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Fluctuations in the shape of membranes of arbitrary topology are analyzed within the 
framework of the classical theory of surfaces. It is assumed that the relaxation of the membrane 
to the equilibrium shape is described by a Langevin equation for a set of variables which 
characterize the softest corresponding mode of the system. It is convenient to take these 
variables to be a moveable Frenet frame of reference. The classical Gauss-Weingarten 
equations, which determine the variation of this frame of reference from point to point, are 
formulated as equations for the currents in a chiral field theory. The energy of the 
membrane can also be expressed in terms of chiral currents. As a result, static correlation 
functions of fluctuations in the membrane shape can be calculated in closed form. 
An effective action is constructed for the chiral field in the standard way from the Langevin 
equation. This action can be used to find dynamic correlation functions. It is shown 
that this action is supersymmetric. A fluctuation-dissipation theorem which relates the binary 
correlation function with a response function is derived in general form. An iterative 
procedure is proposed for finding arbitrary correlation functions in the form of a perturbation- 
theory series in the curvature of the membrane. 

1. LANGEVIN EQUATION purely a surface energy) is determined by the higher-order 

Recent interest in the physics of complex liquids has 
led to the present boom in this field. The number of pub- 
lications in physics journals devoted to various aspects of 
this problem continues to grow. ~eviews ' ,~  and 
m o n ~ ~ r a ~ h s ~ - ~  have been published. The interest stems 
from the biological importance of complex liquids (e.g., 
blood) and also the very interesting fundamental physics 
of these systems (see Refs. 6 and 7, where an analogy was 
drawn between the physics of membranes and 2 0  gravita- 
tion and also a vortex lattice in a superconductor). A more 
natural analogy, however, is that with the theory of a chi- 
ral field, as we pointed out in a recent letter.8 We take a 
detailed look at this analogy in the present paper. 

Generally speaking, there are a huge number of diverse 
complex liquids, which exhibit different specific properties. 
A common feature of all these systems is that the mole- 
cules which make them up are capable of self-aggregation 
into membranes. These membranes are entities of molecu- 
lar thickness with significant sizes in the two other dimen- 
sions. From the standpoint of macroscopic scales, a mem- 
brane can thus be pictured as a 2  D entity immersed in a 
3 0  space or (in geometric terms) as a surface. 

An important circumstance for the entire physics of 
membranes is the fact that the surface tension of mem- 
branes is extremely small or in fact zero. If a membrane is 
in equilibrium with a solution of the molecules making up 
the membrane, zero surface tension is simply one of the 
equilibrium conditions. One way or the other, we will thus 
be ignoring the surface tension. The energy of the mem- 
brane (which, we recall, is a surface, i.e., its energy is 

terms of an expansion in the curvature. The general form 
of this expansion was first proposed by   elf rich.^ The cor- 
responding expression, the "Helfrich energy," is 

Here K and Z are elastic moduli, which depend on the 
temperature, the composition, and other characteristics of 
the membrane and the external conditions; KH is the aver- 
age curvature; and KG is the Gaussian curvature of the 
surface. The quantities K$ and KG are the lowest-order 
geometric invariants of the surface: 

where R, and R2 are the principal radii of curvature of the 
surface. 

Expression ( 1 ) assumes symmetry under a change in 
the sign of the average curvature, so it has no linear com- 
ponent. This situation corresponds to the case of so-called 
bilayer or symmetric membranes, and the discussion below 
is limited to this case. It is expression ( 1 ) which elevates 
the physics of membranes to a position of fundamental 
importance. The membrane energy is determined by purely 
geometric characteristics of the surface, not by the partic- 
ular molecular structure of the membrane. Only the nu- 
merical coefficients in the two relations depend on this 
structure. 

