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Nonclassical integral effects-temperature dependence of the integral absorption and 
breakdown of the Kramers-Kronig dispersion relations--observed in the low-temperature 
transmission spectra of thin crystals near the excitonic absorption lines are attributed 
to the interference of additional photoexcitonic waves. Expressions are derived for the total 
absorption coefficient near an isolated excitonic line for two experimental geometries, 
taking into account the additional waves in the entire spectrum and multiple reflection of light 
inside the crystal. The results are used for describing experiments performed on thin (up 
to 0.5 pm thick) plane-parallel CdSe wafers in the temperature range 4-60 K. 

1. INTRODUCTION 

The role of spatial dispersion (SD) in the optical ex- 
citonic reflection and absorption spectra has long been 
studied' (the basic results are reviewed in Chap. V of Ref. 
2). Most observed effects are associated with the excitation 
of additional photoexcitonic waves1 and are manifested at 
low temperatures in a narrow spectral range of resonance 
frequencies of excitonic transitions in perfect single crys- 
tals. We show here that effects caused by additional waves 
are also manifested in the integrated characteristics, to 
which the entire spectral region of the absorption line con- 
tributes. 

It is well known that the area under the experimental 
absorption line contour is determined by the total oscilla- 
tor strength, and in the usual situation it does not depend 
on the degree of interaction with the dissipative subsystem 
(spectral-line broadening is accompanied by a correspond- 
ing decrease in absorption at the maximum). In addition, 
the Kramers-Kronig integral dispersion relations relate 
uniquely the shape of the absorption contour to the spec- 
tral index-of-refraction We term resonances 
which exhibit such integral properties classical. The non- 
classical behavior of the integral properties in the region of 
excitonic transitions was manifested experimentally in the 
breakdown of the Kramers-Kronig relations5-' and the 
temperature dependence of the integral absorption 
c~efficient.~-" These effects were predicted qualitatively 
within the spatial-dispersion theory back in Ref. 1. Among 
the later theoretical works the temperature dependence of 
the integral absorption is explained in greatest detail in 
Ref. 12 on the basis of spatial dispersion. In the process, 
however, simplifying assumptions are introduced, as a re- 
sult of which the influence of the additional waves is not 
taken into account completely, so that the results obtained 
cannot be used for investigating thin (up to 0.5 pm thick) 
crystals. 

In our previous ~ o r k s ~ , ' ~ - ' ~  the nonclassical integral 
effects in excitonic reflection and transmission spectra were 
explained by the interference of the ordinary and addi- 

tional waves, which results in the appearance of singular- 
ities, associated with the zeros of the amplitude reflection 
p ( Z )  and transmission 7(Z) coefficients, in the analytical 
continuations of the integrands into the upper half-plane of 
the complex variable 5 (frequency). Elaborating this ap- 
proach in the present work, we applied it to the description 
of integral relations for the amplitude-phase transmission 
spectra of thin plane-parallel CdSe wafers near the An=, 
excitonic transition. The investigations were performed for 
two different light-incidence geometries in a wide temper- 
ature range (4-60 K) .  The angle of incidence was varied 
for one of the experimental geometries. The experimental 
results were compared to the theoretical calculations per- 
formed using novel formulas for the integral absorption 
coefficient and the additional term in the Kramers-Kronig 
dispersion relations. We used these formulas in part in 
previous work, and in part they are derived here for the 
first time. 

