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We construct a theory for a new class of magnetic excitations, elastostatic spin waves 
(ESW), and find that the magnetoelastic interaction plays the same role in their formation as 
magnetostatic interaction in the formation of magnetostatic spin waves. To classify ESW 
in finite magnetic materials we use the example of a two-sublattice model for a rhombic 
antiferromagnet. For a number of cases we obtain the ESW dispersion law. 

INTRODUCTION 

Two mechanisms of spectrum formation, exchange in- 
teraction and magnetodipole intera~tion,'-~ occupy the 
center of the stage in studies of spin waves in various mag- 
netically ordered crystals. In the extreme cases when one of 
these interactions dominates in a magnetic material, one 
speaks of either exchange or magnetostatic spin waves. As 
for another type of interaction, magnetoelastic, its effect on 
the nature of the spin-wave spectrum is usually considered 
either in the vicinity of a magnetoacoustic resonance1 or 
for small values of the wave vector k, when the frequency 
of the quasiacoustic branch is much lower than the fre- 
quency o of the quasispin branch, sk4w, where s is the 
velocity of sound. In the latter case the magnetoelastic 
interaction leads to the appearance of a magnetoelastic gap 
in the spin-wave spectrum, a gap that manifests itself most 
vividly in spin-reorientation phase transitions. 

Here we will focus on a different region of the 
magnetoelastic-wave (MEW) spectrum, namely, the re- 
gion where the wave vectors are fairly large, k% k, (where 
k, is the wave vector corresponding to the region of mag- 
netoacoustic resonance), in which w (sk. In many respects 
this region of the MEW spectrum is similar to magneto- 
static waves (MSWs), the only difference being that now 
the elastic subsystem of the crystal acts as the electromag- 
netic subsystem. Just as in describing MSWs one uses the 
equations of magnetostatics instead of the general Maxwell 
equations, in describing the section of the MEW spectrum 
of interest to us we use the equations of elastostatics 
auik/axk=O (where uik is the stress tensor) instead of the 
dynamical equations of elasticity theory. Hence, by anal- 
ogy with MSW, we call the specific MEW-spectrum 
branches elastostatic spin waves, or ESW. 

In contrast to the region of small wave vectors, where 
the spin subsystem of the crystal is the "rapid" subsystem, 
for ESWs the elastic subsystem is the "rapid" one. The role 
of the latter role is reduced to forming an indirect (non- 
Heisenberg) spin-spin coupling via a quasistatic-phonon 
field. The long-range nature of this interaction, as the 
reader will shortly see, leads to a quasinonanalytical') de- 
pendence of the ESW frequency on the components of the 
wave vector just as the long-range nature of magnetostatic 
interaction leads to a nonanalytical MSW dispersion law in 
the limit k+O. 

Naturally, both magnetoelastic and magnetodipole in- 

teractions are always present in a magnetic material. How- 
ever, in the antiferromagnets ( AFMs) considered here, the 
magnetoelastic interaction is exchange-enhanced, while the 
magnetodipole interaction is exchange-inhibited and hence 
can be ignored. 

In addition, ESWs manifest themselves most vividly 
when the effect of the exchange interaction on the spec- 
trum, notwithstanding the condition k>k,, has not yet 
suppressed the other contributions to the ESW dispersion 
law. For this the characteristic speeds of the spin waves 
must be much smaller than s, with the result that T N  is 
much lower than T D  (where T N  and T D  are the NCel and 
Debye temperatures, respectively), which occurs in many 
AFMs. The condition k% k, is fairly stringent, but for or- 
dinary ESWs in finite magnetic materials it can be achieved 
owing to the component of the wave vector normal to the 
sample surface. By virtue of size quantization, this compo- 
nent is equal to rn/d (where d is the sample thickness and 
n is an integer) and for fairly thin samples (and n#O) can 
exceed k,. In this situation, naturally, ESWs can be of 
either internal or surface (quasisurface) nature (as MSW), 
and localization of ESWs near the surface can even occur 
(for appropriate frequencies and wave vectors) when ex- 
change spin waves and MSWs are only bulk waves. 

