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We consider the effects of nonlinear interaction of light with a thin layer of surface resonant 
atoms, allowing for the Lorentz local field in two limiting cases: the quasi-steady-state 
case with typical pulse lengths much greater than the transverse and the longitudinal relaxation 
times, and the case of ultrashort pulse lengths when the opposite inequality holds. 

In connection with the development of coherent sur- 
face spectroscopy,1~2 an interest has been shown in physical 
objects such as thin layers of resonant  atom^.^-^^ This 
model of a nonlinear medium includes, on the one hand,3-6 
the problem of nonlinear surface wave propagation and on 
the other, the problem of ultrashort light pulses reflecting 
from an Under certain conditions, surface 
waves can be efficiently excited due to the photon echo 
effect.12 Moreover, there is a purely practical interest in 
studying such structures in connection with the need for 

1. BASIS EQUATIONS 

Let us consider a thin layer of resonant atoms, of 
thickness I much less than the optical wavelength. The 
layer is located at the interface z=0 of two linear media, 
with permittivities E, and E ~ .  For definiteness we restrict 
ourselves to detailed consideration of TE waves only. 

We assume that a light wave is incident on the inter- 
face from the first medium, and the electric field strength of 
the wave is given by the expression 

efficient control of laser radiation and creation of an ele- Ey(x,z,t) = E o ( x , z , t ) e x p ( i k ~ + i k ~ - i o t ) ,  
ment basis for optoelectronics. 

Although the resonant layer thickness is small in com- 
parison with optical wave length, the nonlinear relation 
between the field amplitude of the transmitted wave and 
the optical properties of the resonant medium give rise to 
bistability phenomena and self-pulsations under quasi- 
steady-state  condition^."-'^ Under certain conditions, the 
nonlinear dynamics of the system may exhibit optical 

The bistability properties of a thin resonant layer lo- 
cated at the interface of two linear media were discussed 
earlier on the basis of both q~anturn'"'~ and 
quasiclassica117-22 models. In particular, in Refs. 13, 15, 
and 16 the need to include dipole-dipole interactions was 
pointed out. However, consistent implementation of this 
program is a laborious problem. 

It was shown in Refs. 13 and 20 that effective inclusion 
of the dipole-dipole interaction can be performed using the 
local Lorentz field. It is of interest to generalize the results 
obtained earlier treating the Lorentz field,11~'7"9~22 al- 
though a specific model with no allowance made for the 
local field is valid in a number of physical situations, for 
instance, light propagation through a cavity with low Q in 
the mean-field approximation or in semiconductors, and 
deserves special consideration. 

In the present paper, we formulate basic equations de- 
scribing the nonlinear interaction of light pulses with a thin 
layer of resonant atoms, treating the local Lorentz field 
using the quasiclassical approach. We discuss further the 
phenomenon of cavityless optical bistability under the con- 
ditions of quasi-steady-state action of light on a thin film of 
atoms. Then we consider transient propagation of coherent 
optical pulses in the limit of ultrashort pulse widths as well 
as the interaction of a light pulse with a thin layer under 
the conditions of two-quantum absorption. 

where Eo(x,z,t) is a slowly varying amplitude, k:, kz are 
the projections of the wave vector in the first medium 
( P = w  &/el. For the reflected and the transmitted 
waves, respectively, we can write down the following ex- 
pressions: 

where E,(x,z,t) and E(x,z,t) are the slowly varying field 
amplitudes of the reflected and the refracted waves, kb= o 
&c, and = kt. 

Note that the distinction between this boundary-value 
problem and the problem of light propagation in extended 
resonant media is that instead of the Maxwell equations, 
the corresponding electrodynamic conditions are used to 
relate the fields at the interface: 

where Py(x,t) is the surface polarization density. 
From the boundary conditions ( 1.1 ), follows a relation 

for the electric field amplitudes of all waves and polariza- 
tions 

A-B 41m 
Er= - 

A + ~ E O + ~ C ( A + B ) ~ ~ '  
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where A and B are the Fresnel coefficients (A 
= &a cos Oa, B= Gb cos Ob , On and Ob are the angles of 
incidence and refraction, respectively). 

In the general case, the coupling conditions (1.2) 
should be supplemented by the Bloch equations. As a re- 
sult, a closed self-consistent set of equations appears in 
which the field of the wave transmitted through the layer 
depends on the resonant properties of the surface atoms 
and in turn determines their dynamics. 