In principle, one could consider an energy of more 
general form than that in ( 1 ), in which nonlinear terms of 
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higher order in KH or KG are important for some reason or 
other. This is the situation which prevails for crystalline 
membranes,1° for example. To find the shape of the mem- 
brane in this general case, we must minimize an integral of 
the form 

where ul and u2 parametrize the surface, and E is some 
function of KH and KG. If we fix the topology of the mem- 
brane, then the integral 

I d u l d u 2 K ~  

must be constant. In the general formulation of the prob- 
lem of determining the equilibrium membrane shape, we 
must therefore minimize 

where the Lagrange multiplier A specifies the topology of 
the surface. The term ilKG in Eeff has the meaning of the 
Chern-Simon term" in field theory. 

The range of the parameters ul and u2 over which the 
integration is carried out is determined by the membrane 
topology under consideration. In the case of a torus, for 
example, the range is a square with identified opposite 
sides. 

A complex liquid thus consists of membranes (sur- 
faces) floating in a surrounding liquid. Membranes un- 
dergo fluctuations because of thermal motion. These fluc- 
tuations in turn induce motion in the liquid around the 
membrane, and the membrane relaxes to its equilibrium 
shape. A complete hydrodynamic description of a complex 
liquid thus consists of the solution of a system of equations 
which describes both the membrane and the surrounding 
liquid. In certain particular cases, such a description can 
indeed be found explicitly.'2 For membranes of arbitrary 
topology, however, it is hardly possible to find an explicit 
solution of this system of equations. At any rate, if we are 
not concerned with unstable situations, then fluctuations of 
the membrane shape relax to equilibrium, and the problem 
of solving the complex system bf hydrodynamic equations 
and equations of motion of the membrane reduces simply 
to one of calculating a relaxation coefficient. 

In this paper we adopt a phenomenological point of 
view. We consider the fluctuations in the shape of one 
membrane which is floating in a liquid surrounding it. If 
we eliminate all the hydrodynamic degrees of freedom 
other than those which describe the relaxation of the mem- 
brane shape, then the effective Langevin equation takes the 
following form for these degrees of freedom (for the time 
being, we denote these degrees of freedom by u, without 
specifying their physical meaning) : 

below; at this point we simply point out that the equilib- 
rium membrane shape corresponds to a certain value vo of 
this variable, which satisfies the condition 

As justification for Eq. (3) we can also cite the follow- 
ing qualitative considerations, which are based on the anal- 
ogy between the relaxation dynamics of any system and 
Brownian motion of particles. We assume that the mem- 
brane shape fluctuations can be described as a random 
Brownian motion of small regions which can be used to 
approximate the surface of the membrane. According to a 
Gaussian distribution, the fluctuations of these regions can 
be described by a correlation function of their displace- 
ments: 

where the argument 1 or 2 specifies the position of the 
point on the surface and the time, and D is a diffusion 
constant. The probability density for a Gaussian distribu- 
tion is given by the function 

where y represents a random noise, Au is the area of the 
region under consideration, and At is a time interval. Using 
this distribution we can find the mean value of any function 
cP, which depends on the position of the point on the mem- 
brane surface: 

Here N is the number of regions into which the surface has 
been partitioned. In the limit N +  co we obtain the stan- 
dard expression for ( a ) ,  in the form of a functional inte- 
gral: 

Interestingly, this representation of the mean displacement 
of a Brownian particle, which includes all the essential 
ideas of functional integration, was derived back in 1910 by 
Einstein and Hopf. l3 

In general, the analogy between the fluctuations of 
membranes and Brownian motion is rather far-reaching, 
not purely formal. To illustrate this assertion, we note that 
a Brownian particle can be described by the Langevin 
equation 

d2x dx dq, 
m z= -Y dt+-&+Y' 

6E 
Y ~ P = - + Y .  ( 3 )  where m is the mass of a particle, q, is the potential of the 

Sv external force, and y is a noise. For a sufficiently light 
Here y is a random noise, and y an effective relaxation particle or, equivalently, for a sufficiently viscous medium, 
coefficient. The meaning of the variable v will be clarified we can ignore the inertial term. As a result we find 

483 JETP 78 (4), April 1994 V. L. Golo and E. I. Kats 483 



This, however, is Eq. (3), with x replacing the variable Sv, 
which describes the motion of the membrane, and with q, 
replacing the membrane energy E. This entire discussion is 
of course only qualitative, since the liquid around the 
membrane is being taken into account only as a source of 
a random noise. 

