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A discussion is given of two Stokes linewidth conventions developed by Berry and by the 
authors for different asymptotic representations of the phase integral as a sum of the dominant 
and subdominant (recessive) waves. The narrower natural line width defined by the 
convention of the present work is explained by the more coherent composition of the main 
dominant wave; it is given by the uncertainty relation and appears as the zone of 
formation of the exponentially weak (recessive) wave which, within a power-law accuracy, 
possesses its own phase and which has a time parity opposite to that of the dominant 
wave. The present asymptotic representation, based on a specially devised separation of the 
high- and low-saddle-point contributions to the phase integral, is modified and, apart 
from the natural line width, allows one to find another-larger-Stokes strip width outside of 
which the recessive wave gets rid of its dominant-wave properties not with the power- 
law accuracy but rather with an exponential accuracy with which the dominant wave is 
separated from the recessive one outside the natural width. The modified representation 
is employed for the analysis of the solutions of the wave equation with a static uniform electric 
field, the dominant and recessive wave in these solutions describing respectively the 
propagation of a charged particle and the creation or absorption of a pair of particles by the 
field. The above-mentioned widths of the formation zone of the latter process turn out 
to be the Compton length m-' and the barrier length m / e ~  (m and e are the mass and charge 
of the particle and E is the electric field intensity). 

1. INTRODUCTION AND DISCUSSION OF THE PROBLEM the function g(v,a) from 0 to 1 (or from 1 to 0) over a 

Many physical quantities are represented by contour 
integrals of the form 

dependent on two or more real parameters. Of particular 
interest are the asymptotic representations of these inte- 
grals when one of the parameters, v, tends to infinity 
(where the integral has an essential singularity), and the 
other, a ,  is near the Stokes line. Then, restricting ourselves 
to the case of only two saddle points in f (t) ,  there are two 
terms in the asymptotic representation of the integral, one 
of which, the dominant one, is proportional to e f2, and the 
other, the subdominant (referred to in the present work as 
"recessive"), is exponentially small relative to the first and 
proportional to ige fl, where Re( f - f ) ) 1 for v) 1. Here 
f and f 2  are the values off ( t)  at the saddle points tl and 
t,, respectively, and g switches on the recessive term. As a 
rule, f are simple elementary functions of the parameters 
v and a. 

Qualitatively, the difference between the dominant and 
recessive terms lies in the different dependence of their 
phase Im f1,,(a) on a. It is therefore convenient to call 
them the dominant and recessive waves. Moreover, unlike 
the dominant term, the recessive one appears (or disap- 
pears) when a crosses the Stokes line a =&not abruptly, 
as suggested by stokes,' but rather by a smooth change of 

certain effective interval Aa which may be referred to as 
the width of the Stokes 

In Ref. 6 two types of asymptotic representation were 
considered: 

1. The usual asymptotic expansion in inverse powers of 
v truncated after its smallest term, plus a residual term,24 

2. A special division of the contour integral into con- 
tributions from the high and the low saddle points. 

It was shown that the switching function of the reces- 
sive term is just the error function with an argument 
which is different for the two representations men- 
t i ~ n e d . ~  For type 2 representations this argument is w 
= \I-, which leads to a natural Stokes line 
width determined by the interval over which the phase 
difference between the recessive and the dominant terms 
becomes of order unity. This implies the uncertainty rela- 
tion AaAw - 1 for the natural Stokes line width Aa and the 
difference AW = ~ ~ ( 0 )  -al (0) of the phase change rates 
~ ~ , ~ ( a )  = -a Im f l,2(a)/aa near the Stokes line. 

For type 1 representations, the argument of the switch- 
ing function is 6 = Im( f l  - f2)/62 Re( f2-  f l ) ,  so that 
the Stokes linewidth is 62 Re( f , - f ) times the natural 
width. This means that the absolute value of the recessive 
terms varies much more slowly than the phase difference 
between the recessive and the dominant terms. 

In order to understand why the Stokes line width for 
type 1 asymptotic representations is considerably larger 
than the natural width, let us turn to the integrals F ( z )  
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discussed in Ref. 6, in which the parameters v and a are 
the magnitude and phase of one complex parameter 
z = I z I ~ ~ ( ~ + ~ ~ ~ ~ ~ )  or, more precisely, v=lzl,  and 
a = arg z- arg z,, the deviation of the argument of z from 
that of the Stokes line. For lz 1 + 1, in the type 1 asymptotic 
representation F=Sm+Rm the dominant term S, was the 
sum of the terms of the asymptotic inverse-power series in 
z down to the minimal, mth term, with coefficients growing 
as the I?-function of their index, 

Here do - e f 2  and it is assumed that arg z,=0. For z ) 1 
the remote terms of this sum, within 1 k- m 1 6 & o; 
the minimum term with number k= m =a- (c ( z  1 1, 
are described by 

It is seen that on the order of $m/a terms near the min- 
imal one are approximately of the same magnitude -eWam 
and that close to the Stokes line, when d J2m/a 1 a 1 6 1 
holds, they also have the same phase =: -dma and so may 
be considered coherent. Comparison with the recessive 
wave R, shows that close to the Stokes line the sum of 
remote coherent terms in S, has the same phase as R, 
(shifted by *?r/2) and that its magnitude is - I Rm! . This 
means that near the Stokes line recessive properties are 
present in the dominant wave S, to the same degree as 
they are in the recessive wave R,, i.e., they are poorly 
distinguished from the dominant properties. In both direc- 
tions away from the Stokes line, the coherence of the re- 
mote terms of S, is getting destroyed and as one gets 
outside the line width, the recessive properties either be- 
came fully concentrated in R, or, together with R,, dis- 
appear altogether. 

In fact, the behavior of the sum of the remote coherent 
terms is accurately given by a model obtained by neglecting 
variation in the magnitude of the terms, 

where r =: J2m/a, y=da. From Ref. 6 it follows that 
am + imy = f ,- f It is seen that the sum (4) is in phase 
with the recessive wave and that its magnitude vanishes for 
lyl 2 2/r =: &&,or 

which is just the condition for getting outside the Stokes 
line width. Thus, until the condition (5) is fulfilled, the 
dominant term S, does indeed have a term whose magni- 
tude and phase are characteristic of the recessive term. 