1. GENERAL RELATIONS 

For the present study we consider an AFM whose 
magnetic subsystem can be described within the scope of 
the two-sublattice model. As shown in Refs. 4 and 5, a 
suitable approach to describing the dynamics of such an 
AFM is to employ a Lagrange function written in terms of 
the unit antiferromagnetism vector 1 = L/ I L I, where 
L=M1 -M2, with the magnetization vectors of the 
sublattices. With allowance for the elastic subsystem of the 
crystal the Lagrangian density for an AFM with rhombic 
magnetic and elastic anisotropy can be written in the form 

02, 01 2 
(grad 1)2-- I,-- 1 -w,, 

2 2 y  I 

where the dot stands for the time derivative, a is the inho- 
mogeneous coupling constant, c = & M ~  @ the charac- 
teristic speed (which coincides with the minimal phase 
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speed of the spin waves), Mo= 1 I, Dl and B2 the an- 
isotropy constants, u the displacement vector, p the crys- 
tal's density, and 

with uik= f (aui/axk+auk/axi) the strain tensor, and cap 
and pd the elastic moduli and the magnetoelastic coupling 
constants, respectively. 

It is well known that due to magnetoelastic interaction 
some components of the strain tensor are nonzero in the 
ground state of a magnetic material, which leads to the 
renormalization of magnetic anisotropy constants.lp4 For 
our model (1)-(3) the renormalization has the form 

where gl ,  g2, and A are rather complicated combinations 
of the elastic and magnetoelastic constants cap and pap. 

Next we assume that > 0. Here, in the ground state 
of the AFM, the vector 1 lies along the x axis, or I$')= 1 
and $,,=0. 

In analyzing the elementary excitation spectrum it has 
proved convenient to parametrize the unit vector 1 by two 
angular variables 8 and q:  

1 = (sin 8 cos q,sin 8 sin q,cos 8). ( 5 )  

Now, assuming that 

where 8(O), q(O), and ujO) correspond to the ground state of 
the AFM (8(') = r /2  and ~ ( O ) = O ) ,  we expand the La- 
grangian ( 1 ) in a power series in small deviations from the 
equilibrium state (6,$,u( 1 ) up to second-order terms in- 
clusive: Y = Y + Y,Y,. The term Yo corresponds to 
the ground state of the AFM, Y1 vanishes owing to the 
equations of motion, and the term Y2 describing small 
oscillations has the form 

where i& differs from we of (2)  in that uik is replaced by 
Gik, and the effective constants Pi and are given by the 
following formulas: 

Note that it is the discrepancy between and Dl,, 
that causes a magnetoelastic gap to appear in the spin-wave 
spectrum (at the spin-reorientation phase transition point 
one of the constants Dl and F2 vanishes, while the spin- 
wave activation frequencies, which are determined by the 
effective constants Pig, remain finite). 

Starting from the Lagrangian (7) ,  we can easily obtain 
the equations of motion for the variables $, 6,  and ui. If we 
assume that all these variables are proportional to 
exp[i(k . r - wt)], we can write the corresponding system of 
equations as follows: 

The system of equations (9)-(13) describes the full 
spectrum of MEWS in a rhombic AFM, a spectrum that 
consists of five branches. The respective dispersion equa- 
tion can be written in general form but is cumbersome, so 
that analysis is difficult. Hence, as noted in the Introduc- 
tion, two regions of the MEW spectrum are usually stud- 
ied, the region where the wave vector is small and the 
region of magnetoacoustic resonance. 

In the elastostatic approximation of interest to us, 
where w(sk- &kt the term in the coefficients of 
Eqs. (9)-(11) should be discarded. But even with this the 
system of equations (9)-(13) remains fairly complicated 
although the respective dispersion equation describes two 
branches of elementary excitations rather than five. For 
this reason, below we consider various particular cases of 
orientation of the wave vector k with respect to the crys- 
tallographic axes. 