2. THEORY 

In the cadmium selenide wafers investigated the C6 
crystal axis was oriented parallel to the surfaces. The ge- 
ometries in which the transmittance of the plates was stud- 
ied are displayed in Fig. 1. In the first case (geometry 1) 
light, polarized in the direction E l  C6, corresponding to 
polarization of the An= dipole excitonic transition in cad- 
mium selenide, was normally incident. In this case, trans- 
verse normal photoexcitonic waves, determined by the dis- 
persion relation taking into account spatial dispersion and 
the boundary conditions on both surfaces, are excited in 
the crystal. In the second case (geometry 2) light was 
incident obliquely at different angles q, and the C6 axis and 
the vector E lay in the plane of incidence. In such a geom- 
etry mixed (longitudinal-transverse) normal waves are ex- 
cited, and the intensity of the photoexcitonic interaction 
depends on the angle of incidence of the light (the projec- 
tions of the wave vector on the x and z axes). The form of 
the permittivity tensor E ~ ~ ( w , ~ ) ,  the dispersion equations, 
and the procedure for solving these equations are well 
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FIG. 1. Experimental geometries: geometry 1 (a) and 
geometry 2 (b). 

k n ~ w n . ' ~  It is also well known that in determining the 
dispersion of mixed waves in geometry 2 the tensor char- 
acter of the effective exciton mass m* must be taken into 
account together with the permittivity anisotropy. l7 

The transmittance of the wafers can be described by 
the amplitude transmission coefficient ~ ( w ) ,  expressing the 
ratio of the complex amplitudes of the transmitted and 
incident waves, and the energy transmission coefficients 
D(w) =T(w)~*(w).  The absorption is characterized by 
the spectral function 

where Do = r0r8 is the maximum value of the transmission 
coefficient in the transmission region and z is the wafer 
thickness. The spectral changes in the reflection contribute, 
together with the true absorption, to the values of ~ ( w ) ,  
D(w), and P(w). We are justified, however, in using these 
functions as the absorption characteristics, since they have 
the same integral properties as the true absorption spectra 
and, in addition, they can be compared directly to experi- 
ment. 

The expression for ~ ( 0 )  in the geometry 1 was derived 
in Ref. 18 (see also Chap. IV of Ref. 2), taking into ac- 
count multiple reflection of light inside the wafer. Pekar's 
conditions-vanishing of the excitonic contribution to the 
polarization at the surfaces of the crystal-were used as 
supplementary boundary conditions (SBCs). We derived 
the corresponding expression in geometry 2 on the basis of 
similar assumptions about multiple reflection inside the 
wafer and Pekar's SBCs. The boundary conditions were 
written at the points a and b (see Fig. 1 ), since the phase 
increments with respect to the point a for different types of 
waves in the crystal are expressed most symmetrically at 
the point b, the normal projection of a on the back surface 
of the wafer. It was found that by introducing appropriate 
intermediate notation we can put the final expression for 
the transmission coefficient in geometry 2 into the same 
form as that obtained in Ref. 18 for transmission in geom- 
etry 1: 

In contrast to the corresponding expression in Ref. 18, the 
absence of a constant phase factor in Eq. ( 1 ) is explained 
by the choice of origin for the phase of the transmitted 
wave from the back surface of the wafer (in geometry 
2-from the point b), which in our opinion is more con- 
venient. The expressions for the functions G and F in ge- 
ometries l and 2 differ significantly. For geometry 2 they 
have the form 

where 

n, are the complex indices of refraction of normal mixed- 
type waves; ~ 0 1 1  and eo1 are, respectively, the background 
permittivities for the polarizations El( C6 and E l  C6; 

mf  and my are, respectively, the effective masses of exci- 
tons with wave vectors kl( C6 and k l  C6; W L  and w l ; ~  are, 
respectively, the frequency of the longitudinal exciton and 
the frequency of the longitudinal-transverse splitting in the 
limit k-0; c is the speed of light in free space; and y is the 
damping constant. Expressions for G and F, which must 
employed in Eq. ( 1 ) in order to calculate the transmission 
in geometry 1, are presented in Ref. 18. 