The type 2 asymptotic representation is based on the 
representation of F(z) by the contour integral 

F(z)=A dtef("'), I, (6) 

[with Re f (t,z) = - co at the ends t=t', ,tz of the integra- 
tion contour] and employs the saddle point method; z is 
one complex parameter or a pair of two real parameters. 
The dominant (D)  and recessive (R) terms in the repre- 
sentation F(z)  = D+ R are the contributions from the high 
and the low saddle points located at points tl and t2 on the 
complex-t plane. When the parameter z is close to the 
Stokes line, the line of steepest descent (LDS) from the 
high saddle point t2 passes near the low saddle point tl 
crossing the level line of the latter at point t=t,(z). By 
definiti~n,~ 

Tracing the contour of integration in D along the line of 
steepest descent from the saddle point t2 (LDS2) and using 
the fact that Im f (t,z) =Im f (t2,z) along this line we ob- 
tain 

Here and below f f (t1,2,z) are functions of z. The ex- 
pression on the right is obtained by the saddle-point 
method under the assumption that t, is far outside of the 
domain of influence of the saddle point t2. At the same 
time, using the proximity of t, to the saddle point t,, the 
same method yields6 

with the switching function g =  1/2 erfc( w), where 
erfc(w) is the complementary error function. Since close to 
the Stokes line Im( f l -  f2) is an odd function of a ,  we 
have w(a) = - w*( -a )  and the switching function has 
the property 

Since the integrand of (8) is real along the LDS, the phase 
of the integral differs from arg ( - 2?r/ f ) 'I2 only because 
of the turn the path of integration makes relative the di- 
rection it has at the saddle point t2. Now for all the cases 
of which we are aware, the turning angle of the LDS2 in its 
course from the saddle point t, to the point t, does not 
exceed ?r/2. Hence even the exponentially small contribu- 
tions - eRe f l  in the exact dominant integral D have a dif- 
ference in phase from D of no more than ?r/2, thus sug- 
gesting that D consists of coherent contributions. This 
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means that when because of the variation of a point t, 
leaves the domain of influence of the low saddle point and 
the phase difference between the recessive and dominant 
waves becomes appreciably larger than ~ / 2 ,  

then the dominant wave will no longer have any contribu- 
tion with phase and magnitude characteristic of the leading 
term of the recessive wave; [see Eq. ( 17) for Re w( - 11. 

In fact, in this case 

D F ,  IR141Rsl, Rs=R(zs) ,  (12) 

if a is before the broadened Stokes line (i.e., the Stokes 
strip) and 

if a is behind the Stokes strip. Here t, is the infinite point 
into which the end of the LDS2 is relocated when the 
parameter a crosses the Stokes line. 

On the other hand, inside the Stokes strip, i.e., for 
I wl 5 1, the exact dominant integral D will contain an 
exponentially small contribution of order R, whose phase, 
at a=O, differs from that of R by the angle SL,R of the left 
(or right) turn of the LDS2 at the saddle point t, 
(SL,R = f n-/2 for a simple saddle and * 2 ~ / 3  for a second- 
order saddle). This contribution may be manifest in certain 
quantities of the form F*aF/da - FdF*/aa, sensitive to 
the interference between the D and R waves. Therefore 
when calculating such quantities inside the Stokes strip by 
approximating R by (9), it is not sufficient to use for D the 
approximation (8). However, near the center of the Stokes 
strip the contribution to D may be transferred to the re- 
cessive term by defining this, as well as the dominant term, 
as the half-sum of analytically continued expressions valid 
for R and D on both sides of, and far away from, the 
Stokes strip: 

[see Eqs. ( 12) and ( 13)]. I n  this case, D will again by 
approximated by (8) and R, by (9) with erfc( w) -. 1. If 
the saddle point tl is of order higher than unity, then the 
ambiguity as to the choice of a common terminal point t, 
for the contours of the F1 and F2 integrals is eliminated by 
the requirement that the corresponding LDS, near tl (for 
a=O) be symmetric with respect to the LDS, descending 
to t,. 

2. QUALITATIVE CHARACTERISTICS OF THE DOMINANT 
AND RECESSIVE WAVES 

The existence of the recessive wave can be detected 
from its interference with the dominant wave, i.e., from the 
rate A o  of change of the relative phase 

of these waves away from the Stokes line. It is evident that 
this interference occurs in the interval Aa satisfying the 
uncertainty relation 

However, the recessive wave forms within such an interval 
A a R  where its amplitude develops. Clearly, haR cannot be 
less than l/Aw because over an interval this small, there is 
not enough time for interference to occur, and so the re- 
cessive wave cannot be separated from its dominant coun- 
terpart. It may be expected, however, that apart from the 
natural width a larger width should exist. These two 
widths are encountered when using two methods, namely, 
the integral approach and the asymptotic expansion in 
powers of v-l, to represent the same quantity F(v,a)  as a 
sum of the recessive and dominant waves. 

In the integral approach the dominant wave D is de- 
fined such that the phases of all contributions into D, down 
to the exponentially small ones, do not differ by more than 
~ / 2 ,  with the implication that D is made up of coherent 
components. 

On the other hand, when expanding in an asymptotic 
series of the type (2), the phase of the kth term of S,, 
equal to Im f 2  - kda, varies linearly with number k, coin- 
ciding at k=O with the phase of the dominant wave and at 
k=m, with that of the recessive wave, Im f2-mda 
= Im f ,  . Therefore even for a well outside of the interval 
haR- l/Aw, when the R and D waves are quite separate 
from the uncertainty relation point of view, i.e., 
IIm( f l -  f2)I ~ m d ) a I ) r ,  the sum of the last r terms of 
S, may have a phase different from that of the recessive 
wave by no more than n- if 

i.e., this group of terms is not coherent with the dominant 
but rather with the recessive wave. If 1 4  r( m, this sum 
may have the order of magnitude of the recessive wave and 
the interval Sa-?r/rd, in which this coherence is con- 
served, will be large compared to the minimal interval - 1/ 
Aw - l/m necessary to distinguish the recessive wave from 
the dominant. The number r of coherent terms is deter- 
mined by the dependence of the absolute magnitude of the 
terms of the asymptotic series on their index and on the 
parameter v near the minimum and therefore r (as well as 
m) is a function of v. For a series whose terms behave like 
I ' ( k + b ) ~ - ~ ,  theindexsatisfiesr- fi - &. 

Formally, the kth term in the sum S, may be consid- 
ered near the Stokes line as a wave with a "frequency" 
ak=u2(0)  + kd=wl(0) - (m-k)d. The frequency inter- 
val So-rd of the last r terms of S,  (coherent with 
the recessive wave) is the uncertainty in the frequency 
of the recessive wave and hence of the difference Am. 
Since this uncertainty, So - ( r/m) Aw, is small compared 
to Aw, it follows that the corresponding interval &aRrn 
- (m/r)AaR)SaR. 
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Thus, the slower rate of formation of the wave R, 
relative to R is due to the fact that, in accordance with the 
representation F =S, + R, , we transfer to the dominant 
wave S, a number of terms coherent to the recessive wave. 
Although the number r of these wave components is large, 
still it is small in comparison with m and so is insufficient 
to secure rapid formation of the recessive wave. 