A. kx=O. The system of equations (9)-(13) splits into 
two independent subsystems. Equations ( 10) and ( 14) de- 
scribe purely elastic excitations, not related to the angular 
variables $ and 6 and, therefore, of no interest to us. The 
other three equations, (9), ( 12), and ( 13), which describe 
coupled magnetoelastic oscillations in the elastostatic limit, 
can easily be analyzed. The corresponding dispersion equa- 
tion has the form 
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If the anisotropy constants Pi and Pi differ consider- 
ably, for instance, if Pi@;, Eq. (14) (allowing for the 
smallness of the dimensionless magnetostriction constants 

=P&$f$~66 4 1 and c2 =P3@~55 4 1 ) yields the equa- 
tions for the two ESW branches: 

where - Y = c ~ ~ / c ~ ~ ,  and wfo=c2Fl/a +c2k2 and 
w;o=c2~2/a+c2k2 specify the frequencies of the two 
branches of the spin-wave spectrum calculated without 
taking into account the coupling with the elastic sub- 
system. 

B. k,=O. The system of equations (9)-(15) splits into 
two subsystems; in one the variables 6 and u, are coupled, 
in the other the variables I), u,, and u,. 

The first subsystem, which we call B1, describes the 
ESW branch whose dispersion law is similar to the one 
described in case A: 

where y' =cS5/c4. 
The second subsystem, B2, describes ESWs with a 

more complicated dispersion law: 

where 

FIG. 1.  Partitioning the (r,n2) plane in the A, case (nil OZ and k= k,). 

C. k,=O. This case is identical to case B(kz=O). The 
respective dispersion laws in variants C1 and C2 similar to 
B 1 and B2 are described by Eqs. ( 17) and ( 18) in which k, 
must be replaced by k,, c~~ by c ~ ~ ,  etc. 

Note that the dispersion laws ( 15) and ( 18) are char- 
acterized by a quasinonanalytical dependence on the wave- 
vector components. This is due to the long-range nature of 
the indirect spin-spin coupling (of a non-Heisenberg type) 
via a quasistatic-phonon field, just as the MSW spectrum is 
nonanalytical because of the long-range nature magneto- 
static coupling. 

2. CLASSIFICATION OF ESWs IN FINITE AFMs 

The dispersion laws obtained in Sec. 1 correspond to 
ESWs in an infinite magnetic material. In reality we always 
deal with finite crystals, in which the presence of a surface 
can lead, as is well known, to emergence of surface (or 
quasisurface) excitations of varying nature, and the ampli- 
tude of these excitations falls off as the distance from the 
surface increases. In such oscillations the wave-vector com- 
ponent perpendicular to the surface is no longer indepen- 
dent and, in view of the boundary conditions, is deter- 
mined by the frequency o of the wave (or the component 
of the wave vector along the surface, kll ). 

FIG. 2. Partitioning the (r,n2) plane in the A, 
case (rill OY and k=k,). (a) y <  1 ,  and (b) 
y z  1. 
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Below we classify the various types of ESWs with fixed 
values of w and kll for different orientations of the wave 
vector k and the unit vector n normal to the surface (a 
similar MSW classification has been conducted by Bar'ya- 
khtar and 1vanov6). 

We start with the case A (k,=O) and consider the 
lower (al) branch of the ESW spectrum. The second 
branch for this case can be analyzed in a similar manner. 

As the dispersion law ( 16) shows, the components k, 
and k, of the wave vector do not enter into (16) on an 
equal basis. Hence, for different orientations of n the clas- 
sification of the possible types of ESWs proves to be dif- 
ferent, too. 

We begin with the case where nil 0 2 ,  which we call 
the A, case. Assuming k,= k and k ,=i~ ,  we write the dis- 
persion law ( 16) in dimensionless variables: 

where we have introduced the notation 

If we plot R2 against $, the intersection of the curve 
by straight lines corresponding to definite values of R 
yields the roots 2 of Eq. ( 19). The number of these roots 
and their signs determine the type of ESW: if all are 
positive, the ESW is of a purely surface nature; if at least 
one root is negative, this corresponds to an internal 
wave; and if for a given value of R2 there are no intersec- 
tions, all the roots are complex-valued and the ESW is a 
quasisurface one. 

