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We study the features of thermodynamics of open systems using the example of a model 
alloy under radiation. Ordering phase transitions are explored using a form of the self- 
consistent-field approximation. We show that the "mixing" of the positions of atoms 
done by radiation inhibits ordering and suppresses it at low temperatures. We also find that 
at small values of the order parameter, radiation either gives rise to stratification or 
increases free energy for homogeneous ordering, which apparently indicates that the system is 
unstable with respect to formation of inhomogeneous states. 

1. INTRODUCTION 

Statistical systems that are constantly under the influ- 
ence of external forces ("open" systems1) can have un- 
usual properties that are absent in equilibrium systems. A 
well-known example is alloys under radiation. Experimen- 
tal data suggest that in certain conditions unusual struc- 
tural states emerge in such alloys, states whose properties 
differ dramatically from those of equilibrium states (see, 
e.g., Refs. 2 4 ) .  Martin et ~ l . ~ - '  proposed a physical model 
that provides a meaningful description of the main quali- 
tative properties of the configurational kinetics in irradi- 
ated alloys. Vaks and ICarnyshenko8 suggested general 
methods for finding the stationary states in the models 
described in Refs. 5-7 and examined the effect of radiation 
on the formation of layers in disordered alloys. 

In the present paper (an extended version of Ref. 9) 
we employ methods developed in Ref. 8 for studying the 
special features of ordering in irradiated alloys. We show 
that the presence of disordering external forces, "ballistic" 
mixing of atoms by radiation, leads to suppression of ho- 
mogeneous ordering and to unusual structural behavior, 
especially at small values of the order parameter, when the 
thermodynamic "driving force" for ordering is weak. 

2. THE MODEL AND THERMODYNAMIC RELATIONS 

We now describe the microscopic model used in our 
study. We examine alloys whose configurational Hamil- 
tonian has the standard form, namely 

Here the operator nia is equal to unity when the ith site is 
occupied by an atom of the a species and nia = 0 otherwise, 
J,: stands for the external-field potential (if it exists) for an 
atom a at the ith site, and the ellipses stand for many- 
particle interactions. In a binary A-B alloy the Hamil- 
tonian ( 1) can be expressed only in terms of operators 
niA=ni (or n,= 1 -n,=nJ), while for a one-component 
interstitial alloy Eq. ( 1 ) does not contain indices a and P. 
For simplicity we will examine only these two cases and 

also assume that only pair interactions are present, that is, 
the Hamiltonian incorporates only the terms explicitly 
written in (1). 

As in Ref. 8, we assume that the time evolution of the 
distribution equation P{ni) is determined by the master 
equation 

where a and B stand for different sets of ni values, {n,}, and 
W(P,a) is the probability of an a-fl transition per unit 
time. Following Refs. 5-8, we assume W(P,a) equal to the 
sum of probabilities of individual atomic "hops" between 
the ith and jth sites, probabilities that incorporate "ther- 
mal" and "ballistic" terms: wji= y:$+I'gi. The thermal 
terms yth exist even in the absence of radiation and describe 
ordinary migration of atoms in an alloy. The ballistic terms 
rb describe the effects of mixing of atoms over the sites 
when the atoms are knocked out by high-energy radiation 
particles (neutrons, ions, or fast electrons). For the ther- 
mal hopping probability f h  we assume the thermally acti- 
vated form 

where wij and ej are the "trial rate" and "saddle-point 
energy" for hopping (assumed to be independent of alloy 
configuration, i.e., the species of neighboring atoms), 
p= 1/T is the inverse temperature, and E; the "initial" 
(prior to hopping) energy of atoms related to cells i and j 
(averaged over fast phonon motion). The values of 
yij=wij exp(-Dq,) and the ballistic terms are as- 
sumed configuration-independent, in contrast to the 4; 
entering into y;$. In Ref. 8 the expression for was taken, 
for the sake of simplicity, in the form corresponding to an 
interstitial alloy: E; = Ej = n,(SH/Gn,). For an A-B sub- 
stitution alloy the E; also incorporate the configurational 
energy of the B atom in the i cell: 
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Using a more realistic model of "hopping through vacan- 
cies" for $ instead of the "direct hopping" model just 
discussed leads to more cumbersome expressions for the 
effective but has no marked effect on the result below. 

Actually, for a homogeneous alloy with equivalent 
sites Eq. ( 1 ) contains no fields fl. However, considering 
the effect of a field that induces ordering clarifies some 
aspects of the theory. For this reason we consider below 
the general case of nonzero t,by assuming also (for the sake 
of simplicity) that the ballistic terms are field-dependent 
t00:r; = rij exp(pt,by +pt,b;). 

Allowing also for the fact that the hopping of an atom 
between the ith and jth sites is possible and alters the 
probability P only if the ith site was occupied and the jth 
site "vacant," that is, Wji=nJyji,  where nj= 1 -nj, we 
can write the transfer matrix S m (2) as 

where wkl=yil e x p ( ~ P k )  + ril. In Eq. (3) we also used 
the Dirac notation for the state vectors, I . . . ) and ( . . 1, 
and the fact that ni and nj are projection operators: n;=ni, 
(nj)2=n:, and n,n;=O. 

Below we consider only stationary distributions P{ni}, 
that is, solutions of the equation 

The most general expression for P{ni} satisfying the phys- 
ical requirement that the probability distribution for quasi- 
independent subsystems A and B be multiplicative, that is, 
P A + B  = PAPB , can be written as 

Here N, is the total number of sites, &=Bini the total 
number of atoms, A the generalized chemical potential, 
Tr(trace) stands for summation over all the sets {nil, and 
hi is the effective external field at the ith site. The quasi- 
Hamiltonian Q is an analog of the Hamiltonian ( 1 ), but 
the b'quasi-interactions" a;... , must be found from the time- 
independent equation (4). If we assume that for a given N 
and given external parameters 5' (including not only the 
external fields and the radiation parameters but also the 
temperature, i.e., we consider, for the sake of simplicity, 
only the configurational degrees of freedom) the function 
P{ni} is single-valued (this assumption can be considered 
an analog of the ergodic hypothesis), we can assume that 
the ai..., depend solely on f but not on the mean occupa- 
tion numbers ci= (n,) (see Ref. 8). 