The integral absorption coefficient in the approxima- 
tion of an isolated resonance is calculated from the formula 
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FIG. 2. Integration contour in the upper half-plane of the complex fre- 
quency. 

which can be easily put into the form 

where v is the spectral variable, measured in cm-'. 
Consider the integral 

where F is the complex spectral variable, r (5)  is the ana- 
lytical continuation of the function r(v);  and the integra- 
tion contour C consists of a rectilinear section C L ,  deter- 
mined by the equation Im 5= y, and a semicircle CR of 
radius R centered on the real axis (Fig. 2). The integral in 
Eq. ( 5 ) can be written as the sum I = I L  + IR in accordance 
with the partitioning of the integration contour. Then, 
passing to the limit R - oo we obtain the following expres- 
sion for the desired integral (4): 

As shown in Ref. 8, the complex amplitude reflection 
and transmission coefficients are, by definition, the local 
response functions of the medium (including, even when 
spatial dispersion is taken into account). It is well known 
that due to the causality principle such functions have an 
analytic continuation with no singular points in the upper 
half-plane of the complex variable F.374 Thus inside the 
integration contour the only singularities of the integrand 
in Eq. (5) are poles corresponding to the zeros of the 
function ~ ( 5 ) .  As mentioned above, when the spatial dis- 
persion is taken into account zeros of the transmission be- 
come possible as a result of interference between the ordi- 
nary and additional waves. We have developed a numerical 
method for solving the equation r(7) =0 for different light- 
incidence geometries. The coordinates voj and yo, of the 
transmission zeros and the number of zeros depend on the 
thickness of the crystal, and in geometry 2 they also de- 
pend on the angle of incidence. The zero points lie along 
the curve [in the upper half-plane of the variable 5 (see 
Fig. 2)] which is the bottom of the valley of the function 

1 r(v,y) 1, described approximately by the condition 
Im n+ = Im n - . As the thickness of the crystal increases, 
the zero points move in the direction of the critical point 
TCr, corresponding to the condition n + (G) = n - (GI, and 

new zeros appear in the region adjoining the real axis. The 
position of the point FCr in the geometry 2 depends on the 
angle of incidence of the light. 

Once the coordinates of the zero points of the function 
r (5)  are known, the integral (5) can be calculated: 

The summation in Eq. (7)  extends only over the zeros in 
the region bounded by the contour C, i.e., points with 
yo, > y, so that for y > y,,= Im 7, the integral ( 5 ) van- 
ishes. In order to calculate the integral I ,  it is convenient 
to switch to the dimensionless complex spectral variable q 
and place the center of the semicircle CR at the point cor- 
responding to q=0. The integrand in Eq. (5) can be ex- 
panded in a series in powers of ( l/q), the series containing 
terms of first and higher integer and half-integer orders. In 
the integration over CR only the first-order term makes a 
nonvanishing contribution to IR in the limit 
R -, oo ( I 7 I -, a, ). Substituting the result of the integration 
into Eq. (6) we obtain finally 

where So is the contribution from integration over CR . It 
depends on the parameters of the excitonic transition, the 
thickness of the wafer, and the angle of incidence (in the 
geometry 2), being independent of the damping constant. 
The second term represents the contribution of the trans- 
mission interference zeros, lying in the region bounded by 
the contour C. Calculating So in geometry 1 gives 

where 

are, respectively, the wave vector and the reflectivity of the 
crystal surface, and in the polarization considered they cor- 
respond to the background permittivity near the wave- 
length A T  of the transverse exciton; the parameter Fo is 
given by 

In the geometry 2 we have 

where koz = 2p/AT 6 and R1 = ( 1 - &/I + &)2 are, 
respectively, the normal component of the wave vector and 
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FIG. 3. (a) Experimental absorption con- 
tours in geometry 1 at different tempera- 
tures (the frequency is measured from the 
value of or at T=8 K);  (b) temperature 
dependence of the integral absorption: the 
solid curve was computed using Eqs. (8)- 
(9);  the dashed line was computed using 
similar equations neglecting multiple re- 
flections in the crystal; the marks are the 
experimental values of S. 

the reflectivity of the crystal surface, which correspond to 
the background permittivities in the resonance region, 

