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If the checkerboard ordering in a Hubbard antiferromagnetic semiconductor is replaced by 
layering, a self-trapped charge-carrier state changes from a magnetic string to a new 
state. In this state a carrier is self-trapped in one direction while remaining free in the others 
(a "broken string"). Close to the boundary between these two antiferromagnetic phases 
the energy of a broken string is lower than that of an ordinary string. Hence regions of the 
stratified phase can develop inside the checkerboard phase. They are stabilized by 
trapping broken strings inside them (double self-trapping). 

As is well known, magnetic self-trapping of the charge 
carriers is characteristic of antiferromagnetic semiconduc- 
tors (see my earlier monograph1 and review2). It is now 
widely recognized that this phenomenon may be connected 
with high-temperature superconductivity. The concept of 
heterophase self-trapping was introduced in Ref. 3: a car- 
rier creates a microregion of a different phase, which it 
stabilizes by being trapped inside it. The case treated in 
Ref. 3 corresponds to carrier trapping inside a ferromag- 
netic region. I called such a quasiparticle a "ferron." In 
Ref. 4 carrier trapping takes place in an antiferromagnetic 
region of a kind different from the original one. This type 
of quasiparticle is called an afmon. States corresponding to 
heterophase self-trapping can occur when the magnet spin 
exceeds 1/2, but they are completely impossible in Hub- 
bard  model^.^ 

On the other hand, in such models very different kinds 
of carrier states are possible, in which no regions contain- 
ing a new phase develop. The first example of this type was 
given by Bulaevskii et al.' The corresponding quasiparticle, 
called a quasi-oscillator in Ref. 5, is now usually referred to 
in the literature as a magnetic string. It arises in antiferro- 
magnets with checkerboard ordering, and is characterized 
by charge carriers (e.g., conduction electrons) that oscil- 
late about an equilibrium position that moves slowly 
through the crystal. When an electron leaves the equilib- 
rium position, a chain of reversed spins develops along its 
trajectory, corresponding to antiphase antiferromagnetic 
ordering along its trajectory. When the electron returns to 
equilibrium along the same trajectory, it destroys the an- 
tiphase ordering, and normal antiferromagnetic ordering is 
restored. As was shown in Refs. 6 and 7, strong pairing can 
give rise to HTSC. 

But this kind of string cannot occur in Hubbard mod- 
els describing antiferromagnetic materials with different 
kinds of ordering, e.g., Landau stratification. This case is 
the one which we investigate here. Its distinguishing fea- 
ture is that the motion of a conduction electron in the 
direction perpendicular to the ferromagnetic layers induces 
spin reversal, while motion parallel to the layers does not. 
For this reason, chains of reversed spins along electron 
trajectories are found to broken, so we will call the corre- 

sponding carrier state a broken carrier string. The main 
difference between this state and states previously known is 
that the electron is self-trapped in only one direction (per- 
pendicular to the magnetic layers) and remains free in the 
other directions. This is a nontrivial situation. For exam- 
ple, in ferron and afmon states, even if the antiferromag- 
netic ordering is stratified the electron remains self-trapped 
in all directions, including the direction parallel to the fer- 
romagnetic layers. 

Near the boundary between the checkerboard and 
stratified antiferromagnetic phases the string energy in the 
stratified phase should be less than in the checkerboard 
phase (see below). Consequently, a new phenomenon, 
double self-trapping, is possible. It consists of the follow- 
ing: On the side of the interphase boundary where the 
checkerboard phase is stable, regions of the stratified phase 
containing strings can occur. Thus, current carriers that 
are already present in self-trapped magnetic string states 
undergo additional heterophase self-trapping. In other 
words, in contrast to the treatment of Refs. 3 and 4, the 
regions of stratified phase here arise as a result of self- 
trapping not of the free current carriers, but of the already 
self-trapped electrons and holes. 

In degenerate semiconductors it is possible to have a 
situation in which a crystal decays into regions of the 
checkerboard and stratified phases, such that each region 
of the stratified phase contains many electrons at one time. 
In contrast, at T=O there are no conduction electrons in 
the stratified phase. This process, which Emery et al.' call 
phase separation, was first studied by ~ a ~ a e v ~  in connec- 
tion with the s-d model for the case in which the highly 
conductive phase is ferromagnetic and the insulating phase 
is antiferromagnetic. The process was studied in a very 
model-dependent fashion in Ref. 8, where it was found that 
an antiferromagnetic Hubbard semiconductor can be sep- 
arated into antiferromagnetic and nonmagnetic phases. 
Nagaev and ~odel'shchikov~~ used the s-d model to study 
the separation of a degenerate antiferromagnetic semicon- 
ductor into checkerboard and stratified phases. The differ- 
ence between the situation here and that in Refs. 9 and 10 
is that here the new phase is created not by free charge 
carriers, but by strings. But it also differs from the situation 
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studied in Ref. 8, not only in the nature of the phases but 
also in the small number of carriers in the calculation per 
magnetic atom in the highly conductive phase, which elim- 
inates the possibility of Coulomb disruption of the crystal 
in states with separated phases. 