In the case A, considered, Eq. ( 19) readily implies that 
for R2 <a$+? there are two real roots q:,2, both positive, 
which means we have a surface wave. For R2 > a$+ ? one 
of the roots is negative and hence we have an internal 
wave. Therefore, the (r,R) plane contains two parameter 
regions, which determine the nature of the possible ESW 
types [see Fig. 1, where f l ( r )  =R$+?]. 

Classification of the ESW types is radically different 
whennll OY (theA,case). Ifwe put k,=kand k,=i~and 
use the dimensionless variables introduced above, Eq. ( 16) 
becomes 

Although Eq. (20) is quadratic in g2 (as the equation 
in the A, case is), partitioning the parameter plane (r,R2) 
becomes more complicated. It can be shown, however, that 
the (r,R2) plane contains three characteristic curves, 

which partition the plane into five regions (Fig. 2). In 
regions I and 3, qi,2 are positive, which means that these 

FIG. 3. Partitioning the ( r , n z )  plane in the B2 case (nil OX and k=k,,) .  

are surface-wave regions. In region 2 all the roots are 
complex-valued, which corresponds to quasisurface waves. 
Finally, in region 4 we have 4q:,2 <O and in region 5 we 
have > 0 and q; < 0, which means that in both regions 
the ESWs are internal waves. 

Now let us analyze case B (k,=O). As noted earlier, 
the dispersion law ( 17) corresponding to case B 1 is the 
same as in case A. Therefore, it can easily be shown that 
the respective partitioning of the (r,R2) plane for rill OY 
(the B1, case) is similar to the A, case (Fig. I),  and that 
for nlJ OZ (the B1, case) to the A, case (Fig. 2). 

In the B2 case the ESW dispersion law (18) is sym- 
metric in the k, and k, components, with the result that the 
classification of ESWs for rill OX and rill OY. Assuming, 
without loss of generality, rill OX, we write Eq. (18) in the 
form 

This equation is cubic with respect to q2 (rather than 
quadratic, as in the above cases A and Bl) ,  which compli- 
cates analysis considerably. Nevertheless, it is still feasible 
to classify the possible ESW types according to the values 
of k and w. The corresponding partitioning of the (r,R2) 
plane is depicted in Fig. 3. 

In the regions I and 1' all three roots of the bicubic 
equation (22) are real and positive, q:,2,3 > 0, that is, these 
are surface-wave regions. In region 2 there is one positive 
root, > 0 and two complex-values, which corresponds to 
quasisurface waves. In region 3 one root is negative, 9: < 0, 
while the other two, qi,3, are complex-valued. In region 4 
all three roots are negative, q:,2,3 <O. Finally, in region 5 
one root is negative, q: < 0, and the other two are positive, 
q;,3 > 0. Hence, regions 3, 4, and 5 correspond to internal 
ESWs. 

The analytical expressions for the curves that partition 
the (r,R2) plane in the case at hand (B2) are extremely 
cumbersome, and, hence, are not given here. We note, 
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however, that the characteristic values of parameter r at 
which the curves intersect, r, and 6 are given by the fol- 
lowing formulas: 

where q2 are the roots of the biquadratic equation 
3 mq4- 21q + n =O. Note that in an elastically isotropic 

magnetic material l=m=n= 1 holds, so that we have 
q2,=1, 4=3-3'2 (see Ref. 4), and F+co. 

Since case C (k,=O) is identical to case B (k,=O) as 
noted in Sec. 1, the three ways of partitioning the (r,f12) 
plane exhaust all possible ways in which ESWs in a finite 
AFM can be classified. 

