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We discuss experiments on the growth kinetics of seeds of a stable phase in a quantum liquid 
at low temperatures. We emphasize the role of dissipative processes in the supercritical 
stage of seed growth, and show that the supercritical growth kinetics of a one-component 
system differ qualitatively from the kinetics of a two-component system. This is because 
viscosity-driven processes play a fundamental role in the first type of system, in contrast to the 
diffusion-driven processes that play a dominant role in the second type. 

In recent years, serious attempts have been made to 
observe regimes of quantum tunneling during first-order 
phase transitions in various metastable systems. The dis- 
cussion centers primarily on 3 ~ e  and 4 ~ e  and their mix- 
tures, where phase transitions can be observed at temper- 
atures down to absolute zero. Experimental work includes 
investigation of the solidification of superfluid 4 ~ e  under 
pressure (Ref. l ) ,  stratification of superfluid solutions of 
3 ~ e 4 ~ e  (Refs. 2, 3), and preliminary studies of cavitation 
in superfluid 4 ~ e  (Ref. 4). These experiments were stim- 
ulated by theoretical work of Lifshits and ~ a ~ a n '  and Lif- 
shits, Khokhlov, and polesski6 dating from the beginning 
of the 1970's. In our subsequent we clarified the 
fundamental role of dissipative processes in the quantum- 
mechanical below-barrier formation of seeds of a stable 
phase. These processes determine the temperature depen- 
dence of the probability for forming a critical seed even for 
the case of weak dissipation; for strong dissipation they 
completely specify the growth dynamics of the critical 
seeds as well. 

It is important to note that when we investigate the 
process of seed formation, the seeds we are forced to ob- 
serve experimentally are not those of critical size, but are 
rather seeds with dimensions far above critical. The prob- 
lem is that the characteristic dimensions of a critical seed 
are no more than a few tens of angstroms as a rule, i.e., 
extremely small compared to the usual macroscopic di- 
mensions. Although seeds with larger radii could in prin- 
ciple exist at smaller values of the supersaturation, their 
critical dimensions cannot be measured in practice due to 
the large characteristic fluctuation times required to create 
them. Seeds of the new phase with such small dimensions, 
i.e., on the order of tens of angstroms, are very difficult to 
observe experimentally; in fact, no one has even addressed 
the problem of finding a way to detect seeds of such small 
size, at least in experiments performed up to now.14 In the 
experiments that are actually performed, seeds with rela- 
tively large dimensions are observed, either visually1 or by 
measuring their effect on the macroscopic characteristics of 
the system, e.g., discontinuities in pressure,1*2'4 changes in 
the average velocity of sound and capacitance of the 
system,3 or NMR response.273 The information derived 
from these observations thus involves seeds of the new 

phase whose dimensions considerably exceed the size of a 
critical seed. 

In light of this fact, it is necessary to study the super- 
critical growth time of a seed and compare it with charac- 
teristic times for subcritical fluctuations. In principle, the 
growth of a supercritical seed is described by the same 
equations as a seed in the subcritical region:577 

here the Lagrange function L and the coefficient of friction 
p (R ) have the form 

where 64= {+(p) -4'(p'))/uf (p') is the difference in the 
free energies of the metastable and stable phases divided by 
the specific volume of a seed; peff= ( ~ p ) ~ / p ,  where p is the 
density of the metastable phase and Ap is the difference in 
the densities of the stable and metastable phases; and 
I=l (T)  is the mean-free path. For R) 1 the value of the 
friction coefficient p ( R )  corresponds to hydrodynamic 
growth of the seed, while R(l  corresponds to the Knudsen 
collisionless regime. 

In what follows we will be interested in the case where 
the size of the seed R % R, . In this case the potential energy 
takes the form 

where 6 4 > 0  and is small ( 6 4 3 0 ) .  The supercritical 
growth of the seed is determined by the kinetic coefficient 
K(R),  which characterizes the growth rate of the seed 
radius R for a given degree of metastability: 

and which, generally speaking, depends on the size of the 
seed R. 
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FIG. 1 .  Dependence of the growth coefficient K ( R )  for a supercritical 
seed on the size of the seed R in a one-component ( 1 )  and two-component FIG. 2. Dependence of the size of a seed R  on time t in the supercritical 
(2) system; I ( T )  is the mean-free path of an excitation in the system. region for a one-component ( I )  and two-component ( 2 )  system for fixed 

temperature T  and a constant degree of nonequilibrium 64. 