The important qualitative difference between the dom- 
inant and recessive waves lies in their behavior under the T 
transformation, which consists of the replacement a + -a 
and a complex conjugation. In this transformation, 

Therefore, up to an irrelevant phase factor and an expo- 
nentially small correction 6, the dominant wave D trans- 
forms into itself, D-+ D+6, and so possesses, in some 
sense, a positive T parity, whereas the recessive wave, up 
to the same factor, transforms into 

and does not have any definite T parity with the Stokes 
strip since g( - w) = 1 -g(w) according to ( 10). However 
outside of the Stokes strip, when I w 1 > 1, 

f ;, f l - 3  

Therefore, before the Stokes strip the R wave is 2 6 1 w 1 
times smaller than its Stokes line value R,, remains un- 
changed under the T inversion, and its phase is that of the 
dominant wave shifted by arg(iw-' ) because f - w2 
=Re f + i  Im f2 .  Behind the Stokes strip the wave 
Rz2RS possesses its own phase Im f +?r/2, changes sign 
under the T inversion, and is accompanied by a small cor- 
rection of the same type as was R before the strip. 

Thus within the Stokes strip a recessive wave with a 
frequency ~ ~ # t , b ~  and negative T parity is formed. 

As to the behavior of the dominant and recessive 
waves under the T transformation in the representation 
F=S,+ R, , we note that in the examples discussed in 
Ref. 6 the term S, transforms into itself, within the same 
factor as D but without any 6 correction, i.e., S,-S,; 
whereas R, behaves according to Eqs. ( 19) and (20) with 
w replaced by a real 6, see Sec. I. Therefore the phase of the 
R, wave being formed is Im fl+?r/2 and its T parity 
changes from positive to negative while remaining unde- 
fined within the Stokes strip. Since D=S,+R,- R, it fol- 
lows that the 6 correction, having no definite T parity 
inside the wide Stokes strip, vanishes outside of the strip 
like 6 - ie f  1 -c2/2 6 6 .  

3. TIME-DEPENDENT SOLUTIONS OF THE WAVE 
EQUATION WITH A STATIC UNIFORM ELECTRIC FIELD 

The solutions of the wave equation for a particle of 
charge e and mass m in a static uniform electric field E are 

expressed in terms of parabolic cylinder functions. We will 
consider time-dependent solutions characterized by the ei- 
genvalues p ly  p2, p3 of the momentum operator -id/&. 
Solutions of this type occur when the field E is described by 
a time-dependent potential A= -EX', AO=O. In this case, 
for a scalar particle we have two independent solutions to 
the wave equation, 

Here and in what follows the axis 3 is chosen parallel to the 
field E. 

Because of the formation of pairs by the electric field, 
each one of the solutions (21) contains both positive- and 
negative-frequency waves. However, the solution +@ for 
x0 + + co contains only a positive-frequency quasiclassical 
wave, whereas the solution -@ for xO- - a, contains only 
a negative-frequency quasiclassical wave, 

Here S, are the positive-frequency and negative-frequency 
action functions. In this case the wave frequency 

is equal in absolute value to the kinetic energy of the 
charged particle. 

It is known that, together with the functions DL( * x ) ,  
the functions DWL- ( * ix) satisfy the same equation for 
the parabolic cylinder functions; see $8.2 in Ref. 7. Any 
pair of these functions form a system of linearly indepen- 
dent solutions. In our case the functions of the last pair are 
complex conjugate to those of the first, and if we substitute 
them for the D functions in (2 1 ) we obtain another sys- 
tem, 

of linearly independent solutions of the wave equation. For 
xO+ co, the solution -@ contains only a negative- 
frequency quasiclassical wave, while for xO-+ - a, the so- 
lution +@ contains only a positive-frequency quasiclassical 
wave: 

Since the Feynman propagator propagates waves with pos- 
itive frequency forward in time and those with negative 
frequency backward, it is convenient to call (21) a Feyn- 
man system, and (25), an anti-Feynman system. Note that 
the interaction between the charged particle and the elec- 
tromagnetic field has the consequence that in the analytic 
dependence of the Feynman and anti-Feynman solutions 
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on the square of the mass, there appears in this last quan- 
tity an imaginary addition of the appropriate sign, 

Now let us employ the representation8 

in which the contour of integration C starts and terminates 
at infinity in the third and first quadrants of the complex-t 
plane and goes around the branch point t=O clockwise. At 
p= 1/2 this representation describes both of the solutions 
(21) which differ only in the sign of the parameter 8. The 
spinor solutions are determined by a linear combination of 
the two functions (28) with p = 0, 1. In this case p - 1/2 is 
half of the eigenvalue of the T-odd Dirac matrix a3.  

The equation f '(t) =O yields two real saddle points 

At these points 

Ref ( t ~ )  =0, Ref (t2) =TV, (30) 

i.e., the saddle point t2 is high, t, low, and their heights are 
independent of 8. 

Examination of the LDSl and LDS2 determined by the 
equations Im f (t,v,8) =Im f,,, shows that for 8 > 0  the 
contour C can be transferred into the LDS2, which goes 
through the saddle point t2 only. Such an LDS, is de- 
scribed by the curve p=  p ( q )  satisfying the equation 

The upper and lower signs refer to the parts of LDS2 sep- 
arated by the point of the minimum of p (q ) ,  where 
p '(q) =0, and the expression in the brackets under the 
square root sign vanishes. For p + co the left and right ends 
of LDS2 approach to the asymptote Im t=Re t+28, re- 
maining respectively at the left and the right of it. An 
example of such an LDS2 is depicted in Fig. 1. For 0=0, 
the LDS from the high saddle point t2= - 1 comes to the 
low saddle point t, = 1 where it undergoes a 17/2 kink to the 
left and moves off to infinity. Such an LDS is described by 
the same Eq. (3 1 ), with I9= 0, p = 1, and is also shown in 
Fig. 1. 

Finally, for 8 < 0 the contour C along a LDS is given 
by the sum C= C2+ C1. The contours C2 and C1 follow the 
LDS2 and LDS, respectively and have both their ends at 
infinity. Namely, the contour C2 starts at infinity in the 
third quadrant of the t plane, passes over the saddle point 
t2, bypasses clockwise the branch point t=O and goes be- 

FIG. 1. 

low the cut Re t)O onto the adjacent sheet -2acarg t < 0 
of the Riemann surface. Following the LDS, in this sheet, 
the contour arrives at the saddle point t2= ( t2 ( e-'", where 
it undergoes a 77/2 kink to the left and goes to infinity in 
the quadrant - ngarg t < - ~ / 2  of this sheet. Note that 
the height of the saddle point t2 on his sheet is eP2" times 
its basic sheet value because 

Re f(It21eriT,v,8)=r.rrv. (32) 

[cf. Eq. (30)]. The contour C2 is described by Eq. (31) 
with 8 < 0. 

