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We consider the special Gurevich-Pitaevskii solution of the Korteweg-de Vries equation that 
describes the onset of nondissipative shock waves when "wave fronts" steepen in low- 
dispersion media. We show that this solution is simultaneously the exact solution of a fourth- 
order ordinary differential equation. At t=O, the Gurevich-Pitaevskii solution is the 
same as a known nonlinear special function that arises in a certain problem in the quantum 
theory of gravitation. 

1. In this paper, we consider the special Gurevich- upon the properties of V(x) described in Refs. 4-6. Spe- 
Pitaevskii (GP) solution of the Korteweg-de Vries (KdV) cifically, we make use of the aforementioned smoothness4 
equation of V(x)  at all x.] 

According to Ref. 1, the asymptotic form (4) is ex- 
~ , + v ~ + v ~ ~ = o  ( octly the behavior to be expected of the GP solution. 

(subscripts denote the order of derivatives with respect to 3. In a previous paper3 devoted to the special GP so- 
x), which de~cribes'?~ the onset of nondissipative shock lution, I suggested that apart from satisfying from ( 1 ), it 
waves when "wave fronts" steepen in low-dispersion me- also satisfies a seventh-order ODE: 
dia. 

We continue the work begun in Ref. 3 by showing that 
besides Eq. ( I),  the special GP solution satisfies a fourth- 
order ordinary differential equation (ODE), 

The relationship between the onset of nondissipative 
shocks and problems in the quantum theory of gravitation 
is surprising, in our opinion: at t=O, the GP solution is 
identical with the well known"' special solution V(x)  of 
the equation 

which comes up in calculations of the "nonperturbative 
string effect" in two-dimensional quantum gravity (the 
ODE (3) applies to the number of so-called massive string 
equations). 

In this paper, we also discuss various analytic proper- 
ties of the GP solution. 

2. The physically interesting solution V(x) of Eq. (3) 
satisfies the boundary conditions4 

v+-x"~ for x - + + w .  (4) 

Based on numerical calculations, it was concluded in Ref. 
4 that the limiting behavior (4) guarantees that Eq. (3) 
will have a unique smooth, real solution. This uniqueness 
was later confirmed5 by an explicit calculation of the so- 
called monodromy data5-' that parametrize the various so- 
lutions of (3). We show below that in fact the initial data 

prescribe a globally smooth solution of the KdV equation 
that satisfies both the ODE (2) and the boundary condi- 
tions (4) for all t. [We emphasize that in doing so, we build 

+ 5 [ x v 1 - 3 t ( v 3 + v v , ) + 2 v ] / 5 4 = 0 .  (6) 

One can check directly that solutions of (2) also satisfy 
(6). 

It was shown in Ref. 3 that the joint solution of (1) 
and (6) satisfies the monodromy t h e ~ r e m . ~  (This class of 
solutions was considered somewhat earlier10y11 in implicit 
form.) Thus, in addition to the equations of the inverse- 
scattering method12 

we also have a linear system for the corresponding func- 
tions, 

YA=A(x,t,A)Y. (9) 

When (2) holds, the matrix A(x,t,A) is simply a poly- 
nomial: 
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For any sector Sj= {A:n( j - 1)/7 < arg A < n(  j + 1 )/7 
( j  = 1.14))~ there exists (see Ref. 13, 5 12) a fundamen- 
tal solution, Yj of (9) and ( 10) with the following asymp- 
totic behavior in that sector as A +  UJ : 

The so-called Stokes phenomenon (Ref. 13, § 15), 
whereby 

are not unit matrices, comes into play in the fundamental 
solutions of Eq. (9). 

A direct check shows that when the ODE (2) holds, 
(7) will be compatible with (9) and (10). Clearly, the 
corresponding Stokes matrices ( 12) will then be indepen- 
dent of x. Conversely, the x-independence of these matrices 
impliesg the validity of (7), and it also means that the 
potential v satisfies (2). Likewise, the subscripts on the v, 
in (10) denote the order of derivatives of v with respect to 
X. 