In the present work we report a calculation only of the 
one-electron problem. As in Ref. 5 we will use the t-J 
model, and for simplicity we will take the crystal to have a 
simple square lattice. To ensure the stability of the strati- 
fied phase in this structure it is necessary to take into ac- 
count the exchange integrals J1 and J2 between the nearest 
and next-nearest neighbors respectively. The boundary be- 
tween the checkerboard and stratified phases is determined 
by the condition J1 =2J2 <O (the stratified phase is stable 
for even smaller J2). The wave function of a stationary 
string, just as in Ref. 5 for the checkerboard phase, is found 
for the stratified phase by expanding over all electron tra- 
jectories, starting from the equilibrium point g. Its form 
differs from that of Ref. 5, however, because account is 
taken of the conservation of the projection of the atomic 
spin when a conduction electron (i.e., the second electron 
on an atom) moves parallel to the ferromagnetic layers, 
which are perpendicular to the x axis: 

where A inside the sigma represents summation over all 
vectors Ai connecting nearest neighbors under the restric- 
tion An#- A,+ t .  The symbol dn stands for I A; I, we have 
written S-=SX-isY, and p: is the pair creation operator 
for holes with opposite spins at an atom with index f. The 
vacuum wave function 10) describes the state with one 
electron per atom when the atomic spins are ordered anti- 
ferromagnetically so that the ferromagnetic "layers" are 
parallel to the y axis. 

The vacuum wave function does not include zero spin 
oscillations. This approach is justified for Ising systems in 
any case. As for Heisenberg systems, it is felt that in the 
two-dimensional case the zero spin oscillations have so 
large a role that these systems can be in a spin liquid state 
rather than an antiferromagnetic state. Although the final 
answer to this question remains unknown, it is clear that 
the approximation used here is reasonable, at least for 
three-dimensional systems. In the case of Heisenberg sys- 
tems, the wave function (1) shows that, in accordance 
with the condition that the electron transition integral be- 
tween atoms is large compared with the exchange integrals, 
the spins of the magnetic atoms do not change over the 
time required by an electron to traverse several lattice con- 
stants. 

Using ( 1 ) and making use only of the strong inequality 
I B I ) I JI , where B is the Bloch integral for nearest neigh- 
bors, it can easily be found to this approximation that the 
wave function has the following form: 

with 

c(g,At ,-..,An,An+l,-A,+l) =c(g,Al ,..., A,). (4) 

The diagonal matrix elements of the Hamiltonian are lin- 
ear in J1 and J2. Their dependence on A is fairly compli- 
cated, but it can be approximated as follows: 

n 

K(Al, ..., A,) ~k i= C I di, 

k=61J21s2, S=1/2. 

Using this representation we can find the energy of the 
ground state of a string by substituting 

From Eqs. (5)-(7) we can derive the following equation 
for a broken string using the effective-mass approximation: 

with the boundary condition 

where a is the lattice constant. The eigenfunction of Eqs. 
(8)-( 10) is an Airy function: 

q ( x )  =Ai(z), z=b(x-EtJF). (12) 

From Eqs. (lo)-( 12) and the condition I J2/BI 4 1  the 
energy of a broken string is given by 

where u z 2.4 is the smallest root of the Airy function. 
As for the width of the band of a string, corresponding 

to the translational motion through the crystal of its equi- 
librium position, two factors determine it in the case of 
checkerboard ordering:" the trajectories with self- 
intersection, and the zero spin oscillations. ( ~ r u ~ m a n ' ~  
later reached a similar conclusion.) In the present instance 
the motion of a string parallel to the ferromagnetic layers is 
equivalent to the motion of a free quasi-particle. But the 
motion is very different in the perpendicular direction. I 
was unable to find any trajectories giving rise to motion in 
this direction. Thus, it is reasonable to assume that the 
motion here is determined by the zero spin oscillations. 
This means that the corresponding component of the ef- 
fective mass tensor of the string must be of the same order 
of magnitude as that found in Ref. 11 for the checkerboard 
case. The latter was typically found to be on the order of 
the magnon effective mass, i.e., larger by a factor of B/J 
than the effective mass component parallel to the layers. 
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In order to compare the energies of a normal string in 
the checkerboard case and a broken string in the stratified 
case, the  result^^"^"^ obtained for the former in the 
nearest-neighbor exchange approximation should be gen- 
eralized to the case in which the exchange interactions 
between next-nearest and next-next-nearest neighbors are 
also important. Close to the phase boundary the expression 
for the string energy in the checkerboard phase differs from 
( 13) in having the factor u in place of u. Both are of order 
unity, but the exact value of v is unknown. We can say, 
however, that v is larger than u. This follows from the 
obvious fact that as 1 Jz 1 increase without bound the energy 
of a normal string approaches zero, while that of a broken 
string approaches - 2 1 B I . 

The fact that the energy of a string in the stratified 
phase is lower than in the checkerboard phase implies that 
heterophase self-trapping of a string is possible, accompa- 
nied by transformation from the normal to the broken 
form. If the checkerboard phase is stable in the absence of 
carriers, but the difference D = 2J2 - J1 is small, then inside 
the checkerboard phase there should be regions of the 
stratified phase containing broken strings. It is natural to 
assume that they have rectangular shape with sides X 
and Y. 

The optimum dimension X in the direction perpendic- 
ular to the ferromagnetic layers should be of order b-'. 
Specifically, for X( 1/b the string is located primarily out- 
side the region of stratified ordering, so that its energy is 
close to that of a normal string. On the other hand, if 
X) l/b holds it is easy to show by using the asymptotic 
expression for Ai(x) and Bi(x), the Airy functions of the 
first and second kind, that the size-dependent correction to 
the energy of a broken string is a quantity of order 
exp[- (4/3) ( ~ b ) " ~ ] .  It can therefore be neglected for Xb 
> 2. For this reason we must set X approximately equal to 
2/b when D is very small. Then the energy of a self- 
trapped broken string should be determined from the con- 
dition for the minimum energy, 

which in the limit D d 0  yields a further reduction in the 
energy of a normal string by a quantity of order F/b, with 

Analogous expressions for the ferron and afmon dimen- 
sions in the two-dimensional case show that when the cost 
D of creating a new phase is the same, the number of atoms 
in it for those quasiparticles is larger than for a broken 
string. It is significant that double self-trapping causes the 
unidirectional self-trapping typical of a broken string to be 
transformed into self-trapping in all directions. 
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