As discussed in Ref. 8, Eqs. (5) can be used, by anal- 
ogy with ordinary therrnodynami~s,'~ to define the ther- 

modynamic potentials of stationary states: the potential A, 
the generalized chemical potential A, and the generalized 
free energy F=A+AN, where n= (I?); and here and in 
what follows the symbol (...) = Tr( ...) P stands for averag- 
ing over the distribution (5). Here Nsao and a l  in Eq. (5b) 
are the analogs of E, and V1 in Eq. ( I ) ,  and for single- 
phase states (discussed in Ref. 8), these quantities enter 
into the thermodynamic potentials F and A as insignificant 
concentration-independent constants (discarded in Ref. 
8). But, generally speaking, the values of a,, and a, in 
different phases may differ. Hence, when considering equi- 
libria between different phases, we will allow for the pos- 
sibility of nonzero differences Aao and Aal . 

The entropy S is defined in the ordinary manner, 
S=ln Ar ,  where Al? is the number of different configura- 
tional states occupied by the alloy in steady-state tondi- 
tions. Since A, F ,  and S and the quasienergy Q= (Q) are 
extensive quantities (additive in the quasi-independent sys- 
tems comprising the alloy), Eq. (5c) yields, to within sta- 
tistical accuracy, the following expression for the free en- 
ergy F:  

Differentiating Eq. (5c) "along the steady-state line" 
yields the generalized first law of thermodynamics 

dS=dQ-AdN- 2 q@[, (7)  
C 

where') qC= ( a ~ / a f ) .  
The principle that the free energy for stationary states 

be a minimum (for given external parameters f and total 
number of particles N)  can be derived from the generalized 
ergodic hypothesis mentioned previously, similar to the 
way the principle that the entropy be a maximum in closed 
systems was derived in Ref. 10, where the energies Ea of 
the subsystems must be replaced by the numbers of atoms 
in the subsystems, Nu. By analogy with macroscopic states 
of incomplete equilibrium in Ref. 10, we define "ma- 
crononstationary" states as representable by a set of quasi- 
independent locally-stationary small subsystems that be- 
come stationary (for fixed [ and No) faster than the total 
system. Then the entropy S, the quasienergy Q, and the 
free energy F of such a macrononstationary state are de- 
fined as the sums of the contributions Sa (Nu), Qa (Nu), and 
Fa(Na) from the locally-stationary subsystems a. Also, al- 
lowing for Eqs. (5) and reasoning along the same line as in 
Ref. 10, for a completely stationary state the probability of 
Nu particles being distributed over the subsystems can be 
written in a form similar to Eq. (7.17) in Ref, 10: 

where F= BZa(Na)  is the free energy of the entire system 
interpreted as a function of the exact numbers of particles, 
Nu, of the subsystems. Since the most probable values of 
Nu are the mean values Nu, at N,=N, the function 
F(N1 ,N2,...) must have the minimum possible value 
(N=B,,iVa). But the fla are the values that correspond to 
complete time independence so that in the completely 
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time-independent state the free energy has the minimum 
value in relation to all possible distributions of Nu over the 
subsystems, that is, the concentration distributions in the 
alloy. Generally speaking, for macrononstationary states 
the distribution of {Nu) does not correspond to a minimum 
of F. Hence, approaching a completely stationary state 
must correspond to a decreasing free energy. 

In the presence of two or a greater number of phases 
the requirements that the total F be minimized with re- 
spect to exchange of particles between phases lead to 
phase-equilibrium equations of the ordinary type:'' 

Al=A2, F1-AINI =F2-A2N2. (9) 

Note that the above derivation of the principle of de- 
creasing free energy (as the similar derivation of the prin- 
ciple of increasing free entropy in Ref. 10) is based on the 
above-noted generalized ergodic hypothesis, that is, on the 
fact that for given N and c the stationary state in a given 
open system is assumed (as in a closed system) totally 
specified, or deterministic. This obviously excludes consid- 
ering any nondeterministic behavior, e.g., chaotic behavior 
(in space or time). The difficulties discussed below with 
maintaining the principle of decreasing F for certain inter- 
vals of c suggest that at these values of the external param- 
eters the noted assumptions about the deterministic behav- 
ior may become invalid. 

3. GENERAL EQUATIONS FOR THE EFFECTIVE 
INTERACTIONS IN THE MEAN-FIELD APPROXIMATION 

The equations for determining the quasi-interactions 
a;.., can be obtained by multiplying Eq. (4) by the oper- 
ators ni, nin , , ninjnk, etc. and averaging the products over 
all the configurations in ( 1). This yields the conditions for 
the mean occupation numbers ci= (n,) and the functions 
g;,,,, = (n ;... n,) to be time-independent: 

The g;,,,, are linear functions of the correlators 
K;,,.,= (c  ;...(,) of the fluctuations gi=ni-ci, so that Eqs. 
( 10) constitute the conditions that the density distribution 
and its fluctuations be stationary. 

Using Eq. (3) for $ and the transformations described 
in Ref. 8, we can write Eqs. ( 10) in a form that generalizes 
Eq. (7b) in Ref. 8 to the case of the substitution-alloy 
model described here: 

where i+ j, ..., k stands for the sum of expressions obtained 
from the first term in Eqs. ( 1 1 ) via permutation of indices: 
j + j,...,i+ k. 

The mean values in Eqs. ( 1 1 ) are correlators for an 
alloy with the quasi-interactions Hence, to express 
them in terms of a;,,,, and ci, we can resort to the approx- 
imate methods used in statistical physics such as the self- 
consistent-field method" and cluster  method^.'^"^ In the 
absence of radiation, that is, when l'$=o, Eqs. ( 11 ) obvi- 
ously have solutions corresponding to thermal equilibrium, 
a,,, , =B Vi.. , , as expected. 

In studying Eqs. ( 1 1 ) it is convenient to shift from 
operators ni to their mean values ci= (nil an$ fluctuations 
ci=ni--ci. Then the quasi-Hamiltonian Q=Q(g) (5b) as- 
sumes the form 

. . 
where the effective interaction u; ".'" is expressed in terms 
of the quasi-interactions ai,,,, and the mean occupation 
numbers c; by the following series: 

Equations ( 10) for finding the in the substitution 
alloys considered here (instead of ( 14) in Ref. 8 for inter- 
stitial alloys) assumes the form 

Here cj= 1 -ci, gi=exp(ili-dl), where 1,=1-a, -hl, 
and the ellipses inside the square brackets stand for the 
terms with many-particle interactions oil,,,, and products 
of interactions oil...ulm, terms similar to those in Eq. ( 14) 
in Ref. 8. The potentials v t  and vb. are related to the ordi- 

2 A nary configuration potential v = V + pB - 2 vAB and the 
"asymmetric" potential u = vAA- pB through the follow- 
ing expressions: 

The expression for the effective thermal hopping probabil- 
ity ~i,=e~yijeq consists of the factors 

where 

is the mean field acting on atom B at the ith site, 
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that acting on atom A at the jth site, and 

is the renormalized value of the "barrier height" G, . Com- 
parison of Eq. (14) in this paper with Eq. (14) in Ref. 8 
shows that the interstitial-alloy model examined in Ref. 8 
corresponds to the particular case of the substitution-alloy 
model ( 14) with u,, = uji and 4 = 0. Hence in what fol- 
lows we discuss only the general equations ( 14). Note that 
these equations and hence the thermodynamic properties 
in the open systems considered here depend not only on the 
configuration potentials v (as in ordinary equilibrium, al- 
loys) but also on the asymmetric potentials u. 

