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Auger recombination in narrow-bandgap semiconductors in the presence of a quantizing 
magnetic field is studied theoretically. It is shown that for certain values of the magnetic field 
the Auger process is a thresholdless process. The absence of a threshold is related 
directly to Landau quantization. It is established that in a quantizing magnetic field the 
Auger transitions of electrons from a lower Landau level into a highly excited level is of a 
resonance character. The Auger recombination rate is an oscillating function of the 
magnetic field. The effect of Auger recombination processes on the emission spectra of narrow- 
bandgap semiconductors at low temperatures in a quantizing magnetic field is analyzed. 
Recombination rates are calculated for InSb and HgCdTe at different temperatures. 

1. INTRODUCTION 

Optical phenomena in narrow-bandgap semiconduc- 
tors in the presence of a magnetic field have been studied 
for a long time."' In particular, in Refs. 2 and 3 it was 
observed that at low temperatures the maximum lumines- 
cence intensity oscillates as a function of the magnetic field 
intensity. This behavior of the radiation intensity could be 
associated with the activation of nonradiative electron-hole 
recombination channels in the presence of an external mag- 
netic  field.'^^ It should be noted that even at quite low 
temperatures an external magnetic field can significantly 
influence the Auger recombination rate. Auger recombina- 
tion is a threshold process,4 and as we have shown, a mag- 
netic field removes the constraints imposed on the inter- 
electronic collision processes by the laws of conservation of 
energy and momentum, as a result of which the threshold 
is removed and the Auger recombination rate thereby in- 
creases significantly. 

The objective of the present work is to investigate the- 
oretically nonradiative Auger recombination in the pres- 
ence of a quantizing magnetic field in narrow-bandgap 
semiconductors with a Kane dispersion law. In the pres- 
ence of a quantizing magnetic field, as shown in the present 
paper, the Auger recombination rate has a significantly 
weaker temperature dependence-a power law and not the 
exponential dependence observed for the ordinary Auger 
process.4 As shown below, the thresholdless nature of the 
Auger process in a quantizing magnetic field is directly 
related to Landau quantization. 

We shall investigate the Auger process in which two 
electrons from the conduction band and a light hole from 
the valence band participate. One electron recombines with 
the light hole and the second electron is transferred by the 
Coulomb interaction into a highly excited state. In contrast 
to Ref. 5, where an Auger process with the participation of 
a heavy hole was considered in the case of a simple band, 
we solved the problem in the Kane three-band model, tak- 
ing into account the nonparabolic nature of the spectrum 
of the highly excited electron. In Ref. 6, the Auger recom- 

bination rate in a magnetic field was also calculated taking 
into account the nonparabolic nature of the electron spec- 
trum. However, the expression obtained there for the rate 
contained an exponential (threshold) temperature depen- 
dence. As we have noted above, a strong magnetic field 
removes the threshold for the Auger process. The 
threshold-elimination method qualitatively is as follows. In 
the presence of a strong magnetic field the electron spec- 
trum in a direction perpendicular to the magnetic field is 
quantized. As a result of Coulomb interaction, the Auger 
electron, having acquired an energy of order E, (the width 
of the forbidden band) executes a vertical transition to a 
high Landau level without a change in quasimomentum 
(Fig. 1). Large quasimomentum transfer is not required 
because of the Coulomb collision of the two electrons. The 
only requirement is that the excited Auger electron must 
occupy a Landau level. Thus in a quantizing magnetic 
field, when the conditions indicated above are satisfied, the 
Auger process has a resonant character. Therefore, the rate 
of the Auger process oscillates as a function of the mag- 
netic field, and these oscillations are related to the break- 
down of resonance. 

