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This paper introduces a class of nonlinear distributed filters (NDFs), which are nonlinear 
distributed dynamical systems, for exact separation of an additive mixture of an 
arbitrary determinate signal and Gaussian noise. The principal property of NDFs is that the 
determinate and random components of the mixture manifest themselves, in the physical 
sense, in dramatically different ways. The random component is responsible for the diffusive 
transport of a certain substance in the space of generalized variables, while the 
determinate component is responsible for convective transport of the same substance. One- 
soliton solutions of the stochastic Korteweg-de Vries (KdV) equation are taken as 
examples of NDF that allow for experimental verification. It is shown that many-soliton 
solutions of the KdV equation can also be employed as NDFs. 

I. INTRODUCTION 

The problem of extracting useful information con- 
tained in signals at the input ports of measuring devices, 
receivers in communication lines, and the like is highly 
important in science and technology. One reason why its 
solution is greatly complicated is that in addition to useful 
information the receiving devices take in signals containing 
uncertainties of some kind, that is, random signals or noise. 
As a result there emerge many problems related to the 
decoding of signals with randomly varying parameters. 
The literature devoted to solving such problems is vast 
(see, e.g., Refs. 1-4 and citations given there). Since a 
priori the probabilistic properties of signals are unknown, 
their fixation and subsequent separation is done via statis- 
tical hypotheses, which with a certain probability (depend- 
ing on the choice of hypotheses) make it possible to eval- 
uate the nature of the signals and the useful information 
contained therein. The modern approach to solving the 
problem incorporates estimation and digital 
methods of signal processing based on spectral representa- 
tion of the signals.6 The problem of an additive mixture of 
a nonrandom signal g(t) and Gaussian noise a ( t )  occupies 
a special place among problems of this type. Its special 
status is due to the widespread nature of the conditions in 
which noise with Gaussian statistics forms (in view of the 
central limit theorem familiar from mathematics) and also 
to the existing practice of signal formation. The author 
believes that the literature contains no exact methods of 
separating an additive mixture of an arbitrary determinate 
signal and arbitrary Gaussian noise. 

The present study shows that it is possible in principle 
to separate exactly such a mixture using generally accepted 
statistical approaches. Here nonlinear distributed systems 

noted, however, that a similar possibility exists if we em- 
ploy many-soliton solutions of the KdV equation, as well 
as solutions (including soliton solutions) of other nonlin- 
ear partial differential equations. 

Anticipating the conclusion we note that nonlinear dy- 
namical systems with distributed parameters can be used as 
a nonlinear distributed filter (NDF) in two directions. In 
the first the filter is represented by a certain mathematical 
construction and is implemented in the form of a software 
package or a specialized processor. As shown in the 
present paper, one- or N-solutions of the stochastic KdV 
equation1) can serve as the mathematical construction. In 
the second case the filter is realized in the form of a phys- 
ical device with a unit modeling the dynamics described by 
the KdV equation. What is important is that this unit can 
be constructed from nonlinear dispersion transmission 
lines, as shown by Lonngren in Ref. 7. The range of ques- 
tions discussed in the present paper is limited primarily to 
the first case. 

2. FORMULATION OF THE PROBLEM AND THE GENERAL 
EQUATION FOR THE  MEAN^) 

wadatig used the inverse scattering method to show 
that the exact nonaveraged solution of the stochastic KdV 
equation 

has the form 

are suggested as filtering elements, one example being sol- 
itary nonlinear waves, or solitons. This is illustrated by the +6k lot u(r)dr], 
example of one-soliton solutions of the stochastically per- 
turbed Korteweg-de Vries (KdV) equation. It must be where S( t )  is the Gaussian noise, 
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k the parameter of the spectral problem, and xo the posi- 
tion of the soliton initially, t=O. wadati9 studied the evo- 
lution of the soliton's mean envelope (u(x,t)) under 
Gaussian white noise P( t)  with (P(t) ) = 0 and the corre- 
lation function (P(t+r)P(t))  =2DS(r). Here (...) stands 
for statistical averaging over the ensemble of realizations of 
the process P ( t )  In Refs. 10 and 11, on the basis of the 
structure of one-soliton solutions, for instance (2), the gen- 
eral problem of calculating mean values of the form (@(z 
+ w(t) )) was formulated and solved, with @(z) a nonran- 
dom function of variable z, 