2. CHIRAL THEORY OF SURFACE DEFORMATlONS 

We treat the membrane as a surface which is parame- 
trized by certain coordinates ul, u2: r=r(u1,u2). At any 
nonsingular point on the surface we can specify a local 
Frenet frame of reference, which is characterized by the 
tangent vectors 

and by the unit normal vector 

This frame of reference varies from point to point on the 
surface. The corresponding derivatives are found from the 
equations of differential geometry:14 

d,rV= riVq + B,P, d,n = eq, ( 5 )  

where r$, are the Christoffel symbols, given by 

and g,, are coefficients which specify the Riemann metric 
of the surface. In addition, Eqs. (5) contain the so-called 
second quadratic form of the surface, B,, . The tensor f$ is 
related to B,, by 

d,= -PB ,v- (7 )  

We can thus describe the variation in the local frame of 
reference, which we denote by the matrix X, by the general 
formula 

a&= j&, ,u= 1,2. 

Here 

Equations (8), which are called the "Gauss-Weingarten" 
equations, are the foundation of the classical theory of sur- 
faces. The matrices j, introduced above must satisfy inte- 
grability conditions, which are evidently 

Equation ( 10) can be written in a different form, as is 
used in the theory of gauge fields: 
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According to this representation, the quantity F,, (the 
curvature of the gauge field), which is determined by co- 
variant derivatives, must be zero. For arbitrary deforma- 
tions of the surface the chiral currents j, must vary in such 
a way that this condition (F,,=O) is conserved. 

Deformations of a surface can be looked at from a 
slightly different standpoint. Let us assume that we vary 
the chiral current 

in a way corresponding to a rightward translation or a 
gauge transformation of the local frame of reference: 

where the matrix R conserves the structure of the Frenet 
frame of reference. In other words, it sends the unit normal 
n into the unit normal n', and it sends the tangent vectors 
T,, p= 1,2 into the tangent vectors T;, p= 1,2, respec- 
tively. The following equations hold: 

It follows from these equations that the integrability con- 
dition F,,=0 is conserved and that a fluctuation of the 
gauge field, Sv, induces a fluctuation of the surface shape. 
The latter are apparently isometries, in agreement with the 
incompressibility of membranes. 

The incompressibility of membranes is of course only 
approximate. The bulk modulus of a membrane is deter- 
mined by the derivative of the surface tension with respect 
to the concentration of the molecules making up the mem- 
brane. Although the surface tension of a membrane is ex- 
tremely small, as we mentioned above, the derivative of 
this quantity is by no means small. It is on the order of the 
"normal" magnitude for organic liquids.'-5 A large value 
of the bulk modulus justifies our approximation that all 
deformations of the membrane are isometries. 

On the other hand, the Gauss-Weingarten equations in 
(8) can be used to introduce a chiral field on a group of 
real, nondegenerate matrices GL(3,R) such that Eq. ( 8 ) ,  
formally solved for j,, determines a chiral current: 

The approach which we are proposing here starts from the 
important fact that the mean curvature and the Gaussian 
curvature of a surface and thus a physical quantity such as 
the energy of a membrane can be expressed in terms of the 
same chiral currents: 

The mean curvature can also be written explicitly in terms 
of the chiral currents: 

1 where j,, and j;, are matrix elements of j1 and j,. An 
explicit expression for KG can also be written, but we omit 
it since we will not need it below. 

The Helfrich energy (1) can be expressed in terms of 
chiral currents: 
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EH= I d u l d u 2 a ~ ,  j$ji,. (14) 

We can therefore formulate a theory for membrane shape 
fluctuations as a chiral field theory. We also note that the 
energy in (14) is quadratic in the chiral currents. All the 
nonlinear terms in the expression ( 1 ) for the initial energy, 
are cancelled by the choice of the moving frame of refer- 
ence. Nevertheless, this is of course not a free-field theory, 
since we must satisfy the integrability conditions ( 10). 
However, as we explained above, the gauge condition 
F,,=0 holds automatically for small fluctuations if it 
holds for the equilibrium surface shape. 