We consider first the interaction of coherent light with 
a thin layer of surface atoms under the conditions of single- 
quantum resonance. Then 

where Po and P are the nonresonant and resonant contri- 
butions to the polarization, and p, satisfies the equations 

In relations ( 1.4) and ( 1.5) p, and n, are the mean 
quantum mechanical values of the dipole moment and in- 
verse population per resonant atom; d12 is the matrix ele- 
ment of the transition dipole moment; E = O ~ I - W  is the 
detuning from resonance; Ns is the resonant atom surface 
density; yl and y2 are the phenomenological population 
and polarization relaxation rates; and the function g(&) 
describes inhomogeneous broadening of the resonant en- 
ergy levels. 

In connection with the set of equations (1.2)-(1.5), 
the following point should be noted. The fields entering 
into the electrodynamic relations ( 1.2) are macroscopi- 
cally average and, generally speaking, can differ from the 
field appearing in the Bloch equations (1.5). This is be- 
cause the macroscopic average field value differs from the 
local field at the positions of individual resonant atoms. It 
is known that for a bulk medium with atoms located at 
cubic lattice sites and with completely random arrange- 
ment of atoms (a gaseous dielectric) the connection to the 
local field has the 

where P is the volume polarization of the medium. 
If the atoms are located at the surface, a sum of the 

form 

should be evaluated to calculate the field produced by all 
surface dipoles at the location of the given dipole. 

For the geometry adopted in the present work, this 
expression takes the form 

The calculation result depends on the particular ar- 
rangement of atoms at the surface. It is clear from dimen- 
sional considerations that the local field will be 

where p is a numerical factor of order unity, and a and a. 
are the typical average values of distances between reso- 
nant and nonresonant atoms at the surface. 

Let us estimate the contribution of the nonresonant 
polarization to the local field. In the general case the value 
of Po may be determined by nonresonant impurity atoms 
and is equal to @flw in order of magnitude, where P is 
the impurity atom polarizability and is the surface den- 
sity. We assume that the local field at an impurity atom is 
the same as at a resonant one. Then 

where 

To estimate p, we use the relation 

For typical distances ao- 3 - lo-' cm, @-at2, we 
have &'/ao-- lo-'. Thus, we may neglect the nonreso- 
nant contribution to the local field and take ~ ~ $ 1 .  As a 
result, we get the following self-consistent set of equations 
determining the local field: 

where 

We consider the solution of this set of equations in two 
limiting cases: quasi-steady-state, when typical lengths of 
optical pulses are much longer than the transverse and the 
longitudinal relaxation times (T~)~;;;),  and ultrashort 
pulses, when the opposite inequality holds (~ ,<y l '<  yi ' ). 

2. QUASI-STEADY REGIME OF LIGHT ACTING ON A THIN 
LAYER OF RESONANT ATOMS: OPTICAL BlSTABlLlTY 

Evidently, we may neglect the first derivatives of n, 
and p, in the first case. Then 
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where 

AE=c/~2, fe?= 1 ~ 1 2 1 ~ / ' f i '  (2.3) 

Let us examine the case of a homogeneously broadened 
spectral line, so that g ( ~ )  =G(E - haO) and 

(2.4) 

where Ao= Awdy, and Es=fi f i / I  d12 1 is the saturation 
field. 

Then in units of saturation field Es the basic equation 
for the field E takes the form 

(2.7) 

When we take out the phase factors 

the field equation changes its form: 

From here we easily find a solution for the phase 

Upon squaring Eqs. (2.8) and (2.9) and summing 
them we get an expression for the intensities of the incident 
light and the radiation "localized in the layer": 

where X= tY2 and Y= F~~Y;. 

Note that Eqs. (2.7) and (2.1 1) are the analogs of the 
equations used in the theory of absorption-dispersion opti- 
cal bistability in steady state.14 

In fact, Eq. (2.1 1) admits bistable regime in the solu- 
tion for certain values of the parameters a ,  p, and Ao. The 
condition for the derivative dY/dX to vanish can be ob- 
tained from (2.11 ) : 

where X=X+ 1 +A;. 
In the general case, the last equation has three roots, 

two of which may be compLex. One real root is of no in- 
terest for-us, because for it X < 0. Two other roots become 
real for X > 0, if the inequality 

is fulfilled. 
The last inequality is the condition for the occurrence 

of a bistable regime or the condition for the occurrence of 
an S-shaped characteristic in the dependence X( Y). In the 
particular case 8 = 0  and exact resonance, the condition 
(2.13) reduces to the inequality a >  JZf=5.2. 