The contour Cl starts at the end point of C2, but runs 
along LDSl to the saddle point tl and then moves onto the 
basic sheet and goes off to infinity by approaching the same 
asymptote from the right. The left and right parts of this 
contour are described by Eq. (3 1 ), under the square root 
sign of which one must change the sign of 8 and replace p2 
by pl = ( tl I .  The contours C1 and C2 going along the LDS, 
and LDS2 at I9 < 0 are shown in Fig. 2. Figure 3 shows the 
180" turn of the LDS2 near the low saddle point, due to the 
change in sign of 8. It is clear that the point 0=0 belongs 
to the Stokes line in the complex-0 plane, see below. Since 

FIG. 2. 

415 JETP 78 (4), April 1994 A. I. Nikishov and V. I. Ritus 415 



FIG. 3. 

we have that, according to the condition I w 1 5 1, the nat- 
ural Stokes line width A$- (4v) - ' < 1. 

Thus, for 8 > 0 we can take the contour the integral 
(28) along the LDS, through the only saddle point t2, and 
then evaluate the asymptotics by a standard m e t h ~ d . ~  Then 
we obtain for v) 1, 8) ( 4 ~ ) - I  

a,(B)=(B+ JiTi?)'/2-"(l+@)-1/4. 

Note that the corrections to the functions ((8) and a,($) 
are real and of order v - ~  for all 8. For 8 < 0, we can choose 
the contour for the integral (28) to go along LDS2+LDSl 
and calculate the asymptotic forms of the corresponding 
integrals. Then for v) 1, 8 4  - (4v) - ' we obtain 

where the factor K= 1 - 5 e-2m+2i"P takes account of the 
contribution from the saddle point on the second sheet. 

The asymptotic expressions (34) and (35) agree with 
the exact relation for the D functions,' 

which represents D-iv-,(zei"/4) in terms of a)  this func- 
tion itself with an opposite sign of z, and b) the complex 
conjugate of a)  with p replaced by p' = 1 -p, because for z 
real 

~~, ,- , (ze-~"/~) = D ? ~ ~ - ~  (zei"l4) . (37) 

In fact if we take z < 0  then, substituting into the right- 
hand side of (36) the asymptotic expression (34), using 
the Stirling formula 

and taking account of the recessive term, we obtain the 
asymptotic formula (35). The asymptotic expressions (34) 
and (35) also reproduce, with the proper accuracy 
-v-'4 1, the dominant and the recessive terms of the ex- 
act Wronskians 

see again Eq. (38). 
The relation (36) clearly demonstrates the behavior of 

the D functions under time reversal, especially when re- 
written in the form 

1 /2 where B(p,z) =K- D-iv-P(zei"'4), K denoting the co- 
efficient in front of D in the second term in (36). It is seen 
that under the T transformation, which is designated by 
the tilde sign and consists of the replacements z- -z, 
p+ 1 -p and the complex conjugation operation, the B 
function transforms intoitself up to terms - e-m exponen- 
tially small for v) 1 (KK= 1 -e-2m+2i"p ). The first term 
on the right-hand side of (41), due to the creation or ab- 
sorption of pairs by the field with a probability amplitude 
e-m+i~p , makes the direct and time-reversed processes 

physically distinguishable. This distinction is confirmed by 
the fact that the T-invariant Wronskian (40) is different 
from zero. 

Although it happens only when 8<0 that the low sad- 
dle point gets onto the contour C2 traced along the LDS 
from the high saddle point, its influence on the integral 
starts to appear even at small positive values of 8, when the 
minimal distance from the LDS, to the low saddle point, 
which actually coincides with I t, - tl 1 =: 2 m, turns out 
to be comparable with, or less than, the radius of influence 
of the low saddle point: 

This condition corresponds to the time interval 
Ax05 (2m, )-' in which it is impossible to distinguish 
between waves with positive and negative frequencies. In 
fact, according to (24), the frequency difference between 
such waves is 2ml , and to measure it requires a time 
interval Ax0 obeying the uncertainty relation 2ml Ax0 2 1. 
Thus, as the parameter 8 is varied, we find that the expo- 
nentially small terms of the asymptotic forms of the func- 
tion appear not abruptly but rather in a continuous man- 
ner, in a narrow region A$- ( 4 ~ ) - ' ( 1  (Stokes line 
width) near 8=0. 

416 JETP 78 (4), April 1994 A. I. Nikishov and V. I. Ritus 416 



Note that Eq. (36) relates the solution with a definite 
sign of frequency at one time infinity with positive- 
frequency and negative-frequency solutions at another time 
infinity. In fact, from Eqs. (21), (25), (34), and (35), it 
follows that 

where 

4. STATIONARY SOLUTIONS OF THE WAVE EQUATION 

The stationary solutions of the wave equation for a 
particle in a static uniform electric field E arise when the 
potential is taken in the form A = 0, A'= -ex3, and are 
characterized by the energy and components p ly  p2 of 
the transverse momentum p, . Two independent scalar so- 
lutions 

form an anti-Feynman set, according to (27). In either 
solution there are waves with both a positive and a negative 
momentum along the field, but -@apl has the feature that, 
as x3- + C O ,  it retains only a quasiclassical wave with a 
negative momentum along the field, while +QpoPl , for 
x3 -+ - oo , retains only a quasiclassical wave with a positive 
momentum along the field: 

Here S ,  are the action functions of a particle having a 
negative or positive generalized momentum along the field, 

which in this case coincides with the kinematic momen- 
tum. 

The other, Feynman-type system of stationary solu- 
tions is obtained from (45) by complex conjugation of the 
D functions, 

A distinctive feature of this system is that +@, in the limit 
x3 + + oo , reduces to a quasiclassical wave with only a pos- 
itive momentum along the field, while -@, as x3-+ - CO,  
reduces to a quasiclassical wave only with a negative mo- 
mentum along the field: 

-'@pop1 
a ,s, + ip, XI - ip?xo , X 3 + f  C O .  (49) 

For an examination of the systems (45) and (48), it suf- 
fices to consider only one of them, say the first. The cor- 
responding D function is conveniently represented by the 
integral 

in which the contour C is the same as in (28) and the 
function f differs in the sign of In t. For the saddle points 
we have 

At these points 

Ref (t2) =0, Ref (tl=pleQ) =o, 

Ref (tl=ple2'*) = -2m, 8<- 1 . (54) 

Thus, for 8>1, the saddle points lie on the negative real 
half-axis tl < - 1 < t2 < 0, their heights being equal and in- 
dependent of 8. For 1 8 1 < 1, the saddle points are complex 
conjugate and lie in the t plane on a circle of unit radius, 
while the heights of the saddle points are different and 
@-dependent. For 8 < - 1, the saddle points are on the pos- 
itive real axis, 0 < tl < 1 < t2, and the heights differ consid- 
erably and do not depend on 8. 