a random process of a Gaussian process a ( t ) .  The vari- 
ables z and w(t) are assumed independent. It was found 
that for arbitrary Gaussian perturbations a ( t )  [it is as- 
sumed that ( a ( t ) )  =O and ( a ( t ) a ( r ) )  =K(t,r)], the 
mean (@) characterizes a "diffusion process" in the space 
of variables t and z: 

where the diffusion coefficient D(t) depends on "time" t 
and is given by the following relation: 

Here, obviously, (@) 1 t=o=@(z). The variable t is as- 
sumed to be the time variable, although one must bear in 
mind that in some problems a spatial coordinate may act as 
the variable t. Of the process a ( t )  is time independent, 
K(t,r) =K( 1 t -r \  ) and 

Now suppose that the right-hand side of the KdV 
equation is subjected to a perturbation {(t) = f (t) +P(t), 
with f (t) an arbitrary nonrandom function of time, that is, 
((t) is a combination of a determinate signal and additive 
Gaussian noise, acting as background. The structure of the 
nonaveraged solution of the KdV equation does not change 
under such interference. The one thing to keep in mind is 
that now 

so that the argument of sech2( ...) acquires an additional 
nonrandom term that is the double integral of the deter- 
minate term f (t)  in the signal c(t) :  

Physically, the model describes the dynamics of a soliton in 
a force field containing a regular term f (t) in addition to 
the random component P(t) .  

Let us generalize the results of Refs. 10 and 1 1. Sup- 
pose that q ( t )  =g(t) + a ( t )  is an additive mixture of a 
determinate function g(t)  and a random Gaussian process 
a ( t )  with the characteristics 

Within the general formulation, the mixture q ( t )  corre- 
sponds to the problem of calculating the statistical mean in 
the Gaussian measure of the functional 

To derive an equation that controls the evolution of 
(@) we expand the function @( ...) in a Fourier series and 
average the result over the Gaussian statistics of the noise 
a ( t ) .  The result is 

where @(p) is the Fourier transform of @(z), and 

The desired equation for (a) can easily be obtained by 
taking the derivative of both sides of the above result with 
respect to t: 

where the varying diffusion coefficient D(t )  is still given by 
formula (4). Obviously, (a) I t,o=@(z) at t=O. Compar- 
ison of Eqs. (3) and (5) shows that now two mechanisms 
are responsible for the evolution of (@) : ( 1 ) diffusion with 
the diffusion coefficient D(t) ,  and (2) convection with the 
transfer rate g( t) . 

What is important here is that these are two different 
physical mechanisms and, as the form of Eq. (5) implies, a 
specific component in the combined perturbation q( t )  
=g(t) + a (  t) is responsible for each of these mechanisms. 
Convection occurs owing to the action of the nonrandom 
component of the signal q ( t )  (or a force if we are dealing 
with the stochastic KdV equation), and the transfer rate is 
simply g(t) . 

Let us apply this result to the stochastic KdV equation 
( 1). We assume that the right-hand side of Eq. ( 1) is 
perturbed by an additive force {(t) = f ( t )  +P(t) ,  with the 
functions {(t) and q( t )  related as 
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Thus, the "convective transfer rate" g(t)  of the soliton's 
mean envelope is characterized by the magnitude of the 
integral off  (t). What is important is that the envelope is 
still entirely determined by the nonrandom component of 
((t). The noise component P(t) of T,I is responsible for the 
diffusion of the soliton. 

