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We study radiationless positron annihilation on an atom accompanied by double ionization of 
the atomic K-shell. We calculate the angular distribution of the ejected electrons and the 
total cross section, taking into account the first Coulomb correction. For heavy atoms and at 
relativistic energies, the total cross section is shown to be of the order of cm2. 

1. The present study is a continuation of the work done 
on radiationless annihilation of positrons on atoms.' In 
such a process one of the atomic electrons annihilates with 
a positron, and another, absorbing the energy released in 
annihilation, is ejected from the atom. As a result the atom 
proves to be doubly ionized. In Ref. 1 we studied the dou- 
ble ionization of the K-shell in the annihilation of positrons 
to leading order in aZ, where a is the fine-structure con- 
stant and Z is the atomic number. We found that the cross 
section of such an ionization process is proportional to 
2 ( a z l 8 ,  where re is the classical electron radius. The ap- 
pearance of the factor (az18 in the cross section of (az14 
in the amplitude is easy to understand. The process ampli- 
tude incorporates the product of the normalization factors 
of the wave functions of the K-electrons, which yields 
( a ~ )  Another aZ appears because a large momentum (of 
order the electron mass) is transferred to the nucleus via 
the Coulomb interaction between the electron or positron 
and the nucleus. Experimental study of radiationless anni- 
hilation is, apparently, possible only with high-Z atoms, 
where the cross section is of the order of 1 0 - ~ ~ - 1 0 - ~ ~  cm2 
(see Ref. 1).  The literature also has other  estimate^,^.' 
which attribute higher values to the cross section of this 
process. However, in Ref. 2 an incorrect (plane wave) 
approximation was used for the wave function of the 
ejected electron, in view of which the value of the cross 
section given in Ref. 2 cannot be correct. Shimizu, 

is not justified, so we cannot claim a high accuracy for our 
formula. Nevertheless, an order-of-magnitude agreement 
could be expected. Obviously, the formula obtained in Ref. 
1 requires refining. Here we calculate the first Coulomb 
correction to the cross section of the double ionization of 
the K-shell in the annihilation of positrons on the atom. 

2. In the relativistic system of units (f i=c= 1), the 
cross section of the process we are considered here is de- 
fined by the following formula: 

Here E and k (k= I k 1 ) are the positron energy and mo- 
mentum, E and p are the energy and momentum of the 
ejected electron, and m is the electron mass. The energy of 
the bound electron is assumed equal to m, since we restrict 
our discussion to the first (of order aZ) Coulomb correc- 
tion to the leading term. The transition amplitude M is 
expressed in terms of the amplitudes of one-photon anni- 
hilation and photoabsorption: 

Mikoyama, and ~ a k a ~ a m a ~  employ exact relativistic Cou- 
lomb wave functions in the form of partial-wave expan- where $-k, $p ,  $a,  and qb are the wave functions of the 

sions, but their numerical calculation for lead coincides positron, the ejected electron, and the bound electrons, w 

with the results of Ref. 2, which is strange. Unfortunately, and f are the energy and momentum of a virtual photon, 

Ref. 3 contains no complete relations for the amplitude and and Ap(f) is the electromagnetic-field operator (summa- 
tion over p is assumed). Here and in what follows cross section: the answer is presented in the form of in- 

volved infinite series whose terms are double integrals and a = 1 a1 2. In momentum representation a matrix element 

their products, which hinders comparison of these formu- of this operator is 

las with ours. On the contrary, in kef. 1 the cross section 
is given by a simple formula, but the value calculated by (sl (&f) IS) = y p ( 2 ~ ) 3 6 ( ~ 1 - ~ - f ) .  ( 3 )  
this formula for Z=82 and the value of 500 keV for the 
positron's kinetic energy are smaller than the values found Since in the given process a large momentum (of order m) 
in Refs. 2 and 3 by a factor of 100. The reason for such a is transferred to the nucleus, the process takes place at a 
considerable discrepancy remains unclear. Of course, in small distance from the nucleus (of order m-'), where the 
the case of high-Z atoms aZ is not, strictly speaking, a nuclear field is only weakly screened by the atomic elec- 
small parameter, and a power expansion in this parameter trons. For this reason we use Coulomb wave functions for 
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all the particles participating in the processes. Following 
Ref. 4, we can show that for a K-electron the following is 
true: 

with N=q3/r, q=maZ, a=a2/z2/2, = a v f ,  a the 
Dirac matrices, V the gradient in f, and u, the bispinor of 
the a-electron in the electron's rest frame of reference. Ex- 
pansion in the small parameter a can be performed after 
integration with respect to ds. The matrix element in the 
integrand in (4), 

is the Fourier transform of the Yukawa potential 

The wave function of the ejected electron can be repre- 
sented by a power series in aZ, the first two terms of which 
are the Furry-Sommerfeld-Maue function5 

where Np=:xp(rc/2) I r( 1 -ic) 1, with c=aZE/p, 
p = I p I , and Vo= yo Vo, with yo a Dirac matrix and Vo the 
Coulomb-field operator; up and GE are the Dirac bispinor 
and Green's function of a free electron with the four- 
momentum (E,p). In the momentum representation the 
operator Vo is given by Eq. (5) with A = O  and GE by the 
following matrix: 

