. Besides the elastic scattering states as in Fig. 
9a, one must include the inelastic intermediate states of 
Fig. 9b, which correspond to the diffraction dissociation of 
the target nucleon. These inelastic intermediate states lead 
to an enhancement of the double and higher-order rescat- 
tering terms in expansions ( 100,101 ) .47p50151 If one starts 
with the eikonal unitarization (which is an assumption), 
and includes the corrections for the diffraction dissociation 
of the target nucleons, then5' 
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In fact, the X-matrix prescription ( 101) was obtained in 
Ref. 45 starting with the eikonal unitarization of TN scat- 
tering and including the inelastic intermediate states in the 
QCD-inspired model of the diffraction dissociation of pi- 
ons. 

7.2. Shadowing correction to the proton structure function. 

We now discuss unitarization (shadowing, absorption) 
effects in DIS, taking full advantage of the diagonalization 
of the S-matrix in the (p,z) -representation, which enables 
us to impose s-channel unitarization on all multiparton 
cross sections u,(r,pl, ...,p,) at all values of r and pi. Al- 
though there is no unique s-channel unitarization proce- 
dure, we can still develop a sound phenomenology. We 
identify the cross section (71), which leads to the 
GLDAP-evolving structure function FiN' 
(GLDAP,X,@), with bare-pomeron exchange. The bare- 
pomeron structure function FiN) (GLDAP,X,@) is a lin- 
ear functional of the density of partons in the proton: 

= e:x [ q i ( ~ L ~ ~ p , x , @ )  
i 

+ q i ( G ~ ~ A p , x , e ' )  I . ( 104) 

The construction of the unitarized photoabsorption cross 
section goes as follows. For each Fock state we define the 
bare r0(b)  and the unitarized r ( b )  profile functions and 
the bare uo and the unitarized cross section dU): 

Let us derive the shadowing (unitarity) correction to 
the scattering of the qq Fock state of the photon. To lead- 
ing order in ro(b) ,  Eqs. ( 102) and (99) give 

and the shadowing correction to the total photoabsorption 
cross section equals 

Here BD(M2) is the diffraction slope for the diffraction 
excitation of the mass M. The shadowing correction to the 
total photoabsorption cross section equals the diffraction 
dissociation cross section times the enhancement parame- 
ter x z ( 1 - 2). The generalization of Eq. ( 107) to interac- 
tions of the higher Fock states of the photon is straightfor- 
ward. Making use of Eq. (94), we obtain the shadowing 
correction to the structure function of the proton 

(The slope B31P and the end-point y ,  of the pomeron dis- 
tribution will be defined below.) Ignore for the moment the 
mass dependence of the slope BD(M2). Since F;'(x,@) 
satisfies the GLDAP evolution, the convolution represen- 
tation (108) implies that the shadowing correction to the 
proton structure function also satisfies the GLDAP evolu- 
tion equations! Experimentally, in all hadronic reactions 
and in the diffraction dissociation of real photons, the slope 
BD(M2) exhibits a similar dependence on the excited mass 
M : ~ ~  in the triple-pomeron region the slope is constant to a 
good approximation, 

whereas in the resonance excitation region, 

In the DIS the counterpart of excitation of resonances is 
the excitation of the qq Fock states of the photon, for 
which we expect the slope (1 lo), whereas for the higher 
Fock states and heavier masses the slope (109) is more 
appropriate. These assumptions can be tested at HERA. 
Consequently, as compared with the pomeron structure 
function measured in diffraction dissociation, in the shad- 
owing structure function ( 108) the 'valence' qq component 
of the pomeron enters with the suppression factor 
B ~ ~ ~ / B ~ ( M ~ )  =: 1/2, which does not affect the QCD ev- 
olution properties. We conclude that the unitarized struc- 
ture function of DIS, 

satisfies the linear GLDAP evolution equation. 
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7.3. Brief phenomenology of the shadowing correction to 
the proton structure function. 