We have therefore established that the actions of the 
components of an additive mixture of Gaussian noise and a 
determinate signal on a nonlinear distributed system de- 
scribed by a dynamical variable 

are exactly separable. The random component corresponds 
to the diffusion transport mechanism of a certain substance 
(a), and the determinant component controls the convec- 
tive transport of (a) with a rate g(t). In view of what has 
been said, the nonlinear distributed dynamical models 
studied here can be considered as filters for separating ad- 
ditive mixtures of determinate signals with Gaussian noise. 
Note that the form of the components in the mixture can 
be quite arbitrary and that the conditions of integrability 
implicitly employed do not constitute severe restrictions. 

Let us write the general solution to Eq. (5). In the 
theory of Markov processes this equation describes (for 
(@) nonnegative and normalizable) the class of Bachelier 
processes. l2 We have 

where the variable 

characterizes the effective time sale of the dynamics of 
(@). At large times the structure of the initial profile of 
@(z) is forgotten and the mean is transformed into a 
Gaussian packet whose width and height vary as 
and I /  m, respectively. Here, as the solution (6) im- 
plies, the position of the packet's peak is fixed by the de- 
terminate component of ~ ( t ) .  The resulting solution (6) 
shows that by studying the transformation of (@) in time 
we can reconstruct the characteristics of the additive mix- 
ture T,I ( t)  of interest to us, since the shape of the correlation 
function of the noise is directly linked to the width and 
height of the profile of (@). To illustrate this point we 
examine the case where the process a ( t )  is time- 
independent. Then the diffusion coefficient is given by the 
formula 

At times when the Gaussian self-similarity of the profile of 
(@) is realized, the correlation function K(t)  can be ex- 
pressed in terms of its width h(t) in the following manner: 

In practice, we often have to do with an additive mix- 
ture of Gaussian noise and a periodic signal. For instance, 
suppose that g(t)  =g cos wt. Then q(t)  =g sin(wt)/w and, 
hence the position of the peak of the Gaussian packet per- 
forms oscillates harmonically with the frequency a. When 
g(t)  is a sum of harmonics with different frequencies and 
amplitudes, 

we can use the movement of the peak of the Gaussian 
packet to reconstruct the envelope of the sum of harmon- 
ics. 

3. EXAMPLES OF NONLINEAR DISTRIBUTED FILTERS 

Here are some examples of NDF. The first is the one- 
soliton solution (2) of the stochastic KdV equation (1) 
perturbed by a force ((t).  In this case the diffusion equa- 
tion (5) controls the evolution of the difference 

Hence, the evolution of the mean envelope of the soliton is 
described by the expression 

where z= k(x -xo) -4k3t, @ (z) = - 2k2 sech2 z, and 

This example is interesting because the mathematical 
model ( 1) allows for physical modeling by, for example, a 
nonlinear dispersive transmission line.8 Usually such a line 
constitutes a chain of nonlinear sections whose elements 
are variable-capacity diodes or induction coils with satura- 
ble ferromagnetic cores. The random force P(t) acting on 
the soliton of the KdV equation can be taken here as a 
random emf at the input section of the chain. If we are 
speaking of physically modeling the transformation of the 
mixture of Gaussian noise and a determinate signal via the 
soliton of the KdV equation by nonlinear dispersive trans- 
mission lines, an emf varying according to the law ((t) is 
input to the chain. 

Let us consider a simpler NDF also formed from the 
solution of the stochastic KdV equation, perturbed not ad- 
ditively, as in the previous example, but parametrically: 
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Now a ( t )  characterizes homogeneous perturbations of the 
speed of the nonlinear wave. As shown in Ref. 13 (see also 
Ref. 14), the exact solution to Eq. (8) has the form 

Let us replace a ( t )  with the additive mixture f ( t) .  We still 
think of a ( t )  as Gaussian noise with a zero mean and a 
correlation function K(t,r) of arbitrary form. We employ 
the above result (5). For Q we taken solution (9) with the 
variable z in the form z= ( ~ d 1 2 ~ )  "'(x - Uot/A) and 

In contrast to the previous example, the convective 
transfer of (u(x,t)) occurs at a rate proportional to the 
amplitude of the determinate "signal" g(t) ,  or q(t) 
= d m i z f ( t ) .  . - 

Thus, the movement of the peak of the mean envelope 
of the soliton can be used to verify the presence of a deter- 
minant component in ((t). Here the diffusion dynamics of 
the soliton is determined by the noise component of the 
mixture. 