It can also easily be shown that compatibility of (8) 
and (9) gives rise to four ODE'S in the variable t, 

These equations imply that the Mj are independent oft. 
We thus find that the solution v of the Cauchy problem 

( I ) ,  (5) is in fact simultaneously a solution of the ODE 
(2) at all t (for which this Cauchy problem is solvable). 

4. In the limit as A + co [see ( 11 )I, the leading term 
(Yj12 in the sectors Sj (as noted in Ref. 3) is the same 
as the exponential in the Fourier integral 
J= SRA exp(- 2i(xA +4tA3 - 3456A7/35))dA, which sat- 
isfies the linear part of the KdV equation and the linear 
part of the ODE (6). I therefore suggested in Ref. 3 that 
the GP solution might be considered an analog of J. Note 
that this is also a reasonable assumption from the vantage 
point of Ref. 1 (where Gurevich and Pitaevskii cast the 

solution of the linearized kinetic equations of a tenuous 
plasma as a linear combination of integrals like J ) .  

This "consistency" is typi~a13*8*1"16 of nonlinear 
isomonodromy analogs of the special functions of wave 
catastrophes (Ref. 17, Ch. VI, §4), which are Fourier in- 
tegrals in canonical form, and which play a fundamental 
role in studies of rapidly oscillating solutions of linear 
problems. I7-l9 

Note that it is just this association between the GP 
solution and the integral J that plays such an important 
role in deriving Eq. (6). Completely in keeping with the 
plan described in Ref. 16, the derivation was carried out by 

a) finding the linear ODE J7+5[xJl -3tJ3+ W]/ 
54=0 satisfied by the Fourier integral J ,  and 

b) replacing all derivatives in that equation by their 
nonlinear generalizations-the stationary parts of the com- 
mutative symmetries of the KdV equation2' of correspond- 
ing order. 

Our study of the ODE (6) reduced to an investigation 
of the special solution (2) on the basis of an extremely 
lengthy analysis (using the isomonodromy method de- 
scribed in Ref. 3) of the behavior of the solutions Q> as 
A+O. Here we choose to forgo more detailed discussion. 

5. Outside the zone of rapid oscillations, the full as- 
ymptotic expansion of the GP solution as ( t ( -, UJ takes the 
form3 (s=x/l t 1 3/2) 

The leading term u( t,x) = I t 1 'I2 f (s) is a solution of the 
equation 

The discussion in Ref. 3 actually also makes it possible 
to write out the full asymptotic GP solution for Ix 1 + UJ. 

Outside the oscillation zone (at t=O, in particular), it is 
given by the series (r=t/x2l3) 

where g(r)  is the one real root of the equation 

and the remaining series coefficients p,(r) are specific 
smooth functions. At t <0, this series is identical to the 
formal series obtained from (14) by substituting t=x2l3r 
and s= r-3/2. 

6. Equation (16) for the asymptotic GP solution 
shows that it is a member of the class of infinitely rising 
solutions of the KdV equation previously considered by 
Bondareva and  hubi in.^'^^^ [This can easily be confirmed 
by expanding the coefficients in (16) in a Taylor series as 
r+O, replacing r by t/x2l3, and grouping equal powers of 
x.] Bondareva and Shubin have thus shown that it is only 
possible to guarantee that the solution of the Cauchy prob- 
lem for the KdV equation (belonging to the class of rising 
functions considered in Refs. 21-23 ) is globally smooth 
and unique if the initial data are given on the line t=O. 
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We can easily verify the existence of formal solutions 
of the ODE (3) that take the form 

(the pif are constants). The principal result obtained by 
~ u z n e t s o v ~ ~  was that solutions like (3) with the asymp- 
totic expansion ( 18) will exist at sufficiently large I x 1 (al- 
though they may not be unique). On the other hand, 
Kapaev6 has shown that all solutions V ,  of the ODE (3) 
with asymptotic behavior (4) (that are defined at large 
enough I x 1 ) will depend on two parameters that affect 
only the exponentially small corrections to the power-law 
background. Thus, the series (18) yields the full asymp- 
totic expansion of the smooth solution V(x) of Eq. (3) at 
1x1 +to. 