The equation of motion for the supercritical growth of 
a seed can be written in the form R(t)  -Ro=K64(t-to), R(t)  < I(T), 

Generally speaking, R = R (R,S+) is a complicated func- A= ( 1 / 4 ) ( p / h p ) ' ~ / v ( ~ )  ( I (T)  > R ) .  
tion of 64. We are hterested in the limit 64 j 0 .  It is not 
difficult to see that in this limit we need save only the We emphasize that the dependence of K(R) on tem- 

frictional force, and neglect the term with the mass, i.e., perature can differ considerably from one system to the 
next. Since the viscosity 17zpv1, we have K(R) - p /  

R = K ( R ) G ~ ,  K(R) =4?rR2/p(R). (3) ( ~ ~ ) ~ ~ / ( v ~ l ( ~ ) ) - ~ ~ i ~ ~ ~ e , ~ a s i n a n o r m a l F e r m i l i q -  

Actually, the correction from the kinetic term will be uid, when for I( T )  4 R ,  while K(R) - [ p / ( ~ p ) ~ ] / v ~ ,  
which does not depend on temperature, when I (T)  )R. 

and, in order that (3) be valid, it is necessary to have 

The fact that the growth of the seed in the supercritical 
region is determined exclusively by the dissipative term as 
6 4 3 0  distinguishes this region from the subcritical re- 
gion, i.e., the quantum regime, in which we can have both 
dissipative and nondissipative behavior as 64 j 0 (Ref. 7). 

From (3) it is easy to obtain the dependence of the 
kinetic growth coefficient K(R) as a function of the size of 
the seed R by substituting in the expression for p (R ). For 
a seed radius R large enough that the mean-free path I(T) 
is much smaller than R, so that the hydrodynamic descrip- 
tion of the dynamics of seed growth can be used, we have 

In the opposite limiting case, i.e., the Knudsen collisionless 
regime, 

K(R) = ( 1 / 4 ) ( p / ~ p ) ~ I ( ~ ) / v ( ~ )  ( I (T)%R) .  (5) 

The function K(R) is shown in Fig. 1 (curve 1). The 
increase in seed size takes place according to essentially 
different laws, depending on the ratio of R to I(T).  At 
early times, when R is small, the seed grows linearly with 
time t. However, when R exceeds the mean-free path I( T) ,  
the size of the seed increases exponentially (Fig. 2, curve 
I) : 

This dependence is dictated by the characteristic behavior 
of the temperature dependence of the mean-free path in a 
Fermi liquid, i.e., I(T) - T - ~ .  In superfluid 4 ~ e  the behav- 
ior of K(R) is determined entirely by the normal fluid 
component and the mean-free time of an excitation. Since 
in this case8 p/Ap- 1, we have 

in the hydrodynamic regime I (T)  (R, where pPh is the 
density of the phonon gas (for the normal component of 
4 ~ e )  and T ~ , ,  is the phonon mean-free time; in the Knudsen 
regime l (T)  )R we have K(R) - (pphc)-l - T - ~ .  

Now let us turn to the supercritical growth kinetics for 
stratification of 3 ~ e - 4 ~ e  mixtures. In this case we find that 
all the dependence of the growth coefficient K(R) on the 
size of the seed R and on temperature is radically changed. 
Specifically, in the two-component 3 ~ e 4 ~ e  system we 
have a new mechanism for dissipation in addition to vis- 
cosity, which controls the seed growth in the one- 
component system: diffusion. When this process is taken 
into account, the friction coefficient p(R)  has the form:' 

Accordingly, the leading term for large R is the second 
term, which is determined by diffusion. This is true for all 
R ) I( T )  . Therefore, 
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This result differs considerably from (4), where K(R ) de- 
pended linearly on R versus the R-' behavior in (7). 
Thus, in these solutions the larger the seed, the slower it 
grows, in contrast to one-component systems in which the 
size of the seed depends exponentially on time in this re- 
gion of parameters. According to (7), the radius of the 
seed in solution increases only according to a power law, 
with a small exponent equal to one-half (see Fig. 2, curve 
2) : 

The temperature behavior (8), determined by D, is also in 
contradiction with the one-component system. 

Note that the temperature of the surrounding medium 
may change in the growth process, e.g., when energy is 
released in the formation of the stable phase. This makes 
the seed growth time strongly sensitive to T. Furthermore, 
when the seed grows rapidly the value of S# can change; in 
this case, the rate of growth of the seed can change 
abruptly, and at some time may stop entirely. 

The fact that the two-component and one-component 
systems differ so much in their behavior makes the process 
of seed formation sensitive to even a very insignificant 
amount of since, according to (6) and (7) ,  
the slowest process that establishes equilibrium in the im- 
pure system is the diffusion process. Therefore, in a system 

with impurities it is possible to establish partial equilibrium 
over all the internal parameters of the system except the 
impurity distribution. Subsequently, a uniform distribution 
is established with respect to impurities in the system by 
the diffusion process. The slowness of this process is the 
origin of the extreme sensitivity of the process of seed for- 
mation to even small amounts of impurities-see Ref. 10. 

The authors are deeply grateful to  Yu. Kagan for his 
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