To obtain the explicit solutions of Eqs. (14), we use 
the self-consistent (or mean-) field approximation 
(MFA), described in Refs. 8 and 11, assuming that the 
potentials vij = u(rij), where r,, =ri- r , is the distance be- 
tween the ith and jth sites, satisfy the conditions for ap- 
plicability of this approximation. This means that the po- 
tentials v(r) are long-range and that their Fourier 
components v(k) =Zkv(r)exp(ikg r )  for values of k essen- 
tial for the phase transitions considered here (i.e., close to 
k=O in the case of layer formation or to the superstructure 
vector k, in the case of ordering) considerably exceed cer- 
tain values of v(r), that is, (v( r )  ( 4 1 v(k) 1 (see Ref. 11 ). 
Then in Eqs. (14) we can use for g,=exp(Ai-8,) the 
MFA expression gi=c,/cl (obtained from the single-phase 
normalization condition), while in the Fourier components 
of Eqs. (14) in the variables rij, rjk, etc. we can ignore all 
terms containing integrals over the quasimomenta (loop 
diagrams1') since they are of order v ( r )/v (k)  with respect 
to terms without such integrals. Then Eqs. (14) for the 
correlators Kn= (ti ,  ...gin) of the lowest rank n effectively 
"separate" from the equations with higher ranks n and can 
be solved explicitly. Here the equation with the lowest rank 
n = 1 constitutes the single-site stationary (SSS) condition 
(10a); it amounts to discarding all the factors 6, ,...,gk in 
(14). 

For a disordered phase in the absence of the fields $, all 
the ci=c are equal to each other, and the SSS equation is 
satisfied identically owing to conservation of the total num- 
ber of atoms. The Fourier component u2 (k)  of the effective 
pair interaction a,, is expressed in terms of the Fourier 
components rk and yk of the functions ri,= r(r i j )  = T(r)  
and yij= y(r)  by a formula of the same type as Eq. ( 14) in 
Ref. 8 for an interstitial alloy: 

However, Tk in substitution alloys is yk exp(Puoc) rather 
than yk exp(puoc) (as in Eq. ( 14) of Ref. 8), where uo and 
vo are the values of u (k)  and v(k) at k = 0, in accordance 
with the above-noted relation between substitution-alloy 

and interstitial-alloy models. The Fourier component K(k) 
of the correlator K, .=K(r)  is related to u2(k) through the 
Krivoglaz formula 1'4 

Equations ( 15) and ( 16) show that the ballistic mixing of 
atoms by radiation leads to the suppression of the effective 
interactions by the factor ( 1 + ak) - ', which strongly de- 
pends on the wave vector k, temperature T, and (for 
uo#O) concentration c. As T is reduced, the quantities yo 
and y, in (15) exponentially decrease, which causes the 
effective interactions to disappear and disorder to arise in 
the system. 

The quasi-energy Q= (Q) in MFA is given by the 
terms in ( 12) independent of ti. In the absence of the fields 
hi in the disordered phase, the constants a. and a l  in (12) 
can be dropped, so that Q=Nsuo, and the entropy S (per 
site) in MFA is SMFA= - (C In c+cl In c' ). If we express 
the quantities a,,,,, entering into uo in terms of a,, the free 
energy if given by Eq. ( 17) of Ref. 8. That equation incor- 
porated not only effective pair interactions u2 but also 
many-particle interactions an with n > 2, which for the sys- 
tems considered here, as discussed in Ref. 8 and below, are 
generally not small and are essential even if the initial in- 
teractions v in ( 1 ) are purely pairwise and concentration- 
independent. To express this many-particle contribution to 
Q in terms of u2, we can use the Krivoglaz formulas (24) 
given below (or the similar formula ( 18) in Ref. 8), which 
are valid for systems in which the interactions ai,.,j in (5b) 
are c,-independent. Using Eq. ( 15) for u2, we arrive at the 
following expression for the chemical potential A(c) =dF/ 
dc of the disordered phase: 

Here the function A(c) = (Sk),,O in lattices with cubic 
symmetry can be written as a ratio of lattice sums: 

where q,U =Duo. The free energy can be found from ( 17) by 
integrating the relation dF/dc=A(c). Note that when the 
asymmetric potential uo is nonzero (which generally is the 
case) the thermodynamic functions and the alloy's phase 
diagram are not symmetric with respect to substitution of 
the alloy components, c + c', in contrast to equilibrium al- 
loys with pair interaction. 

In describing ordered phases with several sublat- 
tices a, the quantities c=caSap, v(k) =viD, yk = z D ,  
u2(k) = @(k), etc. becomes matrices in the sublattice 
indices a and p. Hence, the Fourier components of Eqs. 
(14) assume a matrix form. For centrosymmetrical crys- 
tals (considered below for the sake of simplicity) the ma- 
trices Mk entering into these equations are real, so that 
Hermitian conjugation for them means simply transposi- 
tion: M; = Mk. The SSS equation becomes nontrivial and 
assumes the form 
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where so= yo+ I$, and the product (aA ) incorporating a 
vector a and a matrix A stands for Sap ZLaLALa and, simi- 
larly, (Aa);p=Sap B A Adan in Eqs. (21 ) below. The trace 
of Eq. (19) vanishes owing to conservation of particle 
number, so that in an alloy with m different sublattices Eq. 
( 19) determines m - 1 order parameters. 

For the Fourier components Kk of the pair correlator 
Ki, = ((,(,), Eq. ( 14) yields the following MFA equation: 

Here Qk= $+Pok + *Puk, and the matrices Ak , Rk , and 
B: assume the form 

where sk= Yk+ r:. Since the correlator Kk is related to 
u2 (k) through the (matrix) Krivoglaz equation ( 16), Eqs. 
(20) constitute a closed system of equations for finding the 
02(k). 