To conclude this section we note that for an NDF used 
to separate additive mixtures we can take one-soliton so- 
lutions of other nonlinear stochastic equations, for in- 
stance, the sine-Gordon equation and the nonlinear Schro- 
dinger equation. 

4. MANY-SOLITON SOLUTIONS AS NDF 

Above we discussed the possibility of using the one- 
soliton solutions of the KdV equation as nonlinear distrib- 
uted filters. In the class of solutions to the KdV equation 
this solution is the simplest. Wadati and ~ k u t s u ' ~  gave the 
exact nonaveraged many-soliton solutions of the KdV 
equation describing the evolution of N solitons in the field 
of a random force. For one thing, they discussed in great 
detail the transformation of two-soliton solutions in the 
field of a Gaussian random force. They also showed that, 
as in the case of one soliton, the action of a random force 
causes solitons to diffuse in such a manner that at large 
times the two-soliton solution is the sum of two Gaussian 
packets. 

In this section we establish that many-soliton solutions 
of the KdV equation can also be used as nonlinear distrib- 
uted filters for separating additive mixtures of a determi- 
nate signal and Gaussian noise. According to the results of 
Ref. 15 (see also Ref. 14, p. 76), a nonaveraged N-soliton 
solution of the KdV equation has the form 

d2 
u (x,t) = - 2 7 [ln detC(x,t) 1, dx (10) 

where C(x,t) is a matrix whose elements are 

with 

and 

Let us now turn to the case N=2. The form of solution 
(10) at N=2 readily suggests that the solution is the sum 
of exponentials depending on function arguments of the 
type 

where the zj are variables, the K, are constant parameters, 
and the label j numbers the solitons. The concrete form of 
these characteristics is unimportant. Having in mind the 
general formulation, let us consider the problem of calcu- 
lating the mean of the function 

where z, and z2 are independent variables, KI  and KZ are 
parameters, and v(t) is a Gaussian process with a zero 
mean and an arbitrary correlation function. The difference 
from the previous case is that the function Q acquires a 
second argument. To establish the form of the equation for 
(Q), we expand Q in a Fourier series and average the 
result over the Gaussian statistics of process v(t). We have 

where we have introduced the notation 

XI! ( u ( r ~ ) u ( ~ ~ ) ) d ~ l d ~ ~  . 
0 I 

After finding the derivatives of both sides of the expression 
for (Q) and performing straightforward transformations 
we arrive at the desired equation, which controls the dy- 
namics of (Q): 
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with 

Equation (14) should be augmented with the initial con- 
ditions 

The above result implies that (@) characterizes a diffusion 
process taking place now in the space of the two variables 
zl and 2,. Importantly, in this space there is cross-diffusion 
in addition to diffusion along the coordinates zl and z2. The 
cross-diffusion coefficient is 

Since the temporal behavior of the diffusion tensof is char- 
acterized by the same functional dependence of D(t), the 
two-dimensional diffusion equation ( 14) can easily be re- 
duced to an equation with constant coefficients by the sub- 
stitution 

Now let us add a nonrandom function f (t)  to the 
random process v(t) in the arguments of the function in 
the integrand. Similar computations lead to the equation 
for ( a ) ,  

with the same initial conditions (@) I t=o= @ (zl ,z2). Thus, 
the above result implies that the components of the addi- 
tive mixture of the signal f (t)  and Gaussian noise v(t) are 
exactly separated in their physical manifestations. What is 
important here is that such separation occurs in the space 
of a larger number of variables. In our example the vari- 
ables are zl and z2. Another important aspect is that the 
nonrandom component f (t) still implements the convec- 
tive transfer of substance ( a ) ,  while the random compo- 
nent v(t) implements the diffusive transfer of ( a ) .  The 
solution to Eq. (15) shows that the temporal behavior of 
the extrema ( a )  is characterized by the determinate com- 
ponent of the mixture. The width and height of the profile 
of ( a )  is controlled by its stochastic component. Thus, the 
mathematical construction 