In this approximation the static binary correlation 
function can be calculated for an arbitrary membrane to- 
pology. For this purpose we consider the generating func- 
tional 

where we have introduced a matrix field x which is the 
conjugate of Sv. Expanding the membrane energy in E in 
Sv, retaining terms of up to second order, and using the 
integrability condition in the form [V, ,Vv]=O, we find the 
following expression for Z(X) : 

Here the binary correlation function D is determined by 
the solution of the equation 

3. DYNAMICS OF FLUCTUATIONS 

In the preceding section of this paper we showed that 
static fluctuations of a membrane shape can be described 
within the framework of chiral field theory. In the present 
section we show how the dynamics of fluctuations can be 
studied within the framework of this theory. 

Any variation of a chiral field which is related to the 
rightward translation 

X+ (1 +Sv)X, (15) 

where Sv is a real 3 X 3 matrix, determines the following 
variation of the chiral current: 

jp- j ,  + V,Sv, jo=a&3u. (16) 

Here we have introduced the definition of a covariant de- 
rivative, 

v,=a,+[j  ,,... I (17) 

(the square brackets mean a commutator), and we have 
determined the component jo of the chiral current, which 
determines the time evolution of the chiral field (the local 
frame of reference), 

These definitions allow us to write the Langevin equa- 
tion (3) as an equation for a chiral field: 

where y, a real 3X 3 matrix, describes the thermal noise 
(the Brownian motion of the surface). If we consider small 
fluctuations near the equilibrium shape, given by the equa- 
tion 

then we can linearize Eq. (19) around the equilibrium 
values of the chiral currents: 

As we mentioned above, one could in principle also 
discuss the general form of the membrane energy consist- 
ing of an arbitrary invariant function of chiral currents, 

The Langevin equation for this general form of the energy 
is 

6E 
yagv = - + y. 

Sv 

A simple calculation of the functional derivatives yields 

Linearizing, we find in place of (21) 

[the superscript (0) denotes the equilibrium value]. 
We write this equation in the symbolic form 

where the structure of the operator M is to be found from 
the explicit form of the left side of this equation [or from 
Eq. (21 ) for the Helfrich energy of the membrane]. 

We have thus formulated phenomenological Langevin 
equation ( 1) as an equation for a chiral field which deter- 
mines a movable frame of reference on the surface. A single 
energy characteristic of the surface, e.g., the Helfrich en- 
ergy, also expressed in terms of chiral currents, describes 
an incompressible membrane, which is a good physical 
approximation.1-5 Accordingly, all possible variations of 
the chiral field leave the metric of the surface unchanged; 
i.e., they are isometries. 

We also note a useful relation for variations of the 
chiral current: 
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For the planar case the covariant derivative reduces to an 
ordinary derivative, and Eq. (23) simplifies. 

4. CORRELATION FUNCTIONS 

The expressions derived in the preceding section of this 
paper can be used to find various averages. We will take the 
standard approach, developed by ~ o u r l a s ' ~  and 
 inn-  us tin,'^ to describe the Langevin dynamics. We as- 
sume that the thermal noise is Gaussian: 

(D is a kinetic coefficient on the order of l/y). We take an 
average over the noise by integrating with the following 
measure: 

Using the measure (25), we can calculate the average of 
any function F(X)  of the local frame of reference: 

The next step is to formally solve Eq. (19) for the 
noise. We can then write the following expression: 

Changing variables in (27), i.e., switching to an integra- 
tion over the chiral currents j, we find the formal average of 
any function of the chiral currents: 

S(M6v) 
(F(  j ) )  = I DyDSuF(Su)S(y-MSv)det - 

NSv) 

Recalling that we have 

S(M6v) 
Sj,= V,Sv and det -- 

S(Sv) 
-det M, 

by definition, we obtain the following result for the Hel- 
frich energy in ( 14) : 

(29) 
where (&'j,)(') means the transposed matrix. 