Note that the properties of the solutions which are 
responsible for optical bistability involve the properties of 
the local field. To determine the amplitude of the macro- 
scopic field along with the amplitude of the wave transmit- 
ted through the film, we must use relation (1.6) again. 
Then 

Then the transmitted wave intensity Xtr=EtRr and 
the intensity of radiation "localized in the film" X= I E 1 
are related by 

The relation between X and X, is of the bistability 
type, if the condition 

is met. 
Thus, Xtr is found in two steps. First, X is determined 

from Eq. (2.1 I ) ,  and then Eq. (2.15) is used to find X,. 
Note that for P(a, the quantities X, X,, and Yare related 
by 

In the limit of small 8 we can neglect the ambiguity in 
the solution for X giving rise to the bistable regime. Then 
we find that the transmitted radiation intensity is indepen- 
dent of the resonant layer properties, tY:r=~2t7?i. 
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3. TIME-DEPENDENT TRANSMISSION OF COHERENT 
OPTICAL PULSES IN THE ULTRASHORT LIMIT; PHOTON 
ECHO. 

By ultrashort optical pulses we mean pulses much 
shorter than the typical polarization relaxation times yF1. 
In this limit, system ( 1.7) simplifies: 

When the phase factors are removed, Eo= go exp(iqo), 
E= 29 exp(iq), p,= (u,+iv,)exp(iq), Eqs. (3.1 ) take the 
form 

Let us consider approximate solutions of this set of 
equations corresponding to the absence of phase modula- 
tion (@=0). We also neglect (u,) .  In the case of a sym- 
metric inhomogeneously broadened line, as well as that of 
exact resonance, this quantity is exactly zero. 

Under these conditions, the system (3.2) admits an 
approximate solution analogous to the "area theorem" by 
McCall and ~ a h n . ' ~  

Thus, integrating the first two equations of (3.2) over 
time and using the relations 

we get 

O+CD sin @=Fao cos(q-qo), 

Ca sin O = FOo sin (9 - qo) , 

where 

From this we easily get 

0@2=@2+ (<: + f i )  sin 2O +2C@ sin @, (3.5) 

ca sin O 
q = q 0  + arctg sin 0) ' 

It follows from (3.7) that phase modulation may be 
neglected only in the small area limit. Then 

(a 
p = po + arctg- 

(l+CD) ' 

and from (3.5) we obtain 

The optical pulse area 0 determined by the local field 
in the film can be arbitrary in the limit ga<CD or if the 
density of resonant atoms in the film is small (a)A). It can 
easily be shown that Cp<l holds in this case, and we find 
O$=O. 

In the general case, we come to the conclusion that the 
phenomenon of phase modulation is important when ul- 
trashort optical pulses interact with a thin layer of resonant 
atoms, and the "area theorem" of McCall and Hahn loses 
its physical meaning. 

Note also that the original equations (3.1) describing 
the interaction of an ultrashort optical pulse with a thin 
layer of resonant atoms whn the Lorentz field is included 
cannot be integrated by the inverse scattering method. 

The field amplitude of the transmitted wave can be 
determined similarly. Using relation ( 1.6) we get 

and integrating over time, we arrive at the following ex- 
pressions: 

@:,= 6; sin 20 + 02;  (3.10) 

0 
q - po = arctg------ Ca sin 0 ' 

Again, the condition of zero phase modulation can be 
met for moderate O values (@<I).  In the limit of small 
6'  areas," we get 

Consider now the formation of photon echo signals 
induced in a resonant layer by a sequence of two ultrashort 
optical pulses with time separation To. The feasibility of 
obtaining analytical solutions in this region is associated 
with relations (3.7), (3.8), and (3.12), signifying essen- 
tially the "small-area" approximation 0 < 1. It is known 
that in this approximation we may set 

and find from Eqs. (3.1 ) that 

) = - d l  J t  - m  dt' Im - m  d&g(&)E(tl) 

In the limit rp% Tf where rP is the excitation pulse 
width and Tf characterizes the spectral width of the func- 
tion g(&), we can obtain 

Then using (3.1 ), we arrive at expression 
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E= FEo 
(3.13) E o ( ~ )  = B0(t)exp[iqo(t) I. 

(1 +<p-i{a) ' If the quantity E entering into the Eqs. (4.2) is taken 
This expression should be regarded as the field acting to mean the local field acting on a resonant atom, Eq. ( 1.2) 

on the resonant atoms in a thin layer. Then, using the becomes 
results of the photon echo theory for disperse resonant 
media, we write down the following expression for the po- E=FEo+ (a'+iP')P,, (4.3) 

larization when the photon echo signal occurs: Then for the local field amplitude E and the Bloch 
vector component we use the representation analogous to 

P(t)  = - i l d 1 2 ~ N s d ~ * ( % ' $ o ( ~ )  4ii B T o ( ~ )  Eo : 

E( t )  = B(t)exp[ip(t)],  P= (u+iv)exp(2iq). 
(3.14) 