In its turn, this circumstances allow, according to 
Refs. 21-23, guarantee the global (and unique) solution of 
the Cauchy problem ( I),  (5). For any known t and the 
large enough Ix 1, this solution will have a necessary as- 
ymptotic expansion ( 16). 

In the two concluding sections, we discuss problems 
that bear on the behavior of the GP solution in the fast 
oscillatory zone and on the lines x = 0 and t = 0. 

7. In conventional hydrodynamics, the steepening of a 
wave is immediately followed by the formation of a shock 
whose intensity increases with time. Sagdeev showed in 
Ref. 25 that collisionless shocks tend to be oscillatory. It 
was therefore immediately clear that the GP solution of 
Eq. ( 1 ) describing the onset of such a wave should exhibit 
rapid oscillations after some sufficiently long time. To in- 
vestigate the character of these oscillations quantitatively, 
Gurevich and pitaevskii2 suggested using the solutions of 
Whitham's equations, which were obtained by averaging 
over a period of the cnoidal wave: 

where g=x-qt, d= [(r2-rl)/(r3- rl)] is the squared 
modulus of the Jacobi elliptical function dn, a=r3 -rl,  
~=rl+r2-r3, q= (rl+r2+r3)/3, and r l<  r2< r3. 

Whitham's resulting equations26 

are governed by the "group velocities" 

where p = E/K is the ratio of the complete elliptic integrals 
E= E ( K ~ )  and K = K ( ~ )  of the first and second kind. 

The self-similar substitution suggested in Ref. 2, 

transforms (20) into a system of ordinary differential equa- 
tions. Using the generalized hodograph method devised by 
~ s a r e v ~ ~  and the algebraic geometry procedure proposed 

by ~ r i c h i v e r , ~ ~  ~ o t e m i n ~ ~  found the required self-similar 
solutions (21 ). These solutions can be obtained from the 
implicit equations 

where wj=[U+(3P,-A)(U):j/35, u = ~ A ~  - I U B  
+8C, A=rl+r2+r3, B=rlr2+r3r,+r2 r3, and C=rlr2r3. 

In our previous brief notes3 we pointed out that the 
results obtained by Kudashev and sharapov30 enable one 
to verify that the solution of Whitham's equation obtained 
by Potemin is an averaged corollary of the ODE (6). We 
now expand on this point. 

In addition to satisfying ( 1 ), the GP solution satisfies 
the ODE (6), whose left-hand side K7(v) +5r(x,t9v)/54 
combines the seventh-order commutative symmetry of 
K7(v) with the dilation symmetry T= 2v +xu,+ 3hrt of the 
KdV equation.20 The results found in Ref. 30 immediately 
yield the averaged corollary of (6) for j = 1,2,3: 

where 

Making the self-similar substitution (21) in (20) and 
(23) and eliminating the derivatives ( I , )  j , we immediately 
obtain the explicit solution of (22). 

The results obtained by Kudashev and sharapov30 thus 
lead us to believe, in particular, that the solutions (22) of 
Whitham's equations (20) confirm Dubrovin's 
suggestion31 that "...the strong integrability and self- 
similarity of systems obtained from averaging in soliton 
theory should result from 'averaging' over the symmetry 
groups (Galilean and scale transformations) of the original 
equations." 