2. MATRIX ELEMENT OF THE AUGER PROCESS IN THE 
PRESENCE OF A MAGNETIC FIELD 

In order to find the Auger recombination rate we em- 
ploy the Kane model in the presence of a magnetic field: 

Here 6 =P + (e/c)A is the generalized momentum of the 
particles; P is the quasimomentum of the particles; A is the 
vector potential of the magnetic field; E is the carrier en- 
ergy, measured from the top of the valence band; y is the 
Kane matrix element; g=A,J3, where A, is the spin-orbit 
interaction constant; mhh is the mass of the heavy hole; U 
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FIG. 1. Schematic view of the band diagram of a semiconductor in a 
quantizing magnetic field. The arrows mark electron transitions from the 
lower Landau level. 

and V are, respectively, the s- and p-envelopes, and 
Y = U(s) +V (p); and 6 are the Pauli matrices. 

For simplicity we consider below the case of strong 
spin-orbit interaction, A,)E,, and infinite heavy-hole 
mass mhh= 00. Taking into account the finiteness of the 
mass of the heavy hole and letting the ratio of A, and Eg 
be arbitrary does not change the result qualitatively. In 
order to calculate the Auger-recombination rate it is con- 
venient to switch to the basis u,(r) (i= 1,2, ..., 8), in which 
the wave functions of the conduction band are s-type 
spherical functions and the wave functions of the valence 
band are eigenfunctions of the operators J2 and J: ( J  is the 
total angular momentum Then, in the Landau 
gauge (A,= -yH, A,= A,= 0) the complete coordinate 
wave functions have the form 

Here xni(y) are oscillator functions with the number n, and 
the coefficients Ci are functions of k, and ni .  

The Auger-recombination rate is calculated in the first 
order of perturbation theory in the electron-electron inter- 
action: 

xf (El)f (E4) [ 1-f (E3) Id79 (3) 

where f (E,) is the distribution function of the ith particle; 
El and E2 are the initial and E3 and E4 are the final energy 
states of the electrons (the hole state is the final state for 
one of the electrons participating in the process); V is the 
matrix element of the electron-electron interaction, calcu- 
lated using antisymmetrized electron wave functions of the 
initial and final states; 

is an element of the phase space. The summation in Eq. 
(3) extends over all numbers of the Landau levels and spin 
states of the particles participating in the process. 

The matrix element can be represented in the form 

The square of the absolute value of the matrix element 
separates into a sum of the direct and exchange parts: 

Here 

where 

is the static permittivity of the medium; A is the Debye 
screening radius; q is the transferred momentum; a and B 
designate the numbers of the particle states (a, B= 1, 2, 3, 
4); 6,, = 1 if ua=uB (if the spins of the particles a and /3 
are equal) and zero if oa#o . 

The expression for 1 VII 1 'is obtained from Eq. (7) by 
interchanging the indices 3 and 4. Similarly, the exchange 
term is 
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The integrals IYP(q) reduce to a well-known tabulated 
integral for the Hermite polynomials.9 The presence of the 
delta function in Eqs. (8)  and (9) expresses the law of 
conservation of momentum along the x and z axes. There is 
no conservation law in they direction, since Landau quan- 
tization applies: 

1 
E=- Eg* - E2+- 9 kZ+7 n+- A- . (10) 

2 Ilk g 5 [ a:( : k ) ]  
Here a~ = 4- is the magnetic length, the + and - 
signs in front of the square root correspond to electrons 
and holes, and the * in the radicand correspond to the two 
spin orientations. If the magnetic field is made to approach 
zero, then the oscillator functions become plane waves and 
the integrals IYB(q) become delta functions, giving the law 
of conservation of momentum along they axis. Therefore, 
1 V1 1 becomes the well-known expression given in Refs. 4 
and 10. 

We now integrate I VI 1 over dr,: 

Here 

the polynomials PaO(r) are expressed in terms of the La- 
guerre polynomials and the coefficients ~ i ( ~ ) C i ( ~ ) .  In the 
expression ( 11 ) it is assumed that nl<n3 and n2(n4. The 

product C,(")C,(~) is proportional to the overlap integrals of 
the particles participating in the recombination process. 