In conclusion of this section an important remark 
should be made concerning the formulation of problems of 
ESWs in a semi-infinite magnetic material (the associated 
problems are studied in detail in Ref. 10 using the example 
of electroacoustic waves in piezocrystals). There exists an 
important difference between formulating the problem for 
the case where the characteristic equation in the system of 
the form (9)-( 13) that determines the value of the wave- 
vector component normal to the surface has no real root 
(in our notation this corresponds to all roots d being ei- 
ther positive or complex-valued), and for the case where 
there is at least one, that is, one of the 2 is negative. In the 
first instance the number of boundary conditions is equal to 
the number of independent amplitudes, and we are dealing 
with the problem of formation of a surface (or quasisur- 
face) spin wave. But if at least one d is negative, then there 
are more independent amplitudes than boundary condi- 
tions and we are dealing with the problem of reflection of 
an internal spin wave from the surface of the magnetic 
material. Here, if the remaining roots of the characteristic 
equation are imaginary (complex-valued), they describe 
the so-called satellite surface (or quasisurface) spin 
waves,1° which in the present case are induced by indirect 
spin-spin exchange via the field of quasistatic virtual pho- 
nons. Such a situation occurs, for instance, in the A, case 
for f12 > f l i+ 3 ,  in the A,, case (region 5), and in the B2 
case (regions 3 and 5). But if there are two or more neg- 
ative roots q; (the A, case, region 4, and the B2 case, 
region 4), we are dealing with the problem of multiple- 
wave reflection of the spin wave without changing the wave 
polarization. In the analysis of ESW in plates, where the 
boundary conditions are formulated for two surfaces, the 
above difference vanishes, and we can always formulate the 
problem of eigenexcitations in the magnetic material. Here 
the excitations are the result of interference of bulk and 
surface oscillations (see below). 

3. ESWs IN FINITE AFMs: EXAMPLES 

The above classification of the possible types of ESWs 
realizable in a crystal for a given k and o cannot answer 
the question of what type of ESW exists in a finite AFM for 

a fixed k (or o ) ,  since the law governing the dispersion of 
the wave, w=o(k),  is determined by both the geometry of 
the problem and the specific form of the boundary condi- 
tions. 

As the first example of calculating the ESW dispersion 
law for the surface-wave problem we take a semi-infinite 
AFM occupying the half-space y>O. Suppose that the 
wave propagates in the plane that is at right angles to the 
equilibrium antiferromagnetism vector b, that is, along the 
z axis, the A, case in the notation of Sec. 2. 

The boundary conditions at the surface y=O of the 
magnetic material is selected in the simplest possible form, 
that is, corresponding to a crystal free from external 
stresses, 

and spin$ whose directions are not fixed at the surface, 

With such a geometry of the problem, the link between 
the frequency w, the wave vector along the crystal's surface 
k = k,, and the quantity K = - ik,, which determines the 
depth of penetration of an excitation into the magnetic 
material, is determined by Eq. (20), which is a quartic 
equation in the variable q = ~ / k .  Since we are interested in 
solutions of the equations of motion (9)-(13) that go to 
zero as y-t + C O ,  solutions corresponding to the lower 
branch of the ESW spectrum, we seek these in the form of 
two-part waves: 

ikz- iot u ~ ( ~ , z , ~ )  = ~ ~ e - ~ f l ) e  , 
(27) 

$(y,z,t) = ($1e-KlY+$2e-Kfl)eikZ-iWt, 

(as in Sec. 1, we assume gl$p2 and, hence, as can easily be 
shown, 191~1+l). 

Substituting (27) into the boundary conditions (25) 
and (26) and using the equations of motion, we arrive at 
the following relation: 

where ql and 42 are the two roots of the biquadratic equa- 
tion 

satisfying the condition Re q1,2 > 0. 
Solving Eqs. (28) and (29) simultaneously, we find 

the ESW dispersion law in explicit form: 

Note that for small values of the wave vector (ck(o,) the 
dispersion law (30) is linear, 

and the quantities K, and K ~ ,  as Eq. (29) implies, are 
complex-valued: 
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Hence, for ck4wm the ESW is a quasisurface one, and the 
depth of the wave's localization region, A= (Re K)-', is of 
the order of the spatial period of the amplitude's oscilla- 
tions, A =  I I ~ K J - l .  