Examination of the LDS1,, shows that for 8 >  1 the 
contour C can be traced along the LDSl which is described 
by the function p = p(q)  satisfying the equation 

and is plotted in Fig. 4a. For p + CO, the upper and lower 
tails of the function tend to the asymptote Im t=Re t+28 
while remaining respectively below and above this straight 
line. 

For 1 8 1 < 1, the LDS1,2 coincide and are described by 
Eq. (55) in which pl = 1 and the term 8 is absent. 

For 8=1  the saddle points merge into one, 
t1 = t2 = - 1, and since f y2 =O and f r,>#O, the saddle point 
which forms has three lines of steepest descent at an angle 
of 2 ~ / 3  to one another: straight up, down to the left, and 
down to the right (a "monkey saddle," see Ref. 9). There- 
fore a LDS suffers a kink of 7r/3 at this saddle point; see 
Fig. 4b. 

For 1 8 1 < 1, the saddle point t2 becomes higher than tl 
and the LDS2 at t= t1 suffers a 7r/2 kink; see Figs. 4c,d. For 
8 = - 1, the saddle points again merge into one, tl = t2 = 1, 
forming a monkey saddle with descents straight down, up 
to the left, and up to the right. The LDS rises to this saddle 
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FIG. 4. 

point along the lower descent with a phase arg t4277, 
makes a 120" turn to the left at the saddle point, and then, 
making a clockwise bypass around the branch point t=O, 
takes the left descent to climb the saddle point with a phase 
arg t-0. Here again the LDS turns through 60" to the left 
and moves off to infinity while approaching from above to 
the asymptote Im t=Re t- 2, see Fig. 4e. 

For 8 < - 1 the contour of integration, taken along the 
saddle-point LDSs, divides itself into two contours termi- 
nated at infinity, C= C1 + C2. The contour C1 goes along 
the LDSl approaching t, from below with a phase 
arg t- 277 ; when on the saddle point, it makes a turn to the 
right through an angle of 90" and then goes around the 
branch point t=O clockwise to arrive at the saddle point tl 
with zero phase. It then proceeds from the saddle point tl 
down under the cut and onto the adjacent sheet -277 
< arg t < 0 and goes to infinity with a phase arg t- - 377/4. 
This contour is described by Eq. (55). 

The contour C2 begins at the end point of C, and goes 
along the LDS2 to the saddle point t2; here it goes onto the 
basis sheet and then goes to infinity by approaching the 
asymptote Im t= Re t+  28 from above; see Fig. 4f. This 
LDS is described by Eq. (55) in which, under the square 
root sign, one must change the sign of 8 and replace pl by 
p2= It2I. 

Thus, for 8/gl the first of the functions (45) is repre- 
sented by an integral along a LDS through a single saddle 
point and has an asymptotic form determined by this sad- 
dle point alone: 

~v i r p  iv 
Xexp ------+is- 

( 4  4 2 

For 8 < - 1, using (36) with the sign of v reversed, the D 
function may be represented in terms of two functions, D 
itself with 8 > 1 and its complex conjugate with p - 1 -p, 
which have as their respective asymptotic forms Eq. (56) 
and its complex conjugate with p- 1 -p. This means that 
in the region 8 < - 1 the first and second terms in Eq. (36) 
with the sign of v reversed represent waves with negative 
and positive momenta, respectively. 

According to (47), in the region 181 < 1 the momen- 
tum is pure imaginary. Here particles and antiparticles, 
incident from the right and left respectively, undergo an- 
nihilation. Since in 77' < - m, (8  < - 1 ) the antiparticle 
and wave momenta are opposite to one another, the am- 
plitude of the wave traveling to the left is larger than that 
of the wave incident from the left because their squares are 
proportional to the number of the incident and reflected 
particles. 

We also note that close to the points 8= * 1 the do- 
mains of influence of the saddle points tl and t2 overlap, the 
phase difference between waves with opposite momenta 
becomes small, 

and these waves are indistinguishable from one another. In 
fact, the momentum difference Av3 = 2ml is only 
measurable on the length Ax3 which obeys the uncertainty 
relation Ar3Ax3> 1 opposite to the condition (57). 
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Inside the interval - 1 < 8 < 1, far away from the nar- 
row transition regions (57), the function under consider- 
ation has an asymptotic representation determined by the 
two saddle points t1 and t2: 

x ev(a-sin a cos a)+i(p- 1/2)a I 
(58) 

Note that the contribution from the lower saddle point t1 
[the second, recessive, term in (58)] enters with weight 1/2 
because the LDS2 goes only along one of the descents from 
tl,  see Figs. 4c,d. Moreover, under the reversal of time 
(i.e., complex conjugation plus the replacement p - 1 -p) 
this term changes sign whereas the first, dominant, one 
does not. It is only because the contributions from both the 
higher and lower saddle points are included that the as- 
ymptotic expression (58) and its T transform possess, to 
within the approximation considered, the same T invariant 
flux (Wronskian) as the corresponding exact functions, 

form is determined by the monkey saddle t1,2= - 1 lying to 
the left from the cut O< t < W ,  and by the integration con- 
tour which passes through this saddle point via the LDSs 
along the rays arg ( t + 1 ) = 7a/6, a/2. 

2) In the region 18+ 1 ( there are two waves 
which have opposite momenta and whose amplitudes differ 
by a recessive term -eC2? The asymptotic behavior of 
the resultant wave is determined by the saddle point tl,,= 1 
on the cut. The dominant contribution to the asymptotic 
form is given by the monkey saddle on the upper rim of the 
cut (arg t1,2=0) and by the contour which passes via the 
LDSs along the rays arg(t- 1) = 577/5,~/6. In accordance 
with the method considered, the exponentially small con- 
tribution to the asymptotic form is determined by one half 
of the integral along such a LDS through the monkey sad- 
dle on the lower rim of the cut (arg t1 =2a) which is sym- 
metric relative the steepest ascent line from this to the 
main saddle point and so consists of rays 
arg (t- tl ) = 3a/2, 5a/6 + 2a  and hence gets onto the ad- 
jacent sheet 2n<arg t < 4 a  of the Riemann surface. 