According to Eq. (107), the relative shadowing cor- 
rection to the proton structure function equals the fraction 
WDD of DIS which goes via diffraction dissociation of pho- 
tons times the enhancement parameter X. In diffraction 
dissociation events, the proton changes its longitudinal mo- 
mentum pL slightly, ApL/pL=y < ym 5 0.1, and appears in 
the final state separated from the hadronic debris of the 
photon by the rapidity gap 

The standard definition of the diffraction dissociation cor- 
responds to A. 2 Aqmin = 2 - 2.5. The maximal kinemati- 
cally allowed value of the rapidity gap is vmax= log( l/x) . 
The estimate of WDD is particularly easy when the pomeron 
and proton structure functions are approximately constant. 
In this case fp(y) = 1, the rapidity gap distribution is flat, 
which is a signature of the triple-pomeron mechanism,' 
and combining equations (64) and (107) we find7 

which is roughly @-independent. Numerically, 
A31P(0)/B31P z 0.03, and in Ref. 7 we gave an estimate 
~ ~ ~ ~ 0 . 1 5  at x-10-~ and @-30 (Gev/c)'. This pre- 
diction is consistent with the first determinations of WDD by 
the ZEUS collaboration at H E R A . ~ ~  

For a somewhat more realistic evaluation of WDD, let 
us assume that 

where A = aIp (0) - 1 - 0.1, as suggested by the pomeron 
phenomenology of the hadronic cross  section^.'^"^ We also 
assume that at small x the structure functions rise as 
(l/x)%ith the same exponent S for the proton and 
pomeron. The analysis of Ref. 33 gives a(@) -0.21 at 
@=4 ( G ~ V / C ) ~  and a(@) -0.31 at @= 15 (Gev/c12. 
Experience with the QCD evolution analysis suggests that 
the ratio F:") (x,@)/FiN) (x,@) will vary only weakly 
with Q~, SO that Eq. (64) can be used for the relative 
normalization of the proton and pomeron structure func- 
tions. Then, 

and to the extent that y=S-2A4l, and 

y(~max-Aqmin) 5 1, we have still an approximately flat 
rapidity gap distribution, and again obtain the estimate 
( 113) for WDD. Consequently, we predict a rather large 
shadowing effect in the proton structure function 

which persists at all @. In the kinematic range of the DIS 
at HERA, the shadowing effect can be as large as - 30%. 
A more detailed phenomenology of the shadowing correc- 
tions is presented in Ref. 33. 

7.4. Unitarization and shadowing correction to the parton 
densities. 

Since F ~ ~ ) ( x , @ )  satisfies the linear GLDAP evolu- 
tion, the shadowing correction to the proton structure 
function can be reabsorbed into the modification of parton 
densities in the proton. For instance, the shadowed density 
of gluons in the proton will equal 

Similarly, the valence and sea qij distributions in the 
pomeron will modify the sea quark distribution in the pro- 
ton. Here we merely note that whereas the GLDAP- 
defined parton distributions satisfy the momentum sum 
rule 

because of the shadowing correction this sum rule does not 
hold for the experimentally measured shadowed (unita- 
rized) parton distributions. A crude estimate of violation 
of the momentum sum rule ( 1 18) is 

With the ~ 2 %  systematic normalization errors in the 
most accurate measurements of F ~ ~ ) ( x , @ ) ,  presently the 
momentum sum rule can not be tested to better than 5%.52 
The concept of the fusion (recombination) of partons must 
be used with much caution. For instance, the shadowing 
correction to the density of gluons Eq. (1 18) is not pro- 
portional to g(x,@)2 as often stated in the literature (see 
Refs. 19-22 and Sec. 7.6 below). Indeed, the shadowing 
term is proportional to ATIp, the integrand of which is 
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FIG. 10. The archetype operator product expansion: a) Impulse approx- FIG. 11.  Absorption (unitarization) corrections to the diffraction exci- 
imation diagram for electron-nucleus scattering, which is a linear probe tation of the qqg, ...g,, Fock state of the photon. The vertical dashed line 
of the nuclear charge distribution. b) Multiple scattering diagrams which shows the unitarity cut. 
unitarize the proton-nucleus elastic scattering amplitude. 