For large wave vectors (ck)o,) the ESW dispersion 
law corresponds to the law of dispersion for an internal 
spin wave: 

W ~ = W ; + W ; + C ~ ~ ~ .  (33) 

In this case K~ and K~ are real: 

Hence, the wave here is of a purely surface nature, and the 
localization-region depth A =KT grows with k. 

In Fig. 2(a) the dispersion law (30) is depicted by a 
dashed curve. The above analysis shows that for k small 
the curve lies in region 2, which corresponds to quasisur- 
face waves. When the magnitude of the wave vector be- 
comes 

the curve finds itself in 3, a region of purely surface waves. 
Since the equations of elastostatics used here are valid 

for k4kr-wm/s, we conclude that Eqs. (31) and (32) 
provide a meaningful picture of ESWs in the kr4k(kl  
interval, which exists when c(s. Note that the type of 
surface ESW exists only if one allows simultaneously for 
both indirect spin-spin exchange via the long-range field of 
quasistatic elastic strains and inhomogeneous exchange in- 
teraction. If we ignore the latter (c-0), there can be no 
ESW with the dispersion law (30) and the "free" bound- 
ary conditions (25). 

Clearly, there can be similar surface ESWs in other 
geometries of the problem: in the B1, case (k,=O, k= k,, 
and rill OX) and in the C1, case (k,,=O, k=k,, and 
n(( OX). The ESW dispersion laws in these cases coincide 
with (30) to within constants. 

Now we take the same A, case and examine the dis- 
persion properties of a propagating ESW at wave-vector 
and frequency values corresponding to region 4 in Fig. 2. 
As noted earlier, the region contains two negative roots of 
Eq. (20), dt2 < 0, that is, four purely imaginary values of q. 
Such a situation in a semi-infinite magnetic material en- 
ables formulating the problem of multiple-wave reflection 
of a spin wave from the surface of the magnetic material 
without altering the wave's polarization. But we will we 
consider the propagation ESW in a plate of finite thickness, 
which means we are dealing with an eigenvalue problem. 

Let us assume that the magnetic material occupies the 
region (y  ( < d. If on both surfaces of the plate the bound- 
ary conditions of the (25)-(26) types are still valid, the 
solution of the equations of motion (9)-(13) correspond- 
ing to the internal branch of the ESW spectrum must be 
sought in the form of a four-partial wave. It can easily be 

shown that in the given situation there are two independent 
solutions, the solution symmetric with respect to the y=O 
plane, 

$(y,z,t) = ($1 cos p g +  $2 cos P2Y)ei("-Wt), 

and the asymmetric solution 

where pfP2 = - 4,2 > 0, and K:,, are the roots of Eq. (20). 
The corresponding dispersion equation has the form 

for the symmetric mode (36) and 

(p: + k2) cot 2pld = (p i  + p) cot 2 ~ 2 d  (39) 

for the asymmetric mode (37). 
Analysis of Eqs. (38 ) and (39) shows that, within the 

range of wave vectors k and frequencies w considered here, 
allowing for the inhomogeneous exchange interaction and 
the indirect spin-spin coupling via the virtual-phonon field 
simultaneously leads to the formation of an additional 
(with respect to the exchange internal wave) internal 
(P?,2 > 0) spin wave of the elastostatic type with the same 
polarization. 

It is impossible to obtain an explicit analytical expres- 
sion for the dispersion law determined by Eqs. (38) and 
(39), and one must resort to numerical methods. However, 
the basic features of this law can easily be analyzed in the 
limit of fairly small wave vectors (wm/cS I k 1 ). 

In this case Eqs. (38) and (39) describe two drasti- 
cally different types of bulk spin waves with the same po- 
larization. In the limit considered, the dispersion law of 
one type is formed primarily by indirect exchange via the 
field elastostatic phonons; the wave is direct, or k(dw/ak) 
> 0, and the corresponding dispersion law is 

where n= 1, *2,... . 
Under the same conditions the second solution repre- 

sents an ordinary bulk spin wave with a dispersion law 

and formed primarily by inhomogeneous exchange inter- 
action. 