We calculated the overlap integrals using the Kane 
model and found that they depend on the external mag- 
netic field H. In Ref. 5, where the Auger-recombination 
rate is also calculated, the overlap integrals were calculated 
using the two-band model and did not depend on the mag- 
netic field. It is shown below that the exact calculation of 
the overlapping integrals fundamentally influences the Au- 
ger recombination rate, since they depend on the magnetic 
field. The integration of I VI 1 over d ~ ,  in Eq. ( 11 ) is easily 
performed. The integral over dq2 gives a delta function 
6(f-c').  Next, switching to polar coordinates in the 
(v l  ,f) plane, the remaining integral reduces to a one- 
dimensional integral. The integral of V, GI over d~ is cal- 
culated in the Appendix. We give the final result of the 
integration of I V 1 over dr, : 

Here the function f (n3 ,a,), Y= 1, 2, 3, and 4, has the form 

The following notation was introduced in Eq. (13): 

Q3,,= 1 if the spin of particle 3 or 4 is oriented along the 
magnetic field and 03,4= 1/3 if the spin is oriented opposite 
to the field. It is evident from Eqs. (13) and (14) that 
f (n3,a,) is a quadratic function of the magnetic field for 
fixed values of n3 and a,. 

The nature of the factor &/Eg in Eq. (12) is physi- 
cally understandable. In the absence of a magnetic field, as 
is well known,4'1° the overlap integral of the electrons and 
holes is proportional to the product of their wave vectors k, 
and kh; therefore the factor T/Eg, where T is given in 
energy units, appears in the Auger rate. In the presence of 
a quantizing magnetic field for which h &  T holds the 
spectrum of electrons and holes is quantized, and hence 
their kinetic energy is of order h. Therefore, the overlap 
integral for the lower Landau levels of the electrons and 
light holes is greater than the overlap integral in the ab- 
sence of a magnetic field by the amount h / T %  1. Thus, 
neglecting the dependence of the overlap integrals on the 
magnetic field H, as done in Ref. 5, results in an incorrect 
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magnetic-field dependence of the matrix element and, 
therefore, of the Auger recombination rate also. 

Let the particles occupy in the initial state the lower 
Landau level; therefore, n = n2 = n4=0. Moreover, it fol- 
lows from the law of conservation of energy that 
n3)2E/fiw) 1. The factor 1/29 in Eq. ( 12) corresponds 
to the fact that as a result of the Coulomb collision one 
electron, which has acquired energy of the order of E,, is 
transferred into the highly excited Landau level n3. This 
state corresponds to a rapidly oscillating wave function 
with number n3 $1, and for this reason the overlap integral 
between the ground and excited states is small and of order 
1/29. 

3. CALCULATION OF THE AUGER-RECOMBINATION RATE 

We write the law of conservation of energy for the 
Auger process in the following form, taking into account 
the law of conservation of quasimomentum of the particles 
along the z axis: 

Here ~ ~ = f i 0 / 2 E ~ ;  ,u = 2m,+ mhJme= 3; the electron mass 
me equals the light-hole mass mhl; f ,  6 ,  and q, are spherical 
coordinates in momentum space &= &k!')aH ( i=  1,2,4); 
and 

Here o,= .t 1/2. 
Equation (15) reflects the nonparabolic nature of the 

spectrum of the highly excited electron. A parabolic spec- 
trum was adopted for the initial states. It is important to 
take into account the nonparabolic nature of the spectrum 
for the highly excited electron when calculating the Auger 
recombination rate. In this case the minimum value of n3, 
following from the law of conservation of energy, is 
nyin=:2~dfi0. If the nonparabolic nature of the spectrum 
for the excited electron is neglected, then the minimum 
value of n3 is two times smaller. Just as in the absence of a 
magnetic field, it is of fundamental importance to take into 
account the nonparabolic nature of the spectrum when cal- 
culating the Auger-recombination rate.4110 

The equation (15), i.e., the law of conservation of en- 
ergy, holds only if I>?. Then the solutions for f fall be- 
tween the values fmin and f,,,, given by 