The free energy F=Q-S of the ordered phase in 
MFA is given by an expression that generalizes Eq. ( 17) in 
Ref. 8 for a disordered phase: 

Here N, is the number of crystal cells, 

sMFA=- 2 ( c a 1 n c a + c ~ l n c ~ ) ,  
a 

and Ncao is given by Eq. ( 13) at n =0, with 

where a~'" 'an is the value of a:' "'an(kl ,..., kn- ) with all 
ki=O. 

To express uo in terms of the pair interactions c@(k) 
determined by Eq. (20), one can use the recurrence differ- 
ential formulas (RDF) of the type discussed by 
~ r i v o ~ l a z , ' ~  which follow from Eqs. ( 13) for an because, 
as noted, the quasi-interactions a,,,, are independent of c, : 

This relation is illustrated by the expression ( 15) and ( 16) 
in Ref. 8 for a and a2 for a disordered phase. 

Thus, to find ao, we must solve Eqs. (20) for ofp(0) 
and use the RDF (24). However, the configuration- 
independent constants a. and a l  cannot be determined by 
considering only a single homogeneous phase. To deter- 
mine the difference of the values of these constants for 
different phases we must consider the time-independence 
condition at the boundary between the two phases, which 
constitutes a distinct inhomogeneous, problem. Hence, be- 
low we determine these differences, hao and Aa,, between 
the ordered and disordered phases by employing the phys- 

ical assumption that as the order parameter q tends to 
zero, the calculated expression for F ( q )  must go over in a 
continuous manner to the free energy of the disordered 
phase. 

4. THE A2c*B2 PHASE TRANSITION UNDER RADIATION 

4.1. The order parameter and the effective 
interactions in the ordered phase 

To illustrate the physical consequences of Eqs. (19)- 
(24), we take the simple case of A2ttB2 ordering (which 
is realized, for example in the CuZn alloy'0) with a super- 
structure vector $= (!,!,;) in a bcc lattice. Suppose that an 
external field $: is responsible for the predominance of 
atoms of the A species in sublattice 1, that is 
@ = - f l= - I+@ = I,@ = - h/2/3. In describing the ordered 
phase B2 it is convenient to shift from sublattice occupa- 
tion number ca to their linear combinations, the mean con- 
centration c and the order parameter q, namely, cl=c+q 
and c2=c-q. Then the matrix elements zp,which enter 
into sk in Eqs. ( 19) and (2 1 ), assume the form 

d1 exp(rlcp--h);# exp( --rlcpU)). (25) 

Here cp=Pv, and cpU=Pu,, where v,- vqS=vA1 - vA2 in the 
two-sublattice description (corresponding to the ordered 
phase) or v =v($) in the initial bcc lattice. Similarly, 
u - uqq = u t  - UQ' in the twosublattice description or 9 
u,=u($) in the initial bcc lattice. The matrix elements 
( r ; P  are obtained from the right-hand side of (25) by 
replacing by rEp and cp,", cpU, and cp by zero. 

In the matrix equations ( 19 )-(2 1 ) it is also convenient 
to go from the sublattice representation a,P= 1,2 to the 
respective components ,u, v=c,q. Then in the SSS equation 
( 19) the c-component vanishes identically, while the 
q-component yields an equation for determining the order 
parameter q=q(c,h). For what follows it is convenient to 
write this equation in symmetric form: 

where S is e ~ ~ ( c c p , " ) c p ~ ~ / ~ ~ ~  in the two-sublattice descrip- 
tion or Sk=( rO- rk) /  (Y0-Yk) from Eqs. (15) at k=$ 
in a bcc lattice. For the particular case of cp,"=Puo=O and 
h =O Eq. (26) was first proposed and investigated by Bel- 
lon and  arti in.^ 

Assuming that both h and q vanish in Eq. (26), we can 
find the generalized susceptibility K =  ( d ~ / d h ) ~ , ~  for the 
disordered phase: 

Comparison of (27) and ( 15) shows that K-' is the value 
of the inverse correlator K-'(k) in the disordered phase 
when k equals the superstructure vector k,. The equation 
K- ' = K- ' ($) = 0 determines the ordering spinodal curve 
in the (c,T) plane, that is, the equilibrium boundary of the 
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FIG. 1. Boundaries of ordered and disordered phases (solid curves), 
boundaries of "frustrated" ordered phases with F ( 7 )  >F(O) (dashed 
curves), and ordering spinodal curves (dot-dash curves) calculated ac- 
cording to Eqs. (9), (42), and (27) with the use of the following expres- 
sions and values of parameters in Eq. (33): S=So e x p ( g ~ , - c ~ u ~ ) ,  
Y(r) = exp(-?/$), r ( r )  =r exp( -?/4), and So= lop4, where 
+=ST0, with ~ , = f v ,  the critical temperature in the absence of radia- 

l tion, and r,= ~ a ,  with a the bcc lattice constant. For the phase diagrams 
A, B, and C the parameters (udTo, udTO, v,,/To, rdr,) are equal to 
(0,0,-2,2) (diagram A),  (0,0,2,5) (diagram B), and (2,-2,2,2) (dia- 
gram C), respectively. 

disordered phase with respect to spontaneous generation of 
concentration waves with k=$. Equation (27) shows 
that the ballistic mixing of atoms suppresses the tendency 
toward ordering, especially at low T, when the quantity 
S a exp(P~,) exponentially increases. The shape of the 
emerging ordering spinodal curves in the (c,T) plane at 
fixed r and E, is shown in Fig. 1. As the ballistic-mixing 
parameter I' grows, the ordered-phase region, which is 
limited by the spinodal curve, narrows (just as it did for 
lamination phase transitions, illustrated by Figs. 1 (a) and 
l(b) in Ref. 8), and for r2[ :(-fluo)-l]yexp(-fl~,) 
there is no ordering for any concentration. 

The transition in Eqs. (20) to the (c,q)-representation 
shows that their coefficients Mft"(where M is A, @, or R, 
and p can be either c or q)  tend to zero as k-0, while the 
sp remain finite. This leads to an essentially different 

structure of the c- and 7-components of these equations 
when k+O, and the same is true for their solutions a,,,,,, 
and occ ... c .  