and the integration is dominated by large hadronic values 
of r-Rp and small virtualities of the fusing gluons aP - 1/~:~.23,24,36 

Because of shadowing, the parton distributions in- 
ferred from the GLDAP evolution analysis of the DIS 
structure functions will be different from the operator- 
product expansion (OPE) defined parton distributions, 
which define the impulse approximation component ~ 1 . ~ )  
( G L D A P , ~ , ~ )  in Eq. ( 104). To this end, an analogy with 
the comparison between electron-nucleus and proton- 
nucleus scattering is instructive: the elastic eA scattering is 
described by the sum of the impulse approximation dia- 
grams of Fig. 10a and is a linear functional of the nuclear 
charge density. The eA scattering amplitude measures the 
charge of the nucleus, which equals the sum of charges of 
its constituents (nucleons). Choosing an appropriate ex- 
ternal field, one can study the whole sequence of the nu- 
clear matrix elements that will be sensitive to the momen- 
tum distribution of nucleons in the nucleus. For instance, 
considering the scattering of the nucleus in the center-of- 
mass frame, one can derive the momentum sum rule that 
the constituent nucleons carry the total momentum of the 
nucleus.36 Under the strong condition that scattering in 
external fields is described by the impulse approximation, 
i.e., by the exchange of the single quantum of the external 

7.5. Higher-order unitarity corrections and fusion of partons. 

Higher-order unitarity corrections, i.e., multiple- 
pomeron exchanges Figs. lb, Id, 9, do technically give rise 
to photon-multipomeron interactions, which casts doubt 
on the very definition of the photon-pomeron cross section 
and pomeron structure function, Eqs. ( 1 ) and (2). The 
remarkable observation is that one can still describe the 
diffraction dissociation cross section in terms of the 
pomeron structure function and the factorization represen- 
tation Eq. (94), and these y*(nIP) interactions only 
slightly modify f IP(y) and the simple relationship ( 108) 
between the shadowing structure function and the 
pomeron structure function. 

Let us start with the unitarization of the diffraction 
dissociation cross section. The s-channel iterations of the 
QCD pomeron exchange to the left and to the right of the 
unitarity cut in Fig. 11 separately sum to the unitarized 
dipole cross section. For the qg Fock state one must uni- 
tarize o(y,r), and for the qggl ...g, Fock states one must 
unitarize Z(y,r) =:u(y,r). Barring the qq state, the flux of 
pomerons f i:) (y) which enters the diffraction dissociation 
cross section must be calculated with the substitution 

field, having measured the scattering amplitudes in a vari- 
ety of external fields one can reconstruct the momentum in the pomeron wave function (95), so that 

distribution of nucleons in the nucleus. One would recog- 
nize in the above the standard OPE definition of the parton 
densities (for instance, see the textbooks listed as Ref. 53). 
In pA elastic scattering, the impulse approximation ampli- 
tude fA($) =A f N ( i )  GA(i) ,  where GA(i)  is the body form 
factor of the nucleus, has the profile function r A ( b )  -A"~, 
which grossly overshoots the unitarity bound (97). Con- 
sequently, the pA scattering amplitude is subject to large 
unitarization corrections (Fig. lob) and is a nonlinear 
functional of the nuclear matter density. 

In this context, the GLDAP approach corresponds to 
the impulse approximation and Eq. ( 104) gives the linear 
relationship between the Compton scattering amplitide and 
the parton densities. The shadowing term is an apparently 
nonlinear functional of the density of partons in the proton, 
but we have proven that this nonlinearity can be cast in the 
form of the renormalization of the parton densities, with 
retention of the linear GLDAP evolution properties. 