The condition I>? implies that n3 has a lower limit: 
n 3 > n Y z 2 ~ d f i 0 .  As one can see from Eq. ( 16), I and t 
are discrete for a given magnetic field. In addition, I and t 

have lower limits, since nl ,  n2, n3, and n4 are nonnegative 
integers. For values of nl , n2, n3, and n4 for which I = tZ the 
longitudinal kinetic energy of the particles is identically 
zero. This means that for a magnetic field Ho such that 
I(Ho) =?(H,) the transition of an electron from the lower 
(zeroth) Landau level into a high Landau level (n3) 1) 
occurs without a change of the quasimomentum. Such a 
transition is vertical; it corresponds to the maximum Au- 
ger rate. Therefore, the Auger process in a quantizing mag- 
netic field is of a resonance character and is thresholdless. 

A magnetic field removes the constraints imposed on 
the Auger process by the laws of conservation of energy 
and momentum. As in the case when a heteroboundary is 
present, in a quantizing magnetic field the Auger process is 
thresh~ldless,'~ i.e., the rate of such a process is exponen- 
tially high, in contrast to the case of no magnetic field. 

It remains to calculate the integral over dr, in the 
expression (3). Neglecting the dependence on k:") and A in 
the matrix element (since aHA, aHk:')< 1 1, we have 

In Eq. ( 18) the matrix element V depends on k:') via the 
delta function: S(K,) =6(k!')+ kL2)- k:3)- k!4)). 

The integration over dr, must be performed in order to 
find G. This integration is performed on a surface in mo- 
mentum space determined by the law of conservation of 
energy ( 15 ) . It follows from Eq. ( 15) that this surface is 
axisymmetric. Therefore, when we integrate in spherical 
coordinates (f,  8, 9) the integrand does not depend on q,. 
We find that the integral over dr, reduces to a one- 
dimensional integral and equals 

@' 3'2 Smax fdf (t+&d2/,u) 

x(KT) J , "  J ( f + ~ ~ ~ / ~ ) ~ - l  

X exp [ -- :( t+- 'He-:)], 
P 

where Ne and Nhl are, respectively, the electron and light- 
hole concentrations. 

We recall that the values of fmin and f,,, are deter- 
mined by the expression ( 17). For T/E,( 1 the integral in 
Eq. ( 17) reduces to the error function. Then we obtain for 
the Auger recombination rate the final expression 
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Here A = ( ~ ~ / p )  (&,ax-tkin), aB=#x/rnee2 is the Bohr 
radius of an electron, and erf(x) is the error function. The 
summation over n3 and a,, in Eq. (20) extends over values 
for which l>t2. 

In calculating G we set n, = n2 = n4=0. This approxi- 
mation is applicable for the following reasons. As is evident 
from Eq. (3 ) ,  the Auger recombination rate equals the 
sum over ni, each term of which is proportional to 

G. 1$6sec-' . ~ r n - ~  

In this sum we retain terms with the minimum value of the 
exponent of the exponential, to which correspond 
n, = n2 = n4=0. The remaining terms are exponentially 
small--of the order of exp ( - &0/2T) 4 1-in the given 
magnetic field (we recall that we are considering the case 
of a quantizing field h > T).  

In the case of strong quantization, h 9  T, in the sum 
over n3 only one term is significant-the term correspond- 
ing to n3=nr;'", which is exponentially large [or of the 
order of exp(h /2T) )  11 compared to the other terms. 
Then the rate of the Auger process (its maximum value) in 
the case of a resonance transition is 

16 2 6 1 min ~ = - - ~ @ - - T ~ e N h ~ H ~ f l ( n 3  1, 
3 T E g  a, 2 

1 
/ I / 

1.5- 

1 - 

4. DISCUSSION 

a 

0.12- 

0.08- 

Interesting results follow from the expression which 
we have derived for the Auger-recombination rate. 