The last step is to write det M in exponential form with 
the help of the Grassmann variables $, $. We can then find 
any averages through functional integration with the effec- 
tive action S given by 

When this action is used, the averages are calculated in the 
following way: 

(F)  = J djd$d$ exp S. (31) 

A direct check verifies that the effective action in (30) 
is supersymmetric, i.e., invariant under the transforma- 
tions 

where E and Z are infinitesimal anticommuting fields. 
Action (30) generates a diagram technique which in- 

volves seed correlation functions determined by the qua- 
dratic part of the action, 

while the structure of the interaction vertices is specified by 
nonlinear terms, 

Equation (32) contains vertices of two types: vertices 
which are unrelated to the nontrivial geometry of the sur- 
face (i.e., vertices which exist even in the case of a planar 
membrane) and vertices which arise from terms in (32) 
which contain covariant derivatives (i.e., which arise di- 
rectly from the nontrivial geometry of the surface). 

The action (30) can also be put in a different form by 
introducing a Bose field p, which is the conjugate of Sv: 

The averages calculated with action (30) and action (33) 
are the same, but in the latter case it is also necessary to 
integrate over the Bose variable p. The effective action in 
(33) is convenient in that it contains only first time deriv- 
atives, like the original Langevin equations. 

Using the effective action in the form in (33), we can 
prove a fluctuation dissipation theorem in general form. 
For this purpose we introduce a special notation D for the 
correlation function: 

The correlation function (Sv,p), which is a generalized sus- 
ceptibility or response function,12 is denoted by G. We 
change variables in the action (33): 
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When this change is made, as can be seen directly and 
easily from the definitions of the averages, we have 

i 
atD(t) =G(t) - G( - t). (35) 

Relation (35) is the expression which we wanted for the 
fluctuation-dissipation theorem. The fact that it has been 
possible to prove this theorem in a general form is not a 
consequence of the specific expressions for the vertices and 
correlation functions. It is instead a consequence of the 
purely relaxational nature of the dynamics or, in other 
words, the linear dependence of the effective action (33) 
on the derivative a$v. This situation makes it possible to 
use the transformation of variables in (34). 

The method proposed in this section of the paper al- 
lows one to calculate not only correlation functions of local 
chiral fields but also such global characteristics of a mem- 
brane as the correlation functions of the average curvature 
or Gaussian curvature. According to Eqs. (12), the latter 
are also expressed in terms of chiral fields. In the zeroth 
approximation in the curvature, for example, we have 

This formula agrees with that found in Ref. 12, by a dif- 
ferent method, through a suitable choice of the phenome- 
nological effective coefficient y. 

5. PERTURBATION THEORY 

In this section of the paper we describe an iterative 
procedure for solving the Gauss-Weingarten equations. 
This procedure makes it possible to construct a perturba- 
tion theory in the characteristic curvature of the equilib- 
rium surface. For this purpose we write the Gauss- 
Weingarten equations in integral form 

Using (37), we find the following result for small fluctua- 
tions of the local frame of reference: 

We recall that (37) and (38) do not depend on the posi- 
tions of the points PI and P2 on the s u r f a c ~ n l y  on the 
distance between these points [this situation is a conse- 
quence of the integrability conditions ( lo)]. 

Using Eq. (38), we can formulate an iterative proce- 
dure, making a systematic transformation from a point on 
the surface to a nearby point, and choosing the integration 
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path in such a way that Sj, and SX remain small in each 
step. We can thus express SX in terms of S j  as a sum of 
terms: 

The expression found in this manner is extremely cumber- 
some and thus of little use. However, it can be utilized to 
construct a perturbation theory in the curvature of the 
surface. We will illustrate the procedure using a spherical 
surface of radius R as an example. In this case Eq. (38) 
can be rewritten as 