can also be interpreted as an NDF for exact separation of 
an additive mixture of a determinate signal f (t) and ran- 
dom Gaussian noise a ( t ) .  In the case of the two-soliton 
solution of the KdV equation with the right-hand side in 
the form of a mixture of noise and signal, one can easily 

verify that the dynamics of the soliton peaks is controlled 
by the signal and their widths and heights by the noise. 

Similarly, the N-soliton solution of the KdV equation 
can be shown to exactly separate the additive mixture f ( t )  
+P(t ) .  Here, however, an NDF corresponds to a transfer 
process in a space of N variables, where convective transfer 
is implemented by the determinate signal f and diffusive 
transfer by the random component in the mixture. 

5. CONCLUSION 

Our study has shown that a nonlinear distributed filter, 
either a specific physical system or a mathematical con- 
struction, serves as an effective means for separating an 
additive mixture of Gaussian noise and a determinate sig- 
nal. What is important is that in the expanded space of 
variables t and z the random and determinate components 
of the mixture are exactly separated and manifest them- 
selves differently in the physical sense. The random com- 
ponent of the mixture is responsible for the diffusive trans- 
port of a certain "substance" (@), and the determinate 
component for the convective transport of the same sub- 
stance. Here the diffusion coefficient is directly related to 
the shape of the correlation function of the noise, while the 
convective transfer rate is directly related to the determi- 
nate component. 

Note that from the viewpoint of studying the statistical 
properties of Gaussian noise, the result (5) at f (t) 0 has 
an independent status, since it enables the self-correlation 
function of Gaussian noise to be recovered. The results 
possess still another important informative property: 
namely, the deviation of the observed evolution of (@) 
from (6) means that the noise component a ( t )  is not a 
Gaussian process, and quantitative characteristics of the 
deviation can be specified. This fact also has independent 
value. 

In this paper we have discussed the case of an additive 
mixture of Gaussian noise and a determinate signal. Rea- 
soning along similar lines, we could have examined the 
problem of separating an additive mixture with Poisson 
noise a ( t ) .  In this connection we point to an important 
fact that emerges when noise with arbitrary statistics is 
described: generally, the determinate component is only 
responsible for the convective transport of the mean ( a ) ,  
irrespective of the statistics of the noise. 

Note that in practical application (in the form of a 
mathematical construction) of the results obtained here 
there emerge a number of extremely delicate questions con- 
cerning the ergodic properties of the process a ( t ) .  The 
reason is that the above results are exact in the statistical 
sense when the operation of statistical averaging over the 
ensemble of realizations of a ( t )  is defined. In practice, 
however, the averaging is over characteristic time scales. In 
view of this it would be proper to assume that the results 
can be used to test the ergodicity of random processes. 

One more fact is worth noting. When we construct an 
NDF as a physical device based on a real physical process, 
information is needed about the conditions in which this 
process is described, say, by the KdV equation (or another 
equation), and, therefore, has the necessary structure of 
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the functional dependence of the solution on the stochastic 
variable. In relation to the KdV studied in this paper, this 
question has been discussed in the literature quite fully. 
For instance, as applied to the description of stress dynam- 
ics in nonlinear dispersive transmission lines, the condi- 
tions of applicability of the KdV equation were formulated 
in Ref. 7, together with the results of experimental studies 
corroborating the soliton nature of the propagation of a 
perturbation along the chain. 

The work was sponsored by the Russian Fund of Fun- 
damental Studies under Grant Number 93-012-12269. 

"~ctually, this statement is more general because any exact solution of a 
partial differential equation can serve as the mathematical construction 
of an NDF, provided that it possesses the necessary functional depen- 
dence. 

2 ) ~ h e  results of this section were announced in Ref. 8. 
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