The first two terms in (6) provide the same contribution of 
the order of aZ to the amplitude (2) and were allowed for 
in Ref. 1. To obtain the first Coulomb correction to the 
amplitude of the process we must retain in (6) the third 
term, which is proportional to ( a ~ ) ~ .  Note that the func- 
tion (6) contains no expansion in the Coulomb parameter 
c and, therefore, is valid for all values of p. In the momen- 
tum representation I cpj) and 1 cp;) have the form4 

where r = p, and the gradient Vp does not act on r or c. The 
function (6) is normalized in a way common to scattering 
problems: in the coordinate representation the function 
(r I $p) in the asymptotic region is the sum of a plane wave 
and an outgoing spherical wave. Since the Dirac-conjugate 
wave function must have the same normali~ation,~ it can 
be constructed from (6) by the following rule: 

where Hermitian conjugation refers only to the Dirac ma- 
trices and spinors and does not act on the imaginary parts 
of the function related to i~ and ic. Then 

Employing Eqs. (7)-(12), we can write the photoelectric- 
effect amplitude as 

The operator in ( 16) acts only on the function 6 p .  
An ypression for the annihilation amplitude 
($-klAp(-f) Iqb) can be obtained from Eqs. (12)-(19) 
by replacing E, p, f, y,, and u, with - E ,  -k, -f, 1/11, and 
ub, respectively. As result of this substitution, q,, c,, a,, 
and b1 become 

After substituting (13) and the respective expression for 
the annihilation amplitude into (2) we get 
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Analysis of Eqs. (22), ( 14), and ( 15) shows that the 
quantities not containing aZ can appear in U only owing 
to the product of rl/af and rl/a$, since 

However, the product of the two delta-functions S(f-p) 
and S(k-f) is zero because, as the energy-momentum 
conservation law implies, k is never equal to p. For this 
reason the expansion of U in powers of aZ beings with 
terms proportional to aZ. As shown in Ref. 1, the leading 
term in this expansion is real, so that to calculate the cross 
section with a relative accuracy of the order of aZ it suf- 
fices to find only the real part of the Coulomb correction to 
the amplitude (knowing the imaginary part of the correc- 
tion is imperative when calculating spin correlations, but 
we do not touch on these aspects here). All integrals with 
respect to df can be expressed in terms of elementary func- 
tions, although the calculations are rather tedious. Using 
the qualities that follow from energy conservation, 

we can reduce integration with respect to df to 

The differential operators Vk and Vp act in Eq. (24) on 
the vector function Q. The terms separated by multiplica- 
tion signs belong to different currents and are surrounded 
by the appropriate spinors. For instance, the term y, x f 
should be interpreted as 

The other terms in (24) have a similar appearance. Let us 
now shift from bispinors and Dirac matrices to spinors (w) 
and Pauli matrices ( a )  (see Ref. 6): 

(28) 

P k 
ua,b= 0 wa,bt v -- ( I )  p-E+m' 

vk=- 
& + m e  

Under such a transformation the terms proportional to V$ 
(we put operator V instead of Vk or Vp) are expressed in 
terms of the scalar product VQ and the vector product 
VQ. Employing Eq. (25), we can easily show that VQ=O 
and VQ=O. The final expression for U assumes the simple 
form 

p raz 
w,.(uLnxl )wll, 

[The asterisk in Eq. (29) stands for complex conjugation.] 
Substituting Eqs. (21 ) and (29) into (1) and summing 
over polarizations, we arrive at the following formula for 
the electron angular distribution: 

We do not expand the normalization factors in powers 
of aZ because this would result in expanding in parameters 
rc  and rc ,  which are not assumed small. Integrating (32) 
over the electron ejection angles, we find the total cross 
section of double ionization of the K-shell in the annihila- 
tion of positrons on an atom: 

[In Ref. 1, Eq. (4) for the amplitude of the process lacks 
the factor 1/ fi, emerging from the spin wave function of 
K-electrons. For this reason the cross sections in Ref. 1 
must be halved.] 

Let us calculate the annihilation cross section for 
Z=82 and a positron energy E equal to 2m. Equation (33) 
yields u=0.75 X cm2 if we allow for the correction 
and 0.9X cm2 if we do not, while in Refs. 2 and 3 the 
respective values (with and without the correction) are 
2X cm2 and 1.5X cm2. Thus, allowing for the 
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first Coulomb correction did not eliminate the discrepancy 5 ~ .  G. Gorshkov, Zh. Eksp. Teor. Fiz. 41,977 (1961) [Sov. Phys. JETP 

between the results of Ref. 1 and of Refs. 2 and 3. 14, 694 ( 1962)l. 
6 ~ .  I. Akhiezer and V. B. Berestetski!, Quantum Electrodynamics, - 

'A. I. Mikhailov and S. G. Porsev, J. Phys. B 25, 1097 (1992). 
Nauka, Moscow (1969), p. 623 [in Russian]; an earlier edition of this 

'H. S. Massey and E. H. Burhop, Proc. Roy. Soc. London, Ser. A 167, 'Oak was trans'ated at Wiley' New Yorkp in 1965' 

53 (1938). 
3 ~ .  Shimizu, T. Mikoyama, and Y. Nakayama, Phys. Rev. 173, 173 by Eugene YankOvsky' 

(19681. This article was translated in Russia. It is reproduced here the way it was . , 

4 ~ .  G. Gorshkov, A. I. Mikhdov, and V. S. Polikanov, Nucl. phys. 55, submitted by the translator, except for stylistic changes by the Translation 
273 (1964). Editor. 
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