In the geometry 1 the absorption line is completely 
polarized. This allows the phase spectrum in the absorp- 
tion region to be recorded by methods based on the inter- 
ference of polarized waves, using as the reference signal the 
transmitted wave in the polarization corresponding to no 
absorption. Combined amplitude-phase measurements in 
transmission open up the possibility of using augmented 
dispersion relations.' The relation which makes it possible 
to retrieve the phase function from the transmission spec- 
trum has the form 

where aj=O for Y < YO, and a j=2n for v>vOj. Just as in 
Eq. (7),  only terms with yo,> y are included in the sum. 
For T > T,, the nonintegral term thus vanishes, and Eq. 
( 1 1 ) becomes the classical Kramers-Kronig dispersion re- 
lation. It is important to note that the manifestation of 
spatial dispersion in the temperature dependence of the 
integral absorption and in the integral dispersion relations 
is studied from a unified point of view, and it depends on 
the same parameters-the coordinates of the transmission 
zeros in the upper half-plane of the complex frequency. 

3. DESCRIPTION OF THE EXPERIMENT AND RESULTS 

The experiments were performed on thin (-0.4 pm 
thick) plane-parallel CdSe wafers. The samples were pre- 
pared and installed so that no stresses arose with decreas- 
ing temperature. In order to reduce the influence of non- 
uniformities in the sample, the irradiated zone was limited 
to dimensions of 0.1 ~ 0 . 1  cm2. The crystals were placed 
into a liquid-helium cryostat, in which a temperature- 
stabilized volume was created with the help of a heater and 
temperature sensor. When the spectrum was recorded, the 

temperature of the sample was maintained constant to 
within 0.1 K. The light transmitted through the crystal was 
analyzed with a DFS-24 spectrometer (linear dispersion 4 
&mm) and recorded using a photon-counting scheme. A 
microcomputer synchronized the operation of the appara- 
tus. The microcomputer also controlled a stepping motor, 
which performed the scanning; it accepted and stored data 
fed into it from the recording system; and it monitored the 
constancy of the temperature of the sample. A signal re- 
corded in parallel was displayed on an oscillograph and 
recorded with an X-Y recorder. The program that per- 
formed mathematical processing of the signal assumed that 
the spectrum was normalized to the transmission far from 
resonance (in the transmission range) and that the spectral 
distribution of the energy of the light source and the dark 
current of the photomultiplier were taken into account. In 
addition, the contribution of the A,=, exciton and other 
higher-order states on the short-wavelength side of the ab- 
sorption line studied was subtracted out. The spectral de- 
pendence of this contribution was described by a parabola, 
which was determined according to three reference points, 
similarly to the method described in Ref. 19. 

The experimental absorption spectra in geometry 1 for 
a 0.37 pm thick crystal wafer in the temperature range 
8-60 K are displayed in Fig. 3a. When the temperature 
increases up to the temperature of critical damping, the 
absorption at the maximum increases, as is typical of spa- 
tial dispersion. With further heating the temperature de- 
pendence of the absorption contour becomes classical. The 
critical temperature for the given sample is about 50 K. 
The experimental values of the integral absorption, which 
was obtained by numerically integrating the spectra using 
Eq. (3),  are compared in Fig. 3b to the theoretical curves 
calculated from Eqs. (8)-(9). The temperature depen- 
dence of the damping constant was assumed to be mono- 
tonic. It was also assumed that the impurities and defects 
make a constant contribution to the damping, and that the 
contribution of scattering by phonons grows linearly with 
the temperature.'' The figure also displays the computed 
temperature dependence of the integral absorption neglect- 
ing multiple reflections of light in the crystal.14 The calcu- 
lations based on Eqs. (8)-(9) agree much better with the 
experimental data. 
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The absorption spectra in geometry 2 for two angles of 
incidence of light in the temperature range 4.5-60 K are 
presented in Fig. 4a (cp=25") and Fig. 4b (cp=45"). The 
spectra were obtained for the same 0.41 pm thick sample. 
For angle of incidence cp = 25" the temperature dependence 
of the absorption line contour is classical, while for cp =45" 
up to T =  18 K the absorption at maximum and the area 
under the contour are observed to increase. At higher tem- 
peratures the area under the absorption curve no longer 
changes, and a decrease in absorption at maximum is ac- 
companied by broadening of the line. This behavior of the 
absorption spectra indicates that the critical temperature is 
less than 4.5 K for cp= 25" and T,,= 18 K for cp =45"; this 
agrees with the theoretical notions about the dispersion of 
a mixed exciton for which y,,-sin cp. Figure 4c displays 
the temperature dependence of the integral absorption co- 
efficient. The damping scale was converted into the tem- 
perature scale by the method described above using four 
values of S with y <  y,, for cp=45". For comparison, the 
curves computed by a method similar to Ref. 12 and em- 
ployed by us previously in Ref. 13 for the mixed-exciton 
geometry are also displayed in the figures. 