3) Since the variable z (or 8)  has only entered the 
argument of the Airy functions, the Wronskians for the D 
functions (See 58.2 in Ref. 7) in the region (57) are pro- 
portional to those for the Airy functions (see Eqs. 10.4.11- 
10.4.13 in Ref. 8). Thus, using the asymptotic formula 
(60) we obtain 

In the vicinity of the points 8= + 1 and 8= - I satisfying 
the condition (57), both the asymptotic forms (58) and 
(36) [the latter using (58) on its right-hand side] become 
invalid. In these regions the saddle points tlY2 approach 
each other to the extent that their influence may be de- 
scribed in terms of a monkey saddle. This means that in the 
expansion of f ( r )  near the saddle points in the integral 
(20), not only the second but also the third derivative must 
be retained. The contributions from terms with higher de- 
rivatives are small, 

As a'lways in these cases, the results are expressed in terms 
of the Airy functions, 

  ere y=?l3( 1 - e2), C(v,p) = ~ ( v , , u ) v - ~ / ~ e - ~ ~ / ~ ,  and the 
first and second line refer to the respective regions 
\Or 11 < ~ v - ~ / ~ g l .  

A few remarks may be made about Eq. (60) above. 
1) In the 18-11 5v-2/3 region there exists one reces- 

sive wave with an amplitude -ePm relative to the wave 
amplitude for the region 8+ 1 1 5 v-~ '~ .  Its asymptotic 

Since the exact value of the left-hand side is J 2 ~ r i / r ( ~  
- iv), what we have on the right are the leading terms of 
the dominant and recessive series of the asymptotic form of 
this function for v) 1, ( p ( < &. The leading (dominant) 
term is just the Stirling formula. The value of the Wronsk- 
ian (59) for the other, T-conjugate, pair of independent 
solutions is also reproduced by the asymptotic forms (60). 

The exponenxially small correction me4" i n  the 
Wronskian (61), as well as the value of the Wronskian 
(59) computed from the asymptotic form (60) near 
8=  - 1, are due entirely to the exponentially small contri- 
bution from the saddle point tl on the lower rim of the cut. 
Accordingly, the Wronskians (61) and (59) control the 
correctness not only of the dominant but also of the reces- 
sive terms in the asymptotic forms (60). In particular, the 
above rule for calculating the contribution from the lower 
saddle point which gets onto the LDS from its higher 
counterpart is controlled. If, say, this contribution were 
taken simply to equal the integral along the descent 
arg(t-tl) =3a/2, then in the second term in the lower 
formula of Eq. (60) we would have instead 
e2~?r/3~i ( e 2 i ~ / 3  y)  the function e'"I2~i(y), which would ren- 

der the Wronskians (61 ) and (59) incorrect. 
4) The Airy functions of a complex argument in Eq. 

(60) can be expressed in terms of real functions of real y as 
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FIG. 5.  

When moving 8 away and outward from the ends of the 
interval 181 (1 the functions Ai(y) and Bi(y) show oscil- 
lations, while on going inward Ai(y) falls off exponentially 
and Bi(y) exponentially grows. From this and Eqs. (58) 
and (60) it follows that the amplitudes of the recessive 
waves that come out from the slit 1 8 1 < 1 are formed inside 
the slit while their phases are formed in the intervals 
) O r  11 < _ v - ~ / ~ .  

It is known that for an Airy function Ai(z) in the 
complex-z plane, the Stokes lines are the rays argz=O, 
2 ~ / 3 ,  47r/3. Representing y in the first and second lines of 
Eq. (60) by the respective forms y= -22/3(8- 1) and 
y z  2213(8+ 1 ), we find that the Stokes line for the func- 
tion ~ , - , ( e ~ ~ / ~ z )  in the complex-8 plane emanate from 
the points 8 =  * 1 in the form of the rays arg(8- 1) = ~ / 3 ,  
T, 5 ~ / 3  and arg(8+ 1 ) =0, 2 ~ / 3 ,  4 ~ / 3 .  The general pat- 
tern of the Stokes lines for ~,- , (e~"/~z) is shown in Fig. 5. 

From the corresponding formulas of Secs. 3 and 4 it is 
seen that the stationary and nonstationary solutions are 
related by a rotation through an angle of * ~ / 2  in the 
complex-8 plane. In fact, the Feynman stationary solutions 
subject to the rotation z-iz (i.e., 8-i8 or x3-ixO, 
pO- -ip3) go over to the Feynman nonstationary solutions 

whereas the anti-Feynman stationary solutions go over to 
the anti-Feynman nonstationary under the rotation in the 

. o  opposite direction z- - iz (i.e., 8- - i8 or x3 + - IX , 
p0 + ip3) : 

The different sign of rotation for the Feynman and anti- 
Feynman solutions are due to the fact that they transform 
into one another under the T transformation, consisting of 
the complex conjugation in combination with the replace- 

0 ments xO- -x , p- -p. 

5. PHYSICAL INTERPRETATION OF THE INTEGRAL 
REPRESENTATIONS AND OF THE ASYMPTOTIC 
CONDITIONS 

The parameter 8 in (23) can be written in the form 

showing it to be identical (in units of ml ) to the compo- 
nent of the particle kinetic momentum the direction of the 
force e&. There is a simple physical meaning in the integral 
representation (28) for the parabolic cylinder functions 
involved in the Feynman set (21). This representation is a 
superposition of the solutions 

of the same wave equation, which are characterized by the 
eigenvalues p, ,  p,, and p+ of the operator PI,  P2, and 
P+ =PO+ p3, where 

In fact, if we make use of the representation (28) and take 
the integration variable t according to 

then the solutions (21) can be written as superpositions of 
the solutions (65), 

where 

For the parabolic cylinder functions involved in the anti- 
Feynman set (25), we employ the integral representation 
complex conjugate to (28), 

In this integral the branch point t=O is circumvented 
counterclockwise because the integration contour C" is 
complex conjugate to the contour C in the integral (28). 

Using the representation (70), the functions of the 
anti-Feynman set can be written'' in the form of the su- 
perposition 

of the anti-Feynman solutions 
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of the wave equation, which are characterized by the ei- 
genvalues p l  , p2, p- of the operators PI ,  P2, P- =@- p3 ; 
see Eq. (66). By the variable of integration in Eq. (70) is 
meant 

Note that under the reversal of time, which consists of 
complex conjugation and the replacements xO-+ -xO, 
p+ -p, the Feynman and anti-Feynman sets (65) and 
(73), as well as (68) and (71 ), change into one another. 
Also note that both the sets can be expressed in terms of 
the eigenfunctions of one and the same operator, say P- . 
This can be done by using a representation other than (28) 
for the D functions entering the Feynman set (2 1 ) . Then 
we obtain 

Here for the upper (lower) frequency index on cPp on the 
left the function cPp-P, (x) on the right is taken with the 
lower (upper) frequency index. 

