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We use the exact solution of the Dirac equation in a nonlinear plane-wave field to calculate 
the emission from a neutral fermion. Our analysis of the radiative characteristics-in 
particular, the conservation laws obtained-suggests a fundamentally new way to measure 
the anomalous magnetic moment of a fermion experimentally. 

The influence of a fermion's anomalous magnetic mo- 
ment (AMM) on its interaction with an external field is 
currently of interest in high-energy physics. In this paper, 
we examine the emission from a fermion with an AMM in 
a nonuniform external field. 

The construction of exact solutions of the Dirac equa- 
tion 

in which the AMM is taken into account phenomenologi- 
cally for a variety of fields, is an important step in the 
calculation of such processes. Occasionally, a knowledge of 
the exact solution of the quantum equation can lead to the 
prediction of nontrivial physical consequences. One ex- 
plicit example is the theory of synchrotron radiation pro- 
pounded by Sokolov, Ternov, and their students,' which is 
based upon an exact solution of the relativistic Dirac equa- 
tion in a constant, uniform magnetic field. 

In Ref. 2, we constructed an exact solution of Eq. ( 1) 
in the field 

where q=kx, k2=0, (al,a2)=(kta1)=(k,a2)=0, 
a:=a;= - 1, and cn(q,r) and sn(q,r) are Jacobi elliptic 
functions3 with modulus r e  [O, 11. 

The selection of this external field configuration was 
discussed in some detail in Ref. 2. Briefly, the elliptic func- 
tions are by definition the solution of the nonlinear pendu- 
lum equation, with r being the analog of the initial energy. 
At r= 0 the pendulum becomes a simple harmonic oscilla- 
tor, and (2) then describes a plane monochromatic field, in 
which the solution of the Dirac equation is well known.4 In 
the opposite limit r=  1, the pendulum sits at the separatrix, 
cn(q) - l/ch(q), sn(q) -+th(q), and the field (2) de- 
scribes a soliton configuration in which the E and H fields 
are solutions of the Korteweg-de Vries (KdV) equation.5 
Thus, the vector potential of the external field is a solution 
of a nonlinear KdV-type equation, in contrast to the cus- 
tomary plane wave, whose vector potential is a solution of 
the linear differential equation of the pendulum. This is 
precisely the context in which the "nonlinearity" of the 
plane-wave field (2) is to be understood. This question too 
was discussed in more detail in Ref. 2. 

Such fields obviously make sense if we recall that ac- 
tual plane waves, such as those produced nowadays by 
lasers, can only tentatively be described by solutions of 
linear differential equatiom6 

The solution of Eq. ( 1 ) in the field (2) takes the form2 

where q0 is the solution of the free-particle Dirac 
equation, ' and 

~ ( q ) =  ( l+e-  ) exp I -i Id+$ 

contains the well-known Wolkow exponential7 and the op- 
erator T(q) .  The latter describes precession of the parti- 
cle's spin due to an AMM, and can be expressed in terms 
of linear and quadratic combinations of unit-vector opera- 
tors 

in the following manner: 

where Y ,  ( q )  = (~_/z)e*"+"~ '  and Z, ( q )  =eTi'--Q, 
z=pa, 6, = r ~ :  1 + /-/2. Alternatively, adopting the 
normalization TT = 1 and lim T = 1, we finally obtain 

a-0 

where E =  1 +6?/2. 
It is clear from (3) and (4) that the solution consists 

of two multiplicative components; the first results from the 
fact that the particle has an electric charge, and essentially 
gives rise to the Wolkow exponential [U(q) = T(q)  for 
e=O], while the second is due to the presence of an anom- 
alous magnetic moment and is responsible for the preces- 
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sion of the fermion's spin [T (rp) = 1 for ,u = 01. We shall 
examine the radiation generated by a neutral fermion, with 
e=O and U(rp)=T(rp), since it is in fact the operator 
T ( q )  that embodies all of the novel features of the solu- 
tion. 

We consider the radiation from a neutral fermion in 
the field (2), taking the external field into account exactly, 
and the radiative field to a first approximation. The neutral 
fermion current in the field (2) is 

where p and E (p' and E') are the initial (final) neutron 
momentum and energy, k'= (o',k1) is the four- 
momentum of the emitted photon, and e is its polarization 
vector. 