Se~arating the variables, we get 
where 

F ( I  + f i - g ) ~ ~ - ~ [ ~ + ~ ~ ~ ; ~ ~ ~  ~ n ]  B 
K= 

( 1  +go-i<o) ' 

and 691,20(~2) are the Fourier transforms of the slow en- =Fgo cos(q-qo), 

velopes of the incident optical pulses and re is the typical 
K22-K11 an] %'=F%', sin(q-qo), time of photon echo signal formation. It is assumed that ($+au) %'+P[u+ 

the excitation pulse widths T, satisfy the inequality 
Tp1,247~. K22-K11 

For simplicity, the expression for the polarization is U +  4fi B2v-2qiv=0, (4.4) . .- 
given at the origin of the coordinate resonant layer system, 
i.e., at x=O. . K22-K11 

v- 
IK12I2 

4fi 
%'2~+2qiu= -- 

2fi g2(6n+no), 

4. INTERACTION OF AN ULTRASHORT OPTICAL PULSE 
WITH A THIN LAYER OF SURFACE ATOMS UNDER 
TWO-PHOTON RESONANCE CONDITIONS 

In the case of two photon resonance, the basic equa- 
tions (1.2) remain valid, but the polarization P, should be 
taken to be the expression 

The resonant and nonresonant contributions are taken 
into account here; n is the inverse population of resonant 
energy levels per atom; N, and No are the surface densities 
of resonant and nonresonant atoms in the layer; Kll  and 
K2, descndet he Stark shift of energy levels; K2] is the 
matrix element of the two-photon transition; the factor KO 
allows for the contribution of nonresonant impurities into 
polarization; and the the P component of the Bloch vector 
satisfies 

Note that in writing down Eqs. (4.2) we have used the 
ultrashort-width approximation and treated the case of ex- 
act resonance ( 2 ~  = uzl ) and homogeneously broadened 
lines. 

We assume that the ultrashort optical pulse is incident 
on a resonant layer, and the electric field amplitude of the 
pulse is represented by the expression 

v g 2  
an=-. 

2fi 

where a=a 'N, ,  P=B'Ns; 

Neglecting phase modulation, from the first and the 
fifth equations of system (4.4) we find 

so the second terms in the first two equations (4.4) can be 
omitted. Then we present the solution of Eqs. (4.4) in the 
following form: 

v=  
-21K21I2320 

sin $, 
~ i i ) 2 + 4 1 ~ 2 i ~  

( l - ~ + { p s i n  $)%'=F%'o cos(q-pol, 

($+s, sin $ ) g  =Fgo sin(q-qo), (4.6) 

where 

From this we find 

* i $ - B  sin 2$+Csin2 -=F'$~. 2 (4.8) 
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Here 

Note that integral of motion (4.8) was obtained ne- 
glecting phase modulation. It follows from the last two 
equations of the solution (4.6) that 

<$+la sin $1 
q - qo = arctg 

( l - ~ + ( o s i n  +) ' 

and since a)p usually holds, we have (g0,)G) and 
phase modulation may be neglected if &o,-- 1. Then we may 
set q - qo = ~ / 2 .  

Thus, relation (4.8) determines the "rotation angle" $ 
and the energy of the electromagnetic field localized in a 
thin layer of resonant atoms along with it. To determine 
the energy of an ultrashort optical pulse transmitted 
through the layer we should use the relation between the 
transmitted macroscopic wave amplitude Err and the local 
field E. 

Using solution (4.6) and separating the variables in 
expression (4.11 ) we get 

gtr sin(?,-q) = -(a sin $8 ,  

whence it follows that for & 'O,- 1 we have qrr-q= - ~ / 2  
and 

l: 6: $ tr- -- 2 +--sin 241, 
4 

then " 2 4) ) ,=~~$~-4@,  sin2 ?-- $ +- $+: sin 21). 

(4.13) 

As a result expressions (4.8), (4.9), and (4.13) allow 
us to determine the energy of an ultrashort optical pulse 
transmitted through a thin resonant layer as a function of 
the incident pulse energy. 

CONCLUSION 

Thus, the inclusion of the dipole-dipole interaction in 
the effective local Lorentz field does not alter qualitatively 
the character of optical bistability in the problem of an 
optical pulse passing through a thin surface layer of reso- 

nant atoms for the case of single-quantum resonance in the 
quasi-steady regime. In the limit of ultrashort pulse 
lengths, much shorter than the typical times for irrevers- 
ible relaxation of the polarization, a consistent treatment of 
phase modulation is needed. Analytical solutions can be 
obtained in the "small-area" approximation only. In the 
case of coherent propagation of optical pulses under the 
conditions of two-quantum resonance, the phenomenon of 
phase modulation is essential as well. Analytical solutions 
are obtained only in particular cases. 
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