1. The Auger-recombination rate does not contain an 
exponential (threshold) temperature dependence, and 
therefore the ratio G(H,T)/G(O,T) a exp(Eth/T) is expo- 
nentially large [G(O,T) is the recombination rate with no 
magnetic field and Eth is the threshold energy of the 
process4"q. 

2. The Auger-recombination rate at the maximum in- 
creases exponentially with the magnetic field as exp 
[- (2Eg/h)ln2]. 

0.5 - 

0 ,  

FIG. 3. Logarithm of the Auger- 
recombination rate as a function of the inverse 
magnetic field for InSb at T=4.2 K (a) and 
T=50 K (b).  

FIG. 2. Auger-recombination rate as a function of 
the inverse magnetic field for InSb at T=4.2 K 
(a) and T=50 K (b); Hg= (rng/tie)Eg=28.7 T. 

I ,  1 
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3. The rate G is a strongly oscillating function of the 
magnetic field. Figure 2a displays the Auger- 
recombination rate as a function of the inverse magnetic 
field for the compound InSb at T=4.2 K. 

It follows from Eq. (20) that the maxima of the rate G 
are very sharp on the low-field side and more gently slop- 
ing on the high-field side, and in addition the width AH, of 
the peak is proportional to the temperature T: 
AH,/Hcc T/2Eg. This behavior of G as a function of 1/H 
corresponds to the factors sinh3 ( f i o / 4 ~ ) e x ~ [ .  . .]erf~.. .I 
[see Eq. (20)]. At the points where G is maximum this 
product is of order unity; at the points where G is mini- 
mum the product is of order exp( -fio/3T). We note that 
for the highly excited electrons arising as a result of the 
Auger process the distance between the Landau levels 
equals h / 3 .  

The product sinh3(fio/4~) exp[ ...I equals 1 at the 
point I(H,n3) =?(H), corresponding to the magnetic field 
H=Ho(n3). But at this point erf( ... ) =O. In the case of a 
very small deviation from H0(n3), i.e., H=Ho(n3)+SH, 
where SH/Ho(n3) z T/n3Eg4 1, we have erf( ...) z 1. The 
product sinh3(fio/4~)exp[ ...I is close to 1, as before. It is 
evident from this analysis that G does not contain a thresh- 
old temperature dependence. As the magnetic field in- 
creases further up to values H<Ho(n3 + 1 ) we have I>  ? 
and s inh3(h /4~)exp[  ...I zexp{-fio/3T) 4 1. This cor- 
responds to a minimum value of G. For H= Ho(n3 + 1 ) the 
pattern repeats. But it is important that at the point of the 
minimum the value of G(H,T) is exponentially large com- 
pared to G(0,T). We can see that in a magnetic field the 
Auger process is thresholdless. 

The oscillatory character of the behavior of G as a 
function of the magnetic field is physically understandable. 
In a Coulomb collision between two electrons in the lower 
Landau level one electron is transferred into the valence 
band and the other, absorbing the energy transferred to it, 
occupies a highly excited state. The probability of such a 
process is different from zero if the electron occupies a 
Landau level with the number corresponding to the law of 
conservation of energy (resonant transition) and is small 
(or even zero at T = 0) if the excited electron falls between 
two Landau levels (nonresonant transition). 

In order to make a better analysis of our result we 
present a number of magnetic field dependences of the 
Auger-recombination rate: 

a )  Fig. 2b displays G as a function of 1/H at T =  50 
K; 

b) Figs. 3a and b display log ( G) as a function of 1/H 
at temperatures T=4.2 K and 50 K, respectively, for a 
wider range of magnetic fields. 