Apart from this minor change, the perturbative QCD ex- 
pansion (84) will retain its form. 

Similarly, in the case of the shadowing correction, Fig. 
12, the higher-order unitarity corrections are accounted for 
by the substitution 

so that x f IP(y) in Eq. ( 108) will be replaced by 
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FIG. 12. Unitarization of the scattering amplitude for the qijg, ...g, Fock 
state of the photon by the s-channel iteration of the QCD pomeron ex- 
change. 

Again, for the qq state one must unitarize o(y,r). The 
higher-order unitarity corrections make the fluxes ffi) 
x (y) for the diffraction dissociation and f;$'(y) for the 
shadowing correction slightly different, both in absolute 
normalization and in y-dependence. 

Equations ( 12 1 ) and ( 123) sum in a very compact 
form all multiple pomeron exchanges in the s channel 
(Figs. 11 and 12). The origin of this remarkable result is 
simple: the interaction cross section of the n-parton Fock 
state of the photon is dominated by the spatial extent of the 
softest gluon that acts as a constituent gluon of the 
pomeron. This corresponds to dominance of the mul- 
tipomeron exchange diagrams of Fig. 13. Consequently, 
the unitarization affects only the normalization of the 
pomeron wave function, and not the QCD evolution prop- 
erties of the pomeron structure function. 

The shadowing structure function can be reinterpreted 
in terms of the fusion of partons from the overlapping 
pomerons emitted by the same nucleon, which reduces the 
total density of partons. The fusion of partons from differ- 
ent nucleons of the nucleus was first introduced in 1975,'~ 
and remains a viable mechanism for the nuclear shadowing 
in D I S . ~ ~ , ~ ~ , ~ ~  However, this interpretation must be taken 
with the grain of salt. The bare GLDAP cross section (75) 
is a linear functional of the density of gluons, and the 
unitarized cross sections o( ') (x,r), B( ') (x,r) contain the 

FIG. 13. The dominant multipomeron interactions in deep inelastic scat- 
tering. 

terms cc ( - 1 ) "+ '[xg(x,r)ln, which are sign-alternating 
and defy the naive probabilistic interpretation. In more 
general terms, the multigluon exchange contribution is 
proportional to the many-gluon density matrix, the ele- 
ments of which are not neccessarily positive-definite. Evi- 
dently, this quantum-mechanical property is missed in the 
probabilistic approach to fusion. 

7.6. Unitarization and linear GLDAP versus nonlinear GLR 
evolution equations. 

There was much discussion of the unitarization of ris- 
ing structure functions in the framework of the so-called 
Gribov-Levin-Ryskin (GLR) nonlinear evolution equa- 
tion (see Ref. 19; for a recent review with many references, 
see Ref. 22). Here we briefly comment on the origin of the 
nonlinear term in the GLR equation, following the stan- 
dard derivation of the evolution equations.11-13 (We are 
only interested in x(1.) One starts by evaluating the 
derivative1 

In Sec. 2, we decomposed @otot(y*~,x,@) into a non- 
LLA component (18), which we can neglect, and an LLA 
component (17), in which all the explicit dependence on 
@ is concentrated in the integration limit. This is the cru- 
cial point, since taking the derivative ( 124) and making 
use of Eq. (75), one obtains one of the small-x GLDAP 
equations 

in which both the right- and left-hand sides are evaluated 
at the same value of @. Note that this property is a result 
of the singular behavior of the integrand in Eq. (17). 