We start with the yp-components of Eqs. (20). At 
k= 0 the matrix elements AJp= A,,, @ap, and Rap assume 
the form 

Here so is the same as in ( 19), q," and cp are the same as in 
(18) and (25), and A:, stands for the "thermal" part of 
A,,, obtained by dropping the ballistic terms in the matrix 
elements sgB entering into A,, that is, by replacing with 
ZB. 

In Eq. (28a) A, vanishes owing to the SSS equations 
( 19) or (26), with the result that Eqs. (20) for ay andug? 
at k=O separate from the equation for & and assume the 
form 

where U , , = U ~ ~ ( O ) .  If we consider (29) a system of ho- 
mogeneous linear equations with respect to the quantities 
in parentheses, we see that when det Ktv#O holds (which 
is practically always the case) it has only zero solutions. 
This makes it possible to find a, without calculating the 
correlators l$' explicitly: 

A h  u 6 sinh q p  
=- 

qc A,, qc '(=': 1 + 26 cosh 7q + 6' ' 

A;, 1 +6 cosh q q  a -- 
"-A, '=' 1 +2S cosh 

a ( 30b) 

The quantity &(k) = a!$ is determined by the cc- 
component of Eqs. (20): 

where a;f = uJp(k), and the coefficients AF=A+ (k), 
Aiv=A-(k), R r = R + ( k ) ,  Ra=R-(k) ,  and @ C'l are ex- 
pressed in terms of the matrix elements s:[=s$- stB as 
follows: 

Here g, = l/ci i l/cf, a: =A: (k) stands for the "ther- 
mal" part of A (k), which corresponds to substituting 

3 %[ = zB - for all sE[ in A+(k) [in a way similar to 
Eqs. (28)], and A:! =A:! (k)  means the same substitution 
in the term of the expression (32a) for A- (k) that is pro- 
portional to the matrix element s$.since both s$ and 
& tend to zero as k2 in the limit k-0, then 
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G( k -0) = a,, for the systems considered here (assumed 
completely homogeneous) are determined by the ratios of 
the expansions of the coefficients of Eq. (31) for small k: 

Here qc=@vo, the quantities q ,  qU, a,,, and a,, are the 
same as in Eqs. (25 ) and ( 30), = K r /e ,  and, to within 
a common factor proportional to h?, a+ and a- are the 
expansions of A +  (k) =A and A -  (k) = A 2  for small k: 

where 

and we have allowed for the cubic symmetry of the lattice. 
The quantities a:!, a!, or a: in (33) stand for the terms 
a- or a+ in Eqs. (34) that incorporate pa',, Pfi, or all 
P&, respectively. 

Using Eqs. ( 16) and (26), we can show that in (33) 
is equal to the derivative of the order parameter q with 
respect to concentration c on the stationary curve (26). To 
this end we note that if the matrix equation ( 16) is written 
as (u2k+6)Kk= 1, where the 6 matrix is l/cc', the qc- 
component of this equation at k=O makes it possible to 
express g in terms of the ratio of elements of matrix a+(, 
which, according to Eqs. (30) and (26), can be written in 
the form of the c-derivative of the implicit function q(c,h) 
defined by Eq. (26): 

where 6, = 1/2clci lt 1/2c2c; [the link employed here be- 
tween the functions a, (30) and the derivatives of the first 
term in (26) is, as shown below, a consequence of the 
general relations (24)l. Thus, Eq. (30) and (34) together 
with the SSS equation (26) determine all three functions 
C$"(k=O) =u,,(c,h), which are needed for finding the 
thermodynamic potentials via the RDF (24). 

Note that for the model of a symmetric alloy 
(qu=qt  =O), examined by Martin et a1.'-', in which the 
thermal and ballistic hopping is assumed to occur only 
between neighboring sites, the quantities pi1 and p!l in 

Eqs. (34) vanish (and at v,=O, which was the case in Refs. 
5-7, the total a,, vanishes, too). In view of this, the fea- 
tures of thermodynamics associated with the second term 
in (33) and discussed below are absent in the models ex- 
amined in Refs. 5-7. We note also that if instead of com- 
pletely homogeneous systems (discussed in the present pa- 
per) we take alloys whose q(r )  and c(r)  slowly vary in 
space, Eq. (3 1 ) transforms into a differential relation link- 
ing q ( r ) ,  c(r), and a ( r ) .  

4.2. Free-energy calculation 

In integrating RDF (24), one must bear in mind 
that the field h and the occupation numbers 
C, = {c, ,c,) = {c,q), which enter into the expressions for 
a,, are not independent in stationary conditions; rather, 
they are related via Eq. (26), so that h in (24) must be 
expressed in terms of c, according to this equation. We 
denote, by analogy with the quantities a:'"'"" in (23), the 
values of the Fourier components of the effective interac- 
tions (13) <i"'pn(kl,...,k,-l) for all ki=O by <l'."". If 
the quasi-interactions a, are independent of h [as they are 
in the absence of radiation, when a,=PV,, with V, from 
(I)] ,  these 4 " " ,  according to ( 13), are simply partial 
derivatives of uo in (23) with respect to c,, or 
4 ~ ~ v = a n u ~ a c p  ... ac,. Thus, we can verify the absence of 
dependence on h in the ap,,,, by verifying the RDF and the 
cross-differentiation relations (CDR) between different 
8 -v, such as au,jac, = a~,,/a~,. 

To do this, we must start with Eqs. (14) for many- 
particle interactions o$"" with n)3. Here it is convenient 
to employ a diagrammatic technique, similar to the one 
developed in Ref. 11 for spin Hamiltonians. For the lowest 
MFA in the diagrammatic representation of Eqs. ( 14) for 
correlators of rank n one must retain only the "n-leg" 
diagrams that do not contain closed loops." For small 
values of quasimomenta (ki+O; the case considered here), 
certain simplifications [similar to those used in the "pair" 
equations (28)-(33)] emerge in the Fourier components 
of these equations. 

We denote the quantities <I""" in (23) or <I""" in 
(13) in which at least one of the indices pi  is equal to q by 
a , ,  or a,,, , the same quantities with all the indices pi equal 
to c by a , ,  or a,,,, and the contributions to the expression 
(23) for a. of all the terms containing a , ,  or a , ,  by Q, or 
Q,. In the absence of radiation ( r = 0 )  the quantity Q, in 
our model is equal to $pq2, while the function Qc= iqf2 
depends on neither h or q. For r # O  the quasi-interactions 
a , ,  and a , ,  depend on the field h differently. 