Here ~ ( ~ p ~ )  and jy) are a local Frenet frame of reference 
and the chiral current for a sphere. Simple calculations 
lead to 

cos 8 cos q, cos 8 sin cp -sin 8 

-sin 8 sin q, sin 8 cos q, 

sin 6 cos q, sin 8 sin q, cos 8 

There is an important circumstance to be noted here: 
The chiral currents jy) are on the order of 1/R, and a 
current variation Sj, makes contributions of zeroth and 
first orders in 1/R. Equation (39), which is an integral 
equation of the Volterra type, can thus be used to construct 
a perturbation theory in 1/R. Specifically, working in the 
standard way, we can write a solution of Eq. (39) in series 
form: 

Solution (41) expresses SX(P) in terms of known 
functions for the equilibrium surface (x('P~) and jy) for 
the case of a sphere) and in terms of the variation 
6 j, = V,Sv. According to (4 1 ) , any correlation function 
(SX(P)SX(P1)), which is directly related to fluctuations 
in the surface shape can therefore be expressed in terms of 
the correlation functions (Sj,Sjv) calculated from an en- 
ergy which depends on them [e.g., the Helfrich energy in 
(1411. 
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6. CONCLUSION 

The main advantage of the method proposed in this 
paper for describing fluctuating surfaces (membranes) is 
that chiral field theory allows one to distinguish effects 
stemming from the nontrivial topology of a membrane and 
those stemming from the nonlinear interaction of fluctua- 
tions. The latter simplify significantly, since the choice of a 
movable frame of reference is in a sense equivalent to a 
diagonalization of the energy [the Helfrich energy in (14) 
is thus quadratic in the chiral currents]. 

In order to study physical phenomena, of course, an 
analysis of only those degrees of freedom which are asso- 
ciated with the membrane shape relaxation must be sup- 
plemented with a consideration of some other, harder de- 
grees of freedom, which describe the physical phenomena 
of interest. However, again in this regard, chiral field the- 
ory can be useful for reaching an understanding of certain 
qualitative effects. 

For example, a previous study12 by Lebedev and one of 
the present authors established a law for the absorp- 
tion of sound in a solution of nearly planar membranes. 
Deriving that law requires consideration of the interaction 
of sound waves with shape fluctuations of the membrane. 
In terms of diagrams, the incorporation of that interaction 
reduces to a summation of some ladder diagrams in which 
loops are governed by correlation functions of fluctuations 
in the membrane shape, while vertices are determined by 
the interaction of these fluctuations with the sound. If the 
membrane has a complicated geometry, then it is natural 
to assume (at least for long waves) that the vertices deter- 
mined by the nonlinear terms in the hydrodynamic equa- 
tions are insensitive to the geometry of the membrane. The 
entire dependence on the geometry is thus in the correla- 
tion functions, which are calculated in chiral field theory. 
This discussion leads to an ~ w ~ "  law for the fluctuation- 
related absorption of sound in solutions of membranes of 
arbitrary geometry. An important point is that the entire 
dependence on the geometry is in the coefficient A. 

Universal expressions describing the dependence on 
the geometry of the membrane also demonstrate an anal- 
ogy with the Brownian motion of a particle. To make this 
analogy more transparent, we need to introduce a quantity 
equivalent to the mean square displacement A of a particle 
in the course of a Brownian motion. For membranes it is 
natural to use as A2 the integral characteristic 

Using the Langevin equation for Su we find the time evo- 
lution of A2: 

In deriving this relation we made use of the value ( S u y )  
=0, and we denoted the equilibrium value of the mem- 
brane energy by E('). 

In the quadratic approximation in the deviations of the 
membrane shape from equilibrium, we have, according to 
the definition of the average, 

Xexp -- ( "-:"' ), 
where Z is a normalization factor. Using the change of 
variables 

we can relate E-E(') to the reduced energy Ered: 

Correspondingly, we find 

Z= T1/2zred, 

and thus 

where I has the meaning (and dimensionality) of a mo- 
ment of inertia. The equation for A2 thus becomes 

The solution of this equation is obvious: 

This equation is the Einstein relation for rotational Brown- 
ian diffusion. All the dependence on the membrane geom- 
etry is in the moment of inertia I. 
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