On the other hand, the integrand of the leading shad- 
owing correction ( 107), (21 ) is a smooth function of p. 
Furthermore, it is dominated by the contribution from 
large p - R p  . For this reason, it would be inappropriate to 
enforce the LLA limit of integration p2 > 1/@ in the shad- 
owing correction ( 107). If, nonetheless, one goes ahead 
and does so, then differentiation in the first line of Eq. 
( 107 ) will give 

The familiar form of the GLR nonlinear shadowing cor- 
rection to the GLDAP equation for the density of gluo6s,'9 
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is different from our result ( 108), (94). Evidently, neglect- 
ing the contribution to the shadowing term from p2 < 1/@ 
and/or the CK 1/@ corrections to the leading form of the 
wave function in Eqs. (21 ) and ( 107) cannot be justified, 
which makes the GLR equation highly questionable. It is 
interesting to note that Mueller and ~ i u ~ '  had already ex- 
pressed, but did not elaborate on and did eventually dis- 
miss, similar doubts about the validity of the GLR nonlin- 
ear equation (see also the recent preprint by Levin and 
~iisthoff2'). The GLR term is a part of the c l/@ cor- 
rections to the leading shadowing term given by our Eq. 
(108); see also the above discussion on the fusion of par- 
tons in Section 7.5. 

8. CONCLUSIONS AND DISCUSSION 

Our principal conclusion is that diffraction dissociation 
of virtual photons in DIS can be described as DIS on 
pomerons with a well-defined and GLDAP-evolving struc- 
ture function. Furthermore, we have shown that such a 
description persists beyond the single-pomeron exchange 
approximation. Our new result is that we have identified 
the valence qq, the valence glue and the sea qq parton 
distributions in the pomeron, which are to be used as an 
input in the QCD evolution of the pomeron structure func- 
tion. We have found that the normalization of the valence 
glue and sea in the pomeron is fixed by the single dimen- 
sional coupling ATIP, which is sensitive to the infrared reg- 
ularization. Our principal finding is that this coupling 
ATIp (and the corresponding triple-pomeron coupling 
~31p(@), which we have shown only weakly depends on 
@) must be approximately equal to the triple-pomeron 
coupling A31P(0) as measured in the diffraction dissocia- 
tion of real photons.31 This approximate equality ATIp 
z AA31P(0) was conjectured long ago3' and has been a basis 
of the successful phenomenology of nuclear shadowing in 
D I S . ~ ~ ~ ~ ~ ~ ~ ~  This equality was also used in the prediction7 of 
the rate of diffraction dissociation in DIS, which is in good 
agreement with the first data by the ZEUS c~llaboration.~~ 
An important implication of separation of the infrared- 
sensitive input structure function of the pomeron from the 
hard QCD evolution effects is that jet activity in DIS on 
the pomeron must be similar to that in DIS on the proton. 

We have derived the unitarity (shadowing) correction 
to the proton structure function at small x, and have dem- 
onstrated that the unitarized structure function satisfies the 
conventional, linear, GLDAP evolution equations. We em- 
phasize the intrinsic simplicity of our light-cone s channel 
formalism used in this derivation. Firstly, our formalism 
implements in a very simple way the color gauge invari- 
ance constraints. Secondly, exact factorization of the pho- 
toabsorption cross section into the wave function and 
(multiparticle) dipole cross section allows an easy identi- 
fication of the partial waves of the dipole cross section as 

an object of the s channel unitarization. Thirdly, we took 
full advantage of the diagonalization of the scattering ma- 
trix as a function of the transverse separation and longitu- 
dinal momenta of partons in the multiparton Fock states of 
the photon. This enabled us to easily impose the s-channel 
unitarization on the total cross sections of all multiparticle 
Fock states of the photon. This also enabled us to identify 
the constituent gluon wave function of the pomeron, which 
gives a very economic description of the shadowing process 
in terms of the single parameter ATIp, which is under good 
control as it is related to the triple-pomeron coupling 
A31P(0) known from real photoproduction experiments. 
We have shown how multipomeron exchanges in the shad- 
owing structure function and in diffraction dissociation can 
be summed in a very compact form that only renormalizes 
the effective flux of pomerons in the proton. 
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