We say that the (n,q)-equation is the Fourier compo- 
nent with small ki-0 of Eqs. ( 14), d&:;:;y;n- ,/dt=O, in 

which at least one of the indices p l y  p2, ...,p, is equal to q, 
and that the (n,c)-equation is a similar equation with all 
indices p1 =... =p,=c. In the (n,q)-equation, as in the 
(2,q)-equations (29), we can directly set ki=O, thus ob- 
taining a nontrivial formula for a , ,  . This leads to consid- 
erable simplifications, most vividly illustrated by the dia- 
grammatic technique. As a result these (n,q)-equations are 
again reduced to a system of homogeneous linear equations 
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similar to (29) for certain "cumulants," that is, combina- 
tions of the quantities a,,, with m(n and the potentials q, 
and q,: with coefficients equal to products of n - 1 correla- 
tors aP. Setting these cumulants equal to zero yields a 
recurrence formula expressing a , ,  in terms of a,,, with 
m<n. 

We performed these calculations for n =3 and found 
the quantities a3,,={u11cc,u,,c,u,,,). The relations ob- 
tained, together with (30), show that all the RDF and 
CDR incorporating u2,, and a3,, are valid. For instance, 
da,Jaq = da,ddc (as Eqs. (30) show), a,,= (do,J 
ac) , , and (du,,Jdc), = (aa,,Jd~l), . The possibility of 
generalizing these results to a,,, with higher values of n 
seems obvious. Thus, the a , ,  apparently satisfy both RFD 
and CDR. As noted earlier, this implies that the a , ,  on the 
SSS line (26) are independent not only of the occupation 
numbers c (or q )  for a given h but also of the field h. This 
makes it possible to find the total contribution Q, of the 
quasi-interactions a , ,  to a. (23) and the quantity 
al,,=aQdaq by a simple integration of Eqs. (30) with 
respect to c or q with the second variable constant: 

Employing Eqs. (36) and (26) and the MFA relations 
exp(ila-4) =ca/cA between the "effective chemical po- 
tentials of the sublattice" &=A-al-ha and the 4 (re- 
lated to al,, by the formula a: - d = 2al,,), we can obtain 
an equation for the effective fields hl and h2 in the sublat- 
tices entering into Eq. (22): h2- hl =2h. Putting the insig- 
nificant constant h, + h2 to zero, we see that the fields ha in 
our model retain their "unrenormalized" values 
/3(& - 4;) from ( 1 ) , with &B specified at the beginning 
of Sec. 4. 

Writing a. in (22) as Q,+Q,, we can represent the 
free energy F per site as the sum of the "concentration" 
interactions Fc and a term F, that is a "regular" function of 
q, that is, F =PC+ F,, where 

with 

For ordinary nonirradiated alloys the function F,= 
$pg2 depends on neither q nor h, and the equilibrium value 
of v=q(c,h) in the employed MFA can be found either 
from the self-consistency equation q =  f (nl -n2) or by 
minimizing the expression (37b) for F,(q,c,h) as a func- 
tion of the independent variable q (i.e., considering the set 
of macrononequilibrium states with arbitrary q ) :  
(aF,Ydq)c,h=O. Equations (36) and (37b) show that, sim- 
ilarly, for Tf 0 the SSS equation (26) coincides with the 
condition of the minimum of the "regular" contribution F, 
to F. Hence, if the "concentration" terms F, or Qc under 

radiation (as without radiation) are independent of h or 7, 
the thermodynamics of ordering is similar for r#O and 
r=o. 

However, Eqs. (33) and (34) show that for r # O  the 
terms a , ,  and their contribution to the free energy Q, have 
a strong and peculiar dependence on h or q. First, (30) 
and (33) show that the CDR dacJdq=aa,Jdc is not 
satisfied, so that the a , , ,  in contrast to a , , ,  must depend 
on h (and apparently may have hysteresis, that is, be 
many-valued functions of h for certain T and T, like the 
order parameter q(h) ). This unusual behavior of the "con- 
centration" components a , ,  makes it desirable to check 
whether they obey the general RDF (24), 

that is, to verify that for a given field h the quasi- 
interactions a,,(h) on the SSS line (26) in our model and 
approximations is indeed independent of the mean occupa- 
tion number c. 

As noted earlier, to verify Eqs. (38) we must find the 
many-particle interactions a,, with n>3 using the general 
equations (14). For a disordered phase with h=O these 
equations in MFA prove to be fairly simple. For instance, 
it is quite easy to obtain the formula (16) in Ref. 8 for 
a3 (k,O), which confirms the RDF (24) at n = 2 for arbi- 
trary k. Employing the diagram technique and considering 
the case of an interstitial alloy to simplify the formulas we 
have proved the validity of Eq. (38) in a disordered alloy 
for any n by demonstrating that the recurrence relation 
between a,+l and a,, derived by applying the diagram- 
matic technique, is equivalent to this RDF. Generalization 
to the case of a substitution alloy only complicates the 
intermediate formulas. Thus, for disordered alloys (i.e., 
h = q=O), the RDF (38) and, hence, the independence of 
the quasi-interactions a,,, on c have been proved in general 
form. 

For ordered phases the (n,c)-equations (14) and their 
solutions a, ,  become more cumbersome. This reflects the 
fact that they describe more complex contributions to F 
corresponding to correlated fluctuations of concentration 
and the order parameter. To illustrate the general form of 
these equations we present the (3,c)-equation, which yields 
a3,, for an interstitial alloy: 

Here the subscripts following the parentheses signify that 
we must take the appropriate matrix element of the prod- 
uct of matrices inside the parentheses; u3,, a3,, R:):, and 
V3, stand for rank-2 matrices corresponding to rank-3 ma- 
trices with one fixed index: 4 ~ = a c P , ,  etc.; - 
upY=a -/3VUv, where vcc=vo, vqT=vq, and vq=uTc=O; 

1Y" 12 rcc=a-c- and r,,=a-c+ ; and a, and c, are the same 
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as in Eqs. (32)-(34) and a: and atstand for the "ther- 
mal" and "ballistic" parts of a, , as they do in (32)-(34). 
The matrix elements Rf: are given by the following expres- 
sions: 

The quantities V3 have the meaning of "total" three- 
particle interactions consisting of the "direct" effective in- 
teraction u3 and the "kinematic" interaction S3 similar to 
the so-called kinematic interaction of the spin 
z-components Sf in spin systems." Using the results of Ref. 
11, we can show that the matrix elements S$;=Sqpv are 
equal to the third derivatives of the entropy SMFA in Eq. 
(37b) with respect to the occupation numbers cp. As a 
result we obtain 

Equation (39) illustrates the general structure of 
(n,c)-equations: their solutions on,, include powers of the 
ratio V / ~ = X =  ( d q / d ~ ) ~  up to the (n- 1)st. This cor- 
responds to the fact that in the lowest MFA the diagram- 
matic representation of Eqs. (14) has the form of a "Cay- 
ley tree," that is, a collection of n-leg diagrams without 
closed loops. Physically this reflects the validity of the 
RDF (38) in accordance with the structure of u2,, given by 
(33). 