The solutions cPp-pl (x) are of a quasiclassical form 
but, unlike Eqs. (21 ) and (25), they have a singularity at 
x- =p - / e ~ ,  i.e., at P- =O [see Eq. (74)l. This surface 
x3=x0-p-/e~, moving with light velocity, is a source of 
particles. Hence the functions (73) satisfy the homoge- 
neous Klein-Gordon equation only outside this surface, 
and the integral of the current density divergence taken 
over any finite 4-volume Ll enclosing some region of the 
source hypersurface, is nonzero: 

This follows from the fact that the values (x) for 
P- = f S ? 0, S + 0 are substantially different. 

Let us now consider the time interval Ax0, in which the 
process of creation of pairs by the static uniform electric 
field essentially occurs. Outside of this interval, the para- 
bolic cylinder functions in Eqs. (21 ) and (25) move into 
their asymptotic regime. For a strong field, with v 5  1, the 
D functions in fact depend only on z and therefore the pair 
formation region is determined by the condition Ax- 1 or 
AB-v-"~, Ax0 - 1/ = m;1v1/2. It is seen that the 
time of formation of a pair by a strong field does not de- 
pend on the mass of the particle and is determined by the 
"electric" length I eE 1 -'I2, which is small compared to the 
Compton length if v(1. The independence of the forma- 
tion region of m has the consequence that the probabilities 

of many strong field processes do not depend on the mass 
and, in particular, tend to a finite limit for m-0 and the 
fixed value of the field. ".12 

In the case of a weak field, when v)l holds, it is seen 
that as 8- oo the action function vt(8) enters the asymp- 
totic regime even for v0-~41. This means that the region 
of pair formation by a weak field is determined by the 
condition A 0  - 6, Ax0-m~1v3/2. 

The meaning of the above estimates for the time for 
formation of a pair by a static field is that the pair forma- 
tion probabilities due to varying and static fields cease to 
differ when the characteristic field variation time T=E/& 
becomes large compared to static-field pair time formation, 
i.e., for 

The first of these conditions has been obtained and dis- 
cussed by ~ i ~ d a 1 . l ~ " ~  One of us15 has derived both of these 
conditions by considering the creation of a pair by an elec- 
tric field varying like &(xO) = E coshd2 (wxO). l6 The forma- 
tion time estimates as given in Eqs. (77) and (78) are 
consistent with those obtained for more complex processes 
in a slowly varying plane wave field.15*179'8 

According to the condition (78), for a weak field the 
time Ax0 is 6 times larger than the barrier time m / e ~  
which would seem to characterize the pair formation pro- 
cess. This difference results from the extremely sensitive 
exponential dependence of the pair formation probability 

-2m on the field strength E. Therefore changing the field 
by SE changes the exponent -2n-v by the amount 
-2~vSe/e and does not affect the probability only if the 
fractional change in the field is small compared to the pa- 
rameter characterizing the smallness of the field, 
S E / E ( V - ~ ( ~ .  For the time dependence of the field is qua- 
dratic near the maximum, SE/E- (SX'/T)~. Therefore the 
above condition is equivalent to T>v'/~sxO and is identical 
to (78) if the time SxO equals the barrier time, Sxo=m/e& 
or A8- 1. If the field varies rapidly and the condition (78) 
is invalid, the tunneling pair formation mechanism is over- 
powered by a more efficient one dependent not only on the 
field intensity but also on T, the characteristic field varia- 
tion time. 

Let us discuss now the role of the barrier time, taking 
the state -cPp as an example. From the integral represen- 
tation (71) -cP,(x) it is seen that for 8)1 this function is 
determined almost entirely by the contributions from the 
saddle point t 2 z  - 289 - 1 and from the contour region 
Re t<O which, by (74), corresponds to antiparticles 
(T- < 0). The contribution from the region Re t > 0 which 
corresponds to particles (n- > 0) is exponentially small 
even in comparison with the recessive term for 8=0. 
Nearer the barrier time values, when 8 5 1 holds, this is no 
longer the case. The contribution to the integral (70) from 
the contour region Re t > 0 in this case is comparable with, 
or larger than, the probability amplitude for the creation or 
absorption of a real pair by the field. This contribution can 
be interpreted as coming into the -Qp state from the 
"bound" or "subbarrier" pairs. 
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6. STOKES LINE WIDTHS EXCEEDING THE NATURAL ONE 

The farther beyond the Stokes line the parameter a ,  
the more accurately the integrals F2 and I;,, see Eq. ( 13) 
describe the dominant and recessive properties of the F 
wave. To see this, select on LDS2 and LDS, some points 
t and tl, located on the same level line below the saddle 
2*. 

polnt tl (see Fig. 3), and consider the integrals 

S F 2 = A l l  dtef, SFI=A 1; dtef . (79) 

The lower the line level chosen, the smaller are A F 2  and 
SF, in comparison with F2 and F1. We may assume that 
the integral Fk (k= 1,2) forms, to within SFk, in a region 
near the saddle point tk having a radius of order 

where sk* is the arc length of the LDSk between the points 
tk and tk, . If in either of these regions we may approximate 
the function f (t)  by a Taylor series expansion such as 

then the length sk* may be estimated from the formula 

where a is a new parameter that specifies the level line of 
the points t,, and t2* and lies in the range - oo < a<Re f ,  . 

The above formation regions overlap if the distance 
between the points tl, and t2* is less than, or of the order 
of, the smallest of the radii (80), 

this being the radius specifying the characteristic size of the 
overlap region. If the level line a is not too low, 
O<Re fl-a5Re(f2-fl)>l ,  thentheminimumradiusis 
R Since 

f (tl*) -f (t2*)=iIm(f 1-f2) , (84) 

expanding f (t2*) about tl, and making use of Eqs. (80) 
through (82) we have instead of (83) the condition 

The left-hand side of (85) depends on a and v; and the 
right-hand side, also on the parameter a. The overlap con- 
dition (85) always holds if the parameter a is inside the 
natural Stokes line width. As long as O<Re f -a 5 1, the 
width of the Stokes line remains of the order of the natural 
one. 

As a is increased beyond the natural Stokes line width, 
the left-hand side of (85) may become much larger than its 
right-hand side. However, by decreasing a the right-hand 
side may be made equal to the left-hand side and the cor- 
responding value of a will be a function of a and v. The 
quantities 

will also become functions of these quantities alone. Here 
rk is the effective radius of formation of the integral SFk, 
determined by the relation I SFk 1 = I A 1 eark, k= 1,2. 
Clearly, &,(a)  is the relative amplitude of the presence of 
the dominant wave in the recessive and ,z2(a) is the same 
for the recessive wave in the dominant. In other words, the 
integrals F1 and F2 describe the recessive and dominant 
properties of F to a fractional accuracy of &,(a)  and c2(a)  
respectively. 