The phase spectra were recorded with an automatic 
apparatus, controlled by the microcomputer. A quartz 
wedge was used in order to introduce an additional phase 
difference between polarizations parallel and perpendicular 
to C6 into the incident light wave, polarized at an angle of 
45" with respect to the C6 axis of the wafer. This additional 
phase difference was modulated with an acoustic frequency 
by oscillating the wedge. As the spectrum was scanned, the 
signals at the fundamental and doubled modulation fre- 
quency, which were proportional to U1-sin 6 and 

FIG. 4. Experimental absorption contours in 
geometry 2 with incidence angles q=25" (a) 
and q=45" (b) and different temperatures 
(the frequency is measured from the value of 
wr at T=4.5 K);  ( c )  inteeral absomtion ver- " 
sus the temperature and damping constant: the 
solid curves were computed using Eqs. (8)  
and (10);  the dashed curve was computed by a 
method similar to Ref. 12; the crosses are the 
experimental values of S. 

U, - cos 6, were recorded separately. Adjusting the modu- 
lation amplitude can then equalize the coefficients of pro- 
portionality. Then 

The experimental phase spectra for a 0.37 pm thick 
sample are compared in Fig. 5 to the transmission spectra 
computed with the help of the relation ( 1 1 ) for the tem- 
peratures T = 8  K (a) and T=60 K (b). The high- 
temperature-phase spectrum is described, to a high degree 
of accuracy, by the classical integral term in Eq. ( 11). At 
T =8 K the curve calculated using the classical Kramers- 
Kronig relation disagrees, both quantitatively and qualita- 
tively, with the experiment (in the figure the scale along 
the vertical axis for this curve is magnified by a factor of 
four), while the curve calculated using Eq. ( 11 ), taking 
into account the contribution of the transmission zeroes, 
agrees well with experiment. The value of the damping 
constant employed for calculating the phase using Eq. ( 1 1 ) 
was chosen so that the calculation would agree with exper- 
iment, taking into account the value of the total absorp- 
tion. Similar measurements and calculations were per- 
formed for other temperatures. This gave the following 
damping coefficients: 

ir, K 8 18 30 40 

fiy,meV 0.10*0.02 0.15*0.02 0.23*0.02 0.30*0.02 

We note that the values obtained, using Eq. (8), for the 
damping at T < T,, from the measurements of the total 
absorption and from combined amplitude-phase measure- 
ments, using Eq. ( 11 ), agree to within the limits of error, 
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FIG. 5. Comparison of the experimental transmission phase spectra in 
geometry 1 to the phase spectra computed with the help of the dispersion 
relations from the absorption spectra at temperatures 8 K (a) and 60 K 
(b): the solid curve was computed using Eq. (1 1); the dashed curves 
represent the experimental values; and, the dotted curves were computed 
using the classical Kramer-Kronig relations. 

and they agree with the assumptions made above concern- 
ing the character of the temperature dependence y(T) .  In 
constructing the plots S ( T )  (Figs. 3 and 4) we also ex- 

trapolated these assumptions into the temperature range 
T > T,, . However, other data (the width of the contour 
and the magnitude of the absorption at maximum) indicate 
that the damping increases more rapidly with temperature 
at temperatures T > T,, . 
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