The main problem in working with the current (5) 
comes in separating out an overall exponential factor of the 
form e-if(k)q, which in conjunction with the exponential in 
(5) specifies the conservation laws for the given process. It 
can easily be seen upon analyzing (4) that the feasibility of 
making this separation is dictated entirely by the form of 
the coefficients Y, and Z, , and accordingly by the possi- 
ble expansions of the elliptic amplitude am(rp,r) in terms 
of r~[0,1]. For r=O (plane-wave limit) there is no partic- 
ular problem, since am(rp,O) =rp. A similar expansion is 
also feasible when the elliptic modulus is small, r< 1, a case 
we consider below. 

When r(1, the external field is a plane wave with 
nonlinear corrections in rp, and we can expand the ampli- 
tude of the elliptic function as3 

where K(r)  = s;l2 d4/ is the complete ellip- 
tic integral of the first kind (r=O, K=n/2; r=  1, K= 
+ oc ), and q is the coefficient of the 8 f~nct ion,~  which is 
related to the modulus r via a well known inversion prob- 
lem, and which can be constructed, for example, using the 
procedure discussed in Ref. 8. With r<l  in the present 
case, these are simply related by ?= 16q. 

Making use of Eq. (6) and the familiar expansion3 
,ix sin e = 22: ,~,(x)e@, it can be shown that the current 

Sfi is an infinite sum of terms that individually satisfy the 
conservation law 

where a;=?r/K[(ai/2)+s] and ai={l, dm- 1, 
dm, + 1); s varies within limits such that we 
always have a plus sign on the right-hand side of Eq. (7). 

Formally, Eq. (7) comprises eight distinct series 
(ranging over s) of conservation laws, but depending on 
the value of dm, the actual number may vary. What 
we mean here by a series is a set of coefficients {a3 with 

constant i and variable s preceding the momentum of the 
absorbed photon; these are essentially absorption weight- 
ing factors. The Sth term of such a set describes the emis- 
sion of a photon with momentum k' resulting from the 
absorption of a; photons (i.e., the appropriate fraction of 
their energy and momentum) with four-momentum k. The 
only series that are physically reasonable under these cir- 
cumstances are those that ultimately result in a plus sign 
on the right-hand side of Eq. (7). 

The net result of a straightforward mathematical anal- 
ysis of Eq. (7) is that four fundamentally different cases 
can be distinguished: 

a)  ,/- is neither an integer nor half an odd inte- 
ger. In this least restrictive case, we have five distinct se- 
ries. 

b) J- is half an odd integer. Two pairs of series 
merge, leaving only three distinct series. 

c) ,/m = n = 2k + 1, yielding two series. 
d)  d1+42=n =2k, again yielding two series, which, 

however, differ from those in (c). 
Note that the fewer the conservation laws among the 

distinct series, the greater the contributions to the ampli- 
tude of the radiation, since identical series make an addi- 
tional contribution to the final amplitude when the current 
is squared. Consequently, the probability amplitude for 
emission in cases (b)-(d) can just be added to the ampli- 
tude for the most general case (a). This simplifies calcula- 
tions substantially, enabling one to treat (b)-(d) as a sup- 
plement to the fundamental case (a). 

We previously noted2 this decomposition of the pro- 
cess into resonant cases based on ,/-, proposing that 
it might provide for an experimental measurement of the 
AMM of a neutral fermion. The foregoing analysis and the 
following calculation actually explore this possibility, ex- 
pressing the total probability of emission as a function of 
the value z=pa of the characteristic. 

We therefore first consider case (a), in which 
is neither an integer nor half an odd integer. 

Squaring the current in ( 5 ) ,  summing over final states of 
the neutral fermion and photon, and averaging over initial 
states of the neutral fermion, we have 

where 

+ ( Y+Z- Y;*z'!+ Y-Z+ Y'.z~) 4(pfk') I 
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m2 
x (pk') -- Sp(F'_k'F+kf+F;k'F-k') 

2 I 

We obtain the total emission probability by integrating 
over final particle states: 

Four of the six integrals in (9) can be evaluated via the S 
function in (8), yielding the conservations laws in (7). 
Furthermore, all of the traces in the expression for Sp[a], 
consisting of eight y matrices, can be calculated with the 
help of these conservation laws. Note that these are all the 
nontrivial combinations that can be formed from the F, 
operators and the momenta of the participating particles: 