Note that if the parameter a is not behind but before 
the Stokes line, then instead of the integrals F2 and SF2 one 
must consider F and SF  and define SF, on the downward 
LDSl, 

With these modifications the entire argument following Eq. 
(79) remains valid. 

As an example, consider the function F 
- - D-i,,-1~2(eir/42 &8) defined by the integral (28). It is 

readily seen that, by (33), (23), and (30), the inequality 
(85) has the form 

As long as O< -a S 1 holds, the width of the Stokes line is 
of order the natural width, Ae- ( 4 ~ ) ~ ' .  In order for the 
recessive wave to separate itself from the dominant by the 
amount ~ , -e-"  with which the dominant wave differs 
from the recessive in the natural formation region of the 
latter, it is necessary to set a =  -TY in (88), which will 
give the width A8 - m, i.e., a formation time interval 
of the order of the barrier time, Ax0 - m ( m /  I e& I ) . 

7. STOKES LINE WIDTH AND THE METHOD OF 
OSCULATING PARAMETERS 

An instructive approach to the question of the Stokes 
line width is to use the method of osculating parameters,9 
according to which a partial solution y(8) of a differential 
equation of the second order with a large parameter v is 
sought as a superposition of quasiclassical solutions * f (8) 
with correcting coefficient functions a, (8)  defined by the 
relations 

and the boundary condition 

showing that we are dealing with the solution +y(8). Since 
the functions a,(e) are not differentiated in (90), the 
second-order differential equation for y(8) leads to a sys- 
tem of two first-order equations for a, (8) ,  which is some- 
times convenient in the search for approximations. 
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There is the tendency in the physical literature to treat 
the two terms on the right-hand side of Eq. (89) as repre- 
senting two waves with positive and negative frequencies at 
arbitrary 8 rather than for 8- + a, only (see Ref. 20 and 
literature therein). The reason for this is that the quasiclas- 
sical solutions * f (8) retain the sign of the frequency for 
all 8 and that the factors a, (8) are only supposed to cor- 
rect these solutions. We wish to show that this approach is 
satisfactory only if the function + f (8) describing the 
strong wave is approximated to within terms of order 
a _ (  oo ), the amplitude of the weak wave ~ ~ ( 8 ) -  f (8), 
which are exponentially small under the conditions as- 
sumed [for example, a- ( a ) - e- "]. 

As a preliminary, note that if the function y(8) is 
known, 

a,(8)=* 
(yYrf 

(+f,-f ' 
where (f,g)=fgf--f'g. 

(92) 

Now suppose that (a-(8)l  ; S a - ( ~ ) - e - ~  for all 8 
whatever the approximation + f. Dropping the exponen- 
tially small terms with a-  in Eqs. (89) and (90) we obtain 

that is, the positive-frequency part of y(8) is defined only 
to within terms -v-" if the * f are taken in the nth ap- 
proximation, * f = * f,. Therefore, as shown below, for 
,,-"-1 $a- ( oo ) the wave a-  (8)- f (8) cannot be every- 
where exponentially small. It must contain power-law- 
small positive-frequency terms which correct (93) to the 
exact function (89). Therefore the function a- (8) - f (8) 
cannot be considered positive-frequency for all 8 if + f is 
not approximated accurately enough. 

We shall illustrate this using the example of the func- 
tion +y(8) = CDjv-,/2( - e-i"'42&8) [see Eq. (25)]. 
The constant C is specified by the condition a + ( - w ) = 1. 
The first terms of the asymptotic expansion of the positive- 
frequency part of y(8) in inverse powers of v)l can be 
obtained from the Darwin formula.* 

For the nth-order approximation this formula takes 
the form 

where the ck are real functions of 8 which are bounded for 
k>l together with their derivative and have the property 
ck(-8) = ( -  l ) k ~ k ( 8 ) .  From Eqs.(2) and (94) it follows 
that a- (8) - f ,(8) consists of a positive-frequency and a 
negative-frequency term, which are readily written down 
to within corrections -v-' as 

It is clear that a _ -  f n  will be a negative-frequency wave 
only for 

In the notation of Ref. 21, c ~ ( 8 )  = - 2 ( - i ~ ) " + ' / ~  
h3,,X-3n-2. It can be shown that for 8)l we have 
c ~ ( 8 )  ~ a , 2 - ~ " 8 - ~ " - '  and a, = 22n- 'I? (n + 1 ) provided 
that n>l holds. Then the condition (96) is equivalent to 

It is seen that at each further step toward improving + f 
the width of the interval in which the positive- and 
negative-frequency waves in (89) are unseparated de- 
creases rapidly, and it is only at the step n-v that this 
width approaches a physically meaningful value, the bar- 
rier width. An inappropriately chosen convention as to the 
separation of the negative-frequency wave may lead to an 
unjustifiably large value of the Stokes line width-and 
hence of the formation time of this wave. 

Thus, as long as + f is taken with only poor accuracy, 
the term a _ -  f in (89) is not exponentially small and 
contains a positive-frequency term which is large com- 
pared to e-m. However, if in (89) we replace + f by the 
exact solution +y of the same wave equation while repre- 
senting - f as before by an approximate expression 
for the other exact solution -y, *y(8) = CDriv-1/2 
X (e*'"I42 h e ) ,  then in the new expansion (89), 

the altered function a- (8) will render the term a _ -  f ex- 
ponentially small ( as well as negative-frequency 
to within terms - e-2m. Nevertheless, this term will still 
be different from-even though representing an approxi- 
mation for-the term c--y in the expansion 

with constant coefficients c, =a ( oo ) [see Eqs. (36) and 
(4311. 

In fact, using Eqs. (98) and (99), one can represent 
a, (8) in the form 

and -y, as an expansion in - f and +y: 

Here -y= - f + -r. Now if one takes as - f the quantity 
- f n ,  i.e., the sum of n terms of the asymptotic expansion 
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in powers of v-', and uses -rn-v-"-y, it becomes obvi- 
ous that the coefficient of - f, in Eq. ( 101 ) is unity to 
within -v-", and the coefficient of +y is small (or order 
,,-"-1 ) because 

Similarly, we see that a- (8) =c-[1 +O(v-")I and a +  (8) 
differs from c+ by an exponentially small correction term 
,v-n-l -"-2s e with a double negative frequency. Thus, 
a _ -  f equals c- -y with a fractional accuracy of v-"-'. 
This implies that the wave a _ -  f, represents, in fact, the 
entire negative-frequency part of the function c- -y if the 
last terms in - f, are of order e - 9  

All qualitative results of this section will continue to 
hold if, instead of * f, , one takes as approximations for y 
the integrals over mutually independent parts of the LDS2 
and LDS, into which the contour of integration for +y 
breaks down. 
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