Comparing Eqs. (40) and (41), we conclude that in 
the vicinity of wave-vector values determined by the con- 
dition 

there is resonant interaction between the above two types 
of spin excitations, that is, inhomogeneous spin-spin reso- 
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nance sets in. Here the structure of the spin-wave spectrum 
is determined by the general formulas (38) and (39), and 
an important aspect of their formation is to allow for both 
mechanisms of spin-spin exchange simultaneously. As 
usual, the interacting modes repel each other, which results 
in the emergence of windows of nontransparency in fre- 
quency for the propagating spin-wave oscillations with a 
given k. 

Note that the mechanism of inhomogeneous spin-spin 
resonance described here is the magnetoelastic analog of 
the well-known dipole-exchange resonance (see, e.g., Ref. 
1 1 ), with the nontransparency windows being similar to 
so-called dipole gaps. 

Next we examine ESWs in a plate similar to the one 
studied above but with a different geometry, namely, the 
A, case (k,=O, k=  k,, and rill OZ) .  From the analysis 
performed in Sec. 2 we conclude that with such geometry 
in a semi-infinite magnetic substance and with wave-vector 
and frequency values corresponding to region 2 in Fig. 1 it 
is possible to formulate the problem of reflection of an 
internal wave from the surface accompanied by the forma- 
tion of a satellite surface wave. 

Assuming as before that the magnetic material is lim- 
ited by the planes z= -d and z=d, we write the appropri- 
ate boundary conditions similar to (25) and (26) as 

In a finite plate the solutions of the equations of motion 
in the geometry considered here have four parts [see Eq. 
( 19)]. Hence, we seek them in the form 

u,(y,z,t) = (ul  sin plz+ El cosplz+ u2 sin p2z 

reaches at k= k,, exists only if d > nnc/2wm. But if this 
inequality is not met, there is no minimum, and the ESW 
is a direct wave for all values of k. 

Hence, the interference of the exchange internal 
(p: > 0) partial wave and the elastostatic satellite surface 
(pi < 0)  partial wave drastically changes the nature of the 
dispersion curve of the propagating internal spin wave be- 
cause, if we do not allow for indirect exchange via the field 
of virtual elastostatic phonons, the exchange spin wave in 
the plate is always direct; the respective dispersion law has 
the form ~ ~ = o ~ + o ~ + c ~ ( k ? + p : ) .  

In conclusion we note that if in the last two examples 
we put c=O, that is, ignore the inhomogeneous exchange 
interaction, which corresponds to the exchangeless approx- 
imation widely used in MSW theory, the waves considered 
above still have meaning, and their dispersion properties 
are determined entirely by indirect exchange via the 
virtual-phonon field. Hence, at spin-oscillation frequencies 
conforming to the elastostatic criterion o ( k )  (sk (see Ref. 
5)  we can speak of formation in a finite magnetically or- 
dered crystal of a new class of exchangeless excitations- 
elastostatic spin waves. A meaningful analysis of the spin- 
wave dynamics of finite magnetic materials (especially 
magnetic films) is impossible without systematically allow- 
ing for the effects of the indirect spin-spin interaction via 
the virtual-phonon field. 

This work was supported by the American Physical 
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Substituting (44) into the boundary conditions (43), we 
find that 

where n= * 1, *2,...,q is a positive constant, and the ESW 
dispersion law has the form 

In Fig. 1, which corresponds to this case, the disper- 
sion law (46) of a propagating internal ESW for n= 1 is 
represented by the dashed curve. 

An important feature of (46) is the fact that it is non- 
monotonic: for k < k* (where k2,= w ,,pl -p:) the function 
o=w(k) decreases, that 'is, the propagating ESW is a 
backward wave, or k(do/dk) <0, while for k >  k* it in- 
creases, that is, the respective ESW is a direct wave, or 
k(ao/ak) > 0. Note that the minimum point of the func- 
tion o=w(k)  specified by (46), which the function 
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