Sp(F:klF,k') = -2(p1k) (pk) r;; --- ;='')'. 
As one of the two remaining variables of integration, we 
choose the invariant u=kk'/kpf. Evaluating the 
6-function integrals, we then have 

where q, varies from 0 to 27r, and u varies from 0 to u 4  

= 2afkp/m2. 
With this result in hand, we obtain the angular spec- 

trum of the radiation: 

dudq, p2 
5 

d o  = 7 Z Wj(u,q), 
( 1 + ~ ) ~ 8 &  i=l 

where 

In analyzing the angular dependence (10) of the radi- 
ation, it must be noted that in contrast to the plane-wave 
case,9 the axial symmetry of the radiation is broken in the 
expressions for W1 - W3, which is a natural consequence 
of the nonlinearity of the external field, whose vector po- 
tential is the solution of a nonlinear differential equation.2 

We now study the angular distribution (10) in more 
detail, writing the expression for W, in the form 

where 

This makes it clear that for any s, 

A,(u,q) > 0 and lim A,(u,q) =O. 
q-0 

The axially symmetric radiation pattern normally dis- 
played by a plane wave is thus destroyed, and depending 
on the parity of s, we have squares that instead are either 
inscribed within a circle or circumscribed about it. 

The remaining q, and u integrals in (10) are elemen- 
tary, and present no particular difficulty. The net result is 
then 
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FIG. 1.  Emission in a plane-wave field from a 
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neutral fermion with anomalous magnetic mo- 
ment. 
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o,= z ~ : ( 2 J i = % o , ) ,  
s> - (  m / 2 )  

where g(u)=u(2+u)/(1+u)'(u2-2u-2)+4 ln(l+u) 
and g(u) =2u(2+u)/(l +u) -4 ln(1 +u) are monotoni- 
cally increasing functions of u (see Fig. 1 ) . 

The sums in ( 11 ) can be evaluated by taking advan- 
tage of the properties of Bessel functions of small 
arguments.j Since Jo(0) = 1 and JJO) =O for n#O, we can 
neglect terms in (1 1) with s#O, whereupon only series 1, 
3, and 5 survive; in the limit as q+O, these yield the plane- 
wave radiation obtained in Ref. 9. Here series 3 comprises 
two contributions, and we wind up with four channels cor- 
responding to the two spin symmetries and two symmetries 
of the magnetic moment: 

Note that this calculation is in fact consistent with the 
plane-wave case with the nonlinear correction 2q sin rp of 
(6). The important point here, though, is that we used the 
exact solution of the Dirac equation in the field (2), and 
the nonlinear correction corresponds solely to one special 
case of the resulting solution. In other words, the present 
calculation was based entirely upon an exact solution. An 
analysis confirms the conclusions drawn in Ref. 2 about the 
resonant influence of the factor JiGi2 on the nature of 
the radiation, and the corresponding feasibility of measur- 
ing the AMM of a fermion experimentally, much as pro- 
posed in Ref. 10. 

In closing, we offer a number of remarks about the 
applicability of these results. 

First and foremost, we note that Eq. (1) can be de- 
rived from the Dirac equation with radiative corrections 
taken into account. To do so, it is necessary to calculate the 
self-energy diagram and mass operator of the fermion in an 
external field, and then to separate out terms linear in the 
field. Transforming from operators to classical quantities 
(see the procedure described in Ref. 1 1 ), we obtain the 
desired Eq. ( 1). This then makes it clear that admissible 
external fields in ( 1 ) should be such that radiative effects 
are not comparable with the quantities containing the 
anomalous magnetic moment p. For the magnetic field, 
this means that e ~ / r n ~ =  H/Ho 4 1 (and accordingly 
e ~ / r n ~ = E / ~ ~ ( l  for the electric field), where Ho and Eo 
are the characteristic Schwinger fields.'' Under these cir- 
cumstances, vacuum decay (pair production) is unlikely, 
and we can utilize Eq. ( 1 ) and its consequences. 

The present discussion yields a bound on the range of 
the parameter z=pa, which must be varied when one mea- 
sures the AMM. Furthermore, using the actual values 
Ho=4.41 X 1013 G and Eo= 1.3X 1016 W/cm of the char- 
acteristic fields, we obtain a wide range of possible ampli- 
tude variation for an external field pulse. 

We have thus demonstrated the feasibility of using 
"nonlinear" field configurations, in principle, to observe 
variations in the radiation as a function of the AMM of a 
fermion. Those variations will be discrete by virtue of a 
family of conservation laws, and the discreteness may 
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make it possible to improve upon the value of the fermion's 
AMM using a technique unrelated to a Penning trap. To 
solve the problem as a whole, of course, it will be necessary 
to conduct a closer analysis of fermion radiation, paying 
attention to the manifestations of its charge and spin prop- 
erties. 
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