Equation (39) makes it possible to express u3,, explic- 
itly in terms of a, ,  5,  , u3,,, up,,, and X. Differentiating 
expression (33) for u2,, after performing straight-forward 
but lengthy computations [which use the RDF for a,,, and 
Eqs. (35)], confirms Eq. (38) for n=3. Since the result, in 
which a vast number (more than a hundred) of terms of 
different types on both sides of the equation coincide, can- 
not be accidental, we assume that this equation confirms 
the RDF (38) for all values of n (although we have not 
proved this formally for 04). 

Thus, to determine the contribution Qc to (23), we can 
use RDF (38) at a constant h and the expression (38) for 
u,,. Here we must bear in mind that ucc in (33) also in- 
corporates the term o & = # ~ / d c ~ ,  which should be sub- 
tracted when finding Q,. Using also Eqs. (37) and (36), 
we arrive at the following expressions for the total free 
energy F = Fc+ F, and the chemical potential 
A = (dF/dc) ,, : 

where o",=ucc+~uqc is the sum of the first two terms in 
Eq. (33). 

Let us discuss the choice of the limits of integration 
and the constants a, and a, in Eqs. (42). As noted earlier, 
for the single-phase alloy considered here these constants 

have no observational meaning and cannot be found solely 
from the conditions that (4) and (10) be time- 
independent. However, in the physically interesting case of 
h = O  the existence of both an ordered phase and a disor- 
dered phase (which has q=0)  is possible, and the differ- 
ences hao and Aal in a. and a, between these phases are 
important for the condition (9) that these phases be in 
equilibrium. We determine hao and hal  from the physical 
assumption about the "maximum smoothness" of the vari- 
ation of the free energy F ( 7 )  as the order parameter 7 
tends to zero. The geometric locus of points in the (c,T) 
plane at which 7(c,T) -0 is the ordering spinodal curve 
(OSC), whose equation is obtained by requiring expression 
(27) to vanish. For this reason in Eqs. (42) for the A and 
F of the ordered phase we select the lower limit of inte- 
gration to lie on the left branch of the spinodal curve, 
cmin =c,,( T) ,  and the values of a, and a l  are determined 
from the continuity of F(c,q) as 7 - - 0  (i.e., on the left and 
right OSC branches), with the values Fd(c) corresponding 
to the disordered phase: 

where c=c,, corresponds to the right branch of the order- 
ing spinodal curve (at a given value of T ) .  

4.3. Properties of the thermodynamics of ordering 

Let us discuss the physical consequences of Eqs. (42). 
First we note that the chemical potentials of the ordered 
and disordered phases, A and Ad, calculated here in the 
MFA, cannot generally be matched continuously on the 
OSC, so that in the (c,R) plane the function A(c,T) for- 
mally has discontinuities M = A - A d  on the OSC 
c=clS(T) and c=c,( T).  This suggests the presence of 
similar discontinuities as 7-0 in the effective interactions 
vn,, (determining the total F and A as series of the form 
( 17) of Ref. 8), which is illustrated by the expression (33) 
for 0,. For small 7 the quantity a- in (34b) is propor- 
tional to 7, while x=dq/dc increases like l/7. Hence as 
q -0 the value of ucc does not transform into the value of 
a:, for the disordered phase (corresponding to the first 
term in (33) at 7=0)  but has a discontinuity proportional 
to r. 

The presence of such discontinuities as q - 0 appears to 
be a result of approximations inherent in MFA; using more 
consistent approaches should probably smooth out such 
discontinuities. As is well known, the MFA cannot be used 
in the immediate vicinity of second-order transition points, 
that is, close to the OSC. Even if the interaction range ro is 
large, the MFA becomes invalid for r <  r r 6  (or 
r < 1 u(r)/u(& 1 2), where r characterizes the closeness to 
OSC, for instance, r= (c-cls)/cls (see Ref. 11). Physi- 
cally, the MFA does not allow for the fact that the order 
parameter 7 does not emerge uniformly over the entire 
macroscopic sample; rather, it emerges as an q ( r )  inside 
correlated regions of size r,(r), even in the absence of 
macroscopic ordering. This nonuniformity of the initial 
stage of ordering is not taken into account in MFA. Al- 
lowing for these effects of local ordering in a proper man- 
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ner may be expected to smooth out the above-noted dis- 
continuities for values of T of the order of rc6, a region 
where MFA breaks down. We also note that if in Eq. (31) 
the k are small but finite, the value of x in an expression for 
uzk= similar to (33) is replaced near the OSC by a factor of 
the form 

where we have dropped insignificant numerical factors. 
Hence, the second term in (33) varies with k and T in this 
region like d/(k2 + r ~ ~ ) ,  which corresponds to the inter- 
action 

for large values of r. Thus, the discontinuities reflect the 
emergence at small 77 and large rc of peculiar long-range 
interactions, which must become modified and smoother 
owing to the local-ordering effects mentioned above. 

Since we cannot use the MFA in the immediate vicin- 
ity of the OSC, the above assumption that the F(c) and 
Fd (c) calculated in the MFA can be matched continuously 
on the OSC is generally unjustified. Thus, within the 
present framework in which only homogeneous systems 
are considered we cannot exclude the possibility of finite 
discontinuities on the OSC in not only the values of A 
calculated in the MFA but also in the values of the free 
energy F,  that is, AFMFA=F-Fd#O (this fact leads to 
phase diagrams and conclusions even more unusual than 
those discussed below). At the same, in proving the inev- 
itability of discontinuities on OSC for the chemical poten- 
tial AMFA we can omit the critical region r<rc6 .  TO do 
this, we consider the particular case of a symmetric sub- 
stitution alloy, in which the asymmetric potentials uij are 
zero. For such an alloy the expressions for F in both or- 
dered and disordered phases can be chosen symmetric un- 
der interchange of c' and c, that is, in the form of the 
function F=F(cc') and Fd=&(ccl), so that both deriv- 
atives, 

vanish at c=c1=t  Then, integrating the difference 
Aacc=acc-u :c via RDF (38) from c= f to values of c 
close to the OSC, we obtain the value of the finite discon- 
tinuity MMFA, always remaining within the range of ap- 
plicability of our formulas, T > rr6. 