8. We pointed out in Ref. 3 that the line x=O has 
special significance in the GP solution considered here (the 
smoothness requirement on that line uniquely determines 
the coefficients in ( 14) ). Its distinctiveness is actually a 
rather deep property. That straight line creates the so- 
called Maxwell-set structural ca ta~tro~he, '~  which corre- 
sponds to the defining equation ( 15). The distinctiveness 
of the Maxwell set is in general typical of physical pro- 
cesses that can be described by the various catastrophes.33 
In particular, the special role of the line x=O is especially 
clear for the special solution of Biirgers' equation given by 
Il'in (Ref. 34, Ch. VI, $4), 

in the "general position" situation that describes the ad- 
vent of an ordinary shock wave in low-dissipation media 
(which takes place when a "simple wave front" steepens). 
Il'in's solution is the logarithmic derivative 
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of the integral 

which is a modified version of Pearcey's integral.35 
The special status of the line x = 0 in the given solution 

of Biirgers' equation has two aspects. Firstly-as in the GP 
solution of the KdV equation as well-it is precisely the 
smoothness requirement at x = 0 that uniquely determines 
the solution of the recursive series of ordinary differential 
equations that arises when the asymptotic series for r( t ,x)  
at t- - oo is substituted into (24). Secondly, a "disconti- 
nuity" appears at that line as t-. oo, signifying the onset of 
a dissipative shock. (The variables t and x, which are used 
to describe a small neighborhood of the point that serves as 
the origin for steepening of the wave, are dilated. In the 
language of matched asymptotic expansions,34 they are 
used to determine the so-called interior asymptotic expan- 
sion.) 

The Maxwell set also enjoys a special status with re- 
gard to Pearcey's integral itself, which describes the "steep- 
ening" of the rapidly oscillating phase among the solutions 
of a set of linear dispersion equations.'' (Specifically, that 
integral was used in the classic work of pearcey3' to inves- 
tigate electromagnetic field structure in the vicinity of a 
caustic cusp.) The special role played by the Maxwell set 
in this case has nothing to do with shock onset, but rather 
with the fact that the "three-phase" oscillation regime re- 
maining after reversal degenerates at x=O into a "one- 
phase" regime. 

The indisputable distinctiveness of the line t=O for the 
GP solution remains an obscure phenomenon for the 
present author. It seems likely not to be accidental, how- 
ever, and it ought to show up in other nonlinear special 
functions for wave catastrophes. Following ~itaev, '  it 
would appear that the connection with problems in the 
quantum theory of gravitation is probably also meaningful. 

9. To summarize, in Ref. 3 and once again in the 
present paper we have confirmed the general 
hypothesis'5916 of inevitable isomonodromy of the solutions 
of equations integrated via the inverse scattering method, 
which are nonlinear generalizations of the special functions 
of wave 

The results obtained in Ref. 3 and in the present work 
are to a large extent able to describe the onset of the shock 
waves that result from "wavefront" steepening, under both 
dissipative and nondissipative conditions. Furthermore, 
the fact that at the same time the GP solution satisfies ( 1 ) , 
it also satisfies the ODE (2) in x and (along with the 
derivatives v1,vZ,v3) the system of ODE'S (13) in t largely 
compensates for the lack of the explicit equations (25) and 
(26) in the nondissipative case. 

The established isomonodromy of the GP solution 
leads us to believe that its asymptotic behavior at large 
arguments can be studied as thoroughly as that of the clas- 
sical special functions (such as the Airy, Bessel, and 
Pearcey functions). Nevertheless, it should be pointed out 
that we have yet to conclusively determine even the form of 
the leading term in the asymptotic behavior of the GP 

solution in the rapid oscillation region. Where this problem 
has been studied-including Ref. 2--only the crude ap- 
proximation obtained by averaging over the Whitharn 
cnoidal wave (19) has been considered. Isomonodromy 
now makes it possible36p38 to elucidate this question. 

It may well be, however, that the most important con- 
sequence of the simultaneous validity of (2) and (13) is 
the feasibility, in principle, of a detailed numerical tabula- 
tion of the GP solution at all (and not just large) x and t. 
Although this is still a formidable problem, it is clear that 
solving an ODE numerically is much simpler than solving 
the KdV equation directly. 

The relationship that we have established here between 
the onset of nondissipative shock waves and "nonpertur- 
bative" problems in the quantum theory of gravitation re- 
flects that universal nature of the GP special solution of the 
KdV equation, one of the most interesting special functions 
of contemporary nonlinear mathematical physics. 

I thank V. R. Kudashev for a number of comments. 
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