Figures 2 and 3 convey the main features of the behav- 
ior of the Auger recombination rate as a function of the 
magnetic field at different temperatures. The carrier non- 
radiative lifetime r~ = Nd/G has the same characteristic 
features as a function of the magnetic field as does G. We 
note that in narrow-bandgap semiconductors at low tem- 
peratures in the presence of a quantizing magnetic field the 
carrier lifetime is determined mainly by two recombination 
processes: nonradiative (Auger) and radiative. It follows 

from what we have said above that at low temperatures the 
nonradiative recombination lifetime for certain values of 
the magnetic field corresponding to maximum G is shorter 
than the radiative-recombination lifetime, i.e., for certain 
values of the magnetic field, corresponding to resonance 
Auger transitions, the carrier lifetime is completely con- 
trolled by nonradiative Auger recombination. In order to 
confirm this assertion we shall calculate the radiative re- 
combination rate in a quantizing magnetic field, using the 
van Roosbroeck-Shockley relation1 ' and the expression for 
the absorption coefficient a ( w )  from Ref. 10: 

Here E, is the high-frequency permittivity; n i s  the 
index of refraction of the semiconductor; Eg=Eg 
+ (eH/2c) (m; ' +mk1 ) is the effective width of the for- 
bidden band; and Nhh is the concentration of heavy holes. 
The expression (22) was derived for the case of strong 
quantization. 

Next, it is convenient to take the ratio of the two re- 
combination rates-Auger and radiative. We designate this 
ratio by r :  T = G/R. For most narrow-bandgap semicon- 
ductors (InSb, HgCdTe, InAs) at T=4.2 K at maximum 
Auger-recombination rate rmax> 1 and at minimum 
Auger-recombination rate G is exponentially small: 
rmin z Tmax exp ( - h / 3  T )  4 1. Therefore the total lifetime 
at low temperatures is an oscillating function of the mag- 
netic field, the oscillations indicating alternation of the 
dominant carrier recombination process: nonradiative over 
radiative and vice versa. For example, for InSb at T=4.2 
K and H= 11 T we have rminz 5 . lop3' and rm,z44. 
For HgCdTe at T=4.2 K and H=5.2 T we have 
Tmi,z 9.3 - lo-'' and rmaX z 42.4. In calculating G and R 
the following parameters were used for HgCdTe: 
Eg=0.112 eV, me=O.O1Omo, mhh=0.4mo, x=18.6, 
E m  = 13.4, Ne=Nhh=3 . 1015 for InSb: Eg=0.237 
eV, me=0.014mo, mhh=0.4mo, x =  16.8, E,= 15.68, 
N ~ =  N ~ ~ =  3 1016 ~ m - ~  (mo is the free-electron mass). 
This behavior of the carrier lifetime in a quantizing mag- 
netic field at low temperatures significantly influences the 
optical characteristics of narrow-bandgap semiconductors. 
In particular, the maximum radiative-recombination inten- 
sity oscillates as a function of the magnetic field, and these 
oscillations are directly related to activation of recombina- 
tion channels for definite values of the magnetic As 
noted above, these values of the magnetic field correspond 
to resonant Auger transitions. 

We thank V. N. Perel' and R. A. Suris for a discussion 
of the results. This work was partially supported by the 
Russian Foundation for Fundamental Research (Project 
NO. 93-02-3 199). 

APPENDIX 

We give the expression for the integral of V I q I  over 
dr, in the case n3>n1, n2 and n4)n1, n2: 
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In Eq. (Al )  the same notation was used as in Eq. ( l l ) ,  
and 

We now calculate the integral in Eq. (Al )  for 
nl=n2=n3=0 and k:')=0, Y= 1, ..., 4. It is convenient to 
switch to polar coordinates: q l  = rl cos ql , c= rl sin ql , 
q2 = r2 cos q2,  c' = r2 sin q2. Then the integration over 
dqldq2 gives a Bessel function, and as a result we obtain 

Here P(rl,,) = pI3 (6,2) ~ ~ ~ ( 6 , ~ )  is a polynomial of degree 
four. The integral in Eq. (A2) can be expressed in terms of 
integrals of the form 

The integral Ilm is calculated with the help of the well- 
known formula for the integral of a Bessel function,12 and 
the integrals Iom and I,, can be calculated by integrating 
and differentiating this formula with respect to a parame- 
ter. Then the final expression-Eq. ( 12)-for the integral 
of V I v I  over dr, can be easily written down. 
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