The presence of such discontinuities M (which we 
assume to be smoothed out in a narrow range 7-rc6 near 
the OSC) leads to remarkable features of the thermody- 
namics of such ordering. Their nature depends on the sign 
of the discontinuities A1 = M (cis) and A,= AA (c,) . If 
MI < 0 (or M, > 0), the ordered-phase free energy F(c )  
for c > clS near the OSC lies below Fd(c) (in the vicinity of 
the point c=ck; see Fig. 2). This means that a common 
tangent to F(c) and F,(c) can be constructed in the ordi- 
nary manner, which suggests that the phase-equilibrium 

FIG. 2. The free energies F(c)  for the ordered phase (solid curve) and 
F,(c) for the disordered phase (dashed curve) calculated at T=0.45T0 
for the model corresponding to Fig. lc. 

equations (9)  have solutions describing the formation of 
layers in the alloy. Hence, for MI < 0 and MI < 0 ordering 
is accompanied by striation for all values of the ballistic- 
mixing parameter T. This striation mechanism differs from 
the one examined by Bellon and  arti in,^ who discussed 
bifurcation of the solution of Eq. (26) for rl, a process that 
emerges only for large 6>f( 6 + 1 ). 

The opposite case, MI > 0 or M, < 0 (in the vicinity of 
point c=c,; see Fig. 2), is more unusual. Here the free 
energy near the OSC increases rather than decreases dur- 
ing ordering, as it does in ordinary phase transitions. This 
seems to contradict the minimization of F discussed ear- 
lier. Since we have F ( v )  > F(0) =Fd,  this principle would 
seem to imply that the system must choose from the solu- 
tions of the time-independence equation (26) the one that 
corresponds to q=0, that is, remain disordered even if a 
solution with q#0 is possible. However, for values of c and 
T lying inside the OSC the disordered phase is locally 
unstable: for k close to k, the denominator of the correlator 
K(k) in (16) passes through zero, which indicates spon- 
taneous generation of concentration waves with these k. At 
the same time, for an ordered phase with 7720 the presence 
of such instabilities is not obvious, so that this phase, can 
occur (say, as a metastable phase). States with F ( 7 )  
< F(0)  we will call frustrated. Figure 1 shows that such 
states are possible within sizable intervals of values of c and 
T. 

The possible existence of frustrated phases poses the 
question of feasible limits on the application to open sys- 
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tems of the principle that the free energy is minimized. For 
instance, in deriving this principle in Sec. 2 we used the 
"generalized ergodic hypothesis," that is, we assumed that 
for given external parameters rl and number of particles N 
the statistical properties of a stationary state are deter- 
mined completely. We also implicitly used a similar as- 
sumption that the time evolution of a macrononstationary 
state is independent of the way such a state is prepared for 
given values of the number of atoms in the subsystems, N,,  
and so one. Applying these assumptions to open systems 
requires more careful analysis. Moreover, the experience in 
studies of open systems of another type, spin glasses, shows 
that the principle that F be a minimum should be formu- 
lated for such systems with certain reservations, which are 
unnecessary in the case of equilibrium systems. For in- 
stance, Binder and youngI5 suggested formulating this 
principle for spin glasses as the "principle that F be a 
minimum among locally stable states," states that remain 
stable under infinitely small perturbations. In our case a 
similar reservation is necessary in order to define a "local- 
stationary state of a subsystem," a concept used in deriving 
the minimality of F in Sec. 2. Thus, frustrated states in our 
model can serve as another example pointing to the neces- 
sity of similar limited formulations of the principle that F 
be minimized when this principle is applied to nonequilib- 
rium or open systems. 

If the existence of such a "limited" principle minimum 
F that allows for the presence of homogeneous frustrated 
phases is acknowledged, we can discuss the question of the 
possible existence of inhomogeneous, "less frustrated" 
states, which have an advantage in F over homogeneous 
phases. This seems to be quite possible in our problem, in 
which the properties of the thermodynamics are closely 
linked to a sharp dispersion in the effective interactions at 
small k. To illustrate this possibility we assume that such 
an inhomogeneous state (possibly random) can be de- 
scribed by a free energy F of the Ginzburg-Landua form, 
which incorporates the "quasilocal" order parameter rl and 
the characteristic value kc of the wave vector. Replacing, 
the quantity x in (33) by the factor KK 2'' for finite k (in 
accordance with the above estimate) we can suggest in- 
stead of (37) and (42) the following expression for F: 

than a homogeneous state. Notwithstanding the obvious 
crudeness of such an estimate, it can illustrate a tendency 
toward formation of inhomogeneous phases in the presence 
of ballistic mixing. The presence of a general tendency of 
this kind in the models considered here may be correlated 
with the experimental indications that some irradiated al- 
loys contain peculiar inhomogeneous structures whose 
properties strongly vary with temperature and conditions 
of i r r a d i a t i ~ n . ~ ~  

5. CONCLUSION 

Our study shows that applying ordinary assumptions 
and methods of statistical physics to a description of or- 
dering in open systems carried out on the model of an 
irradiated alloy leads to certain difficulties with the princi- 
ple that the free energy be a minimum for stationary ho- 
mogeneous systems and also to unusual features of phase 
equilibria. As noted above, these difficulties could indicate 
a tendency toward forming inhomogeneous and/or nonsta- 
tionary states within certain ranges of radiation parame- 
ters. Such tendencies have been noticed in other systems 
(see, e.g., Ref. 15). Further studies of these aspects require 
generalizing the applied methods to both inhomogeneous 
stationary states and nonstationary, kinetic, processes. The 
methods described in Ref. 8 and in this paper apparently 
allow for such generalizations. 
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" ~ o t e  the misprints in the similar formulas (9) and ( lo )  in Ref. 8: the 
quantities q,= (dQ/dhi) in these formulas must be replaced with -qi. 

Here we have dropped all insignificant terms and factors A 
(assumed small) is proportional to the ballistic-mixing pa- 
rameter l?, and we have not allowed for the presence of 
possible MFA discontinuities AAMFA and AFMFA (which 
would only increase the emerging inhomogeneity ) . Mini- 
mizing F in kc, we obtain 

Thus, a state with a mesoscopically large inhomogeneity 
range k;' has an advantage in F,